$[20]$ 1.) Find the QR-decomposition of $A=\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \\ 0 & 3 & 10\end{array}\right]$.

Answer: $\underline{Q=}$
$R=$
[2] 1b.) An orthonormal basis for the column space of A is \qquad .
2.) Let $W=\operatorname{span}\{1+t, 1-3 t\}$. Note that $\{1+t, 1-3 t\}$ is an orthogonal set.

Using the inner product $<f, g>=\int_{-1}^{1} f(t) g(t) d t,<1+t, 1+t>=\frac{8}{3}$ and $<1-3 t, 1-3 t>=8$.
Using this inner product, find the following:
[2] 2a.) $\|1+t\|=$ \qquad
[2] 2b.) $\|1-3 t\|=$ \qquad
[3] 2c.) $<7 t^{5}, 1+t>=$ \qquad
[3] 2d.) $<7 t^{5}, 1-3 t>=$ \qquad
[3] 2e.) If $\mathbf{v}=7 t^{5}, \quad \operatorname{proj}_{W} \mathbf{v}=$ \qquad
[3] 2f.) Is $7 t^{5}$ in W ? \qquad
[3] 2g.) A vector in the orthogonal complement of W is \qquad .
[4] 2h.) Find an orthogonal basis for $\operatorname{span}\left\{1+t, 1-3 t, 7 t^{5}\right\}$ which includes $1+t$ and $1-3 t$.
[2] 2i.) If $\mathbf{u}=t, \quad \operatorname{proj}_{W} \mathbf{u}=$ \qquad
$[18]$ 3a.) The following matrix has only one eigenvalue: $A=\left[\begin{array}{llll}2 & 3 & 3 & 3 \\ 0 & 2 & 1 & 8 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$.
Find the eigenvalue and a basis for the eigenspace corresponding to this eigenvalue

Answer 3a) Eigenvalue: $\lambda=$ \qquad

Basis for Eigenspace corresponding to λ : \qquad
[3] 3b.) List 3 eigenvectors of A corresponding to λ :
[3] 3c.) List two vectors in R^{3} which are not eigenvectors of A :
[12] 4.) Let $<\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)>=4 u_{1} v_{1}+2 u_{1} v_{1}$.
Show that this operation satisfies $<\mathbf{u}+\mathbf{v}, \mathbf{w}>=\langle\mathbf{u}, \mathbf{w}>+\langle\mathbf{v}, \mathbf{w}\rangle$
5.) Circle T for True or F for False.
[3] 5a.) If $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is an orthogonal set of vectors, then $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is linearly independent. T F
[3] 5b.) If λ is not an eigenvalue of A, then the linear system $(\lambda I-A) \mathbf{x}=\mathbf{0}$ has only the trivial solution
[3] 5c.) If the characteristic equation of A is $p(\lambda)=\lambda(\lambda-5)(\lambda-8)^{2}$, then A is invertible. T F
6.) Circle the correct answer
[3] 6a.) If W is a line in R^{2}, then W^{\perp} is
i.) the empty set.
ii.) a point.
iii.) a line.
iv.) a 2-dimensional plane.
v.) a 3-dimensional hyperplane.
[3] 6b.) If W is a line in R^{3}, then W^{\perp} is
i.) the empty set.
ii.) a point.
iii.) a line.
iv.) a 2-dimensional plane. v.) a 3-dimensional hyperplane.
[3] 7a.) If \mathbf{u} is in W, then $\operatorname{proj}_{W} \mathbf{u}=$ \qquad
[3] 7b.) If \mathbf{u} is in W^{\perp}, then $\operatorname{proj}_{W} \mathbf{u}=$

