Math 2418 Linear Algebra Exam #2 PART A SHOW ALL WORK October 31, 2001

Name: Circle one: Wednesday/Thursday

[20] 1.) Find the QR-decomposition of
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \\ 0 & 3 & 10 \end{bmatrix}$$
.

Answer: $\underline{Q} =$

2.) Let $W = span\{1+t, 1-3t\}$. Note that $\{1+t, 1-3t\}$ is an orthogonal set. Using the inner product $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt, \langle 1+t, 1+t \rangle = \frac{8}{3}$ and $\langle 1-3t, 1-3t \rangle = 8$. Using this inner product, find the following:

[2] 2a.) ||1 + t|| =_____

[2] 2b.) ||1 - 3t|| =_____

[3] 2c.) $< 7t^5, 1+t >=$

[3] 2d.) $< 7t^5, 1 - 3t > =$

[3] 2e.) If $\mathbf{v} = 7t^5$, $proj_W \mathbf{v} = _$

[3] 2f.) Is $7t^5$ in W? _____

[3] 2g.) A vector in the orthogonal complement of W is _____.

[4] 2h.) Find an orthogonal basis for $span\{1+t, 1-3t, 7t^5\}$ which includes 1+t and 1-3t.

[2] 2i.) If $\mathbf{u} = t$, $proj_W \mathbf{u} =$

Math 2418 Linear Algebra Exam #2 PART B SHOW ALL WORK October 31, 2001

Name: $\frac{}{\text{Circle one: Wednesday/Thursday}}$

[18] 3a.) The following matrix has only one eigenvalue: $A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 8 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$.

Find the eigenvalue and a basis for the eigenspace corresponding to this eigenvalue

Answer 3a) Eigenvalue: $\lambda =$ _____

Basis for Eigenspace corresponding to λ :_____

[3] 3b.) List 3 eigenvectors of A corresponding to λ :

[3] 3c.) List two vectors in \mathbb{R}^3 which are not eigenvectors of A:

5.) Circle T for True or F for False.

[3]	5a.)) If {	$\{\mathbf{v_1},\}$	$,\mathbf{v_n}]$	$_{\rm f}~{ m is}~{ m an}~{ m orthogor}$	al set of	vectors,	then ·	$\{{f v_1},,{f v_n}\}$	$\mathbf{v_n}$	· is linea	rly inc	lependent.	Т	F
-----	------	--------	---------------------	------------------	--	-----------	----------	--------	------------------------	----------------	------------	---------	------------	---	---

[3] 5b.) If λ is not an eigenvalue of A, then the linear system $(\lambda I - A)\mathbf{x} = \mathbf{0}$ has only the trivial solution T F

[3] 5c.) If the characteristic equation of A is $p(\lambda) = \lambda(\lambda - 5)(\lambda - 8)^2$, then A is invertible. T

6.) Circle the correct answer

[3] 6a.) If W is a lin	6a.) If W is a line in \mathbb{R}^2 , then W^{\perp} is							
i.) the emp	ty set.	ii.) a point.	ii	i.) a line.				
iv	.) a 2-dimensional plane.		v.) a 3-dimensional hyper					
[3] 6b.) If W is a line	ne in \mathbb{R}^3 , then W^{\perp} is							
i.) the emp	ty set.	ii.) a point.	ii	i.) a line.				
iv	.) a 2-dimensional plane.		v.) a 3-dimensional hyperpla					

[3] 7a.) If **u** is in W, then $proj_W \mathbf{u} =$ _____

[3] 7b.) If **u** is in W^{\perp} , then $proj_W \mathbf{u} =$ _____