2.1 cont: Note

 $AB \neq BA$

$$\begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 &$$

It is also possible that AB = AC, but $B \neq C$.

In particular it is possible for AB = 0, but $A \neq 0$ AND $B \neq 0$

Defn: If A is a square $(n \times n)$ matrix, $A^0 = I$, $A^1 = A$, $A^k = AA...A$.

Ex:
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^2 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} =$$

The transpose of the $m \times n$ matrix $A = A^T = (a_{ji})$.

Ex:
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^T =$$

Transpose Properties:

a.)
$$(A^{T})^{T} = A$$

b.) $(A + B)^{T} = A^{T} + B^{T}$
c.) $(kA)^{T} = kA^{T}$
d.) $(AB)^{T} = B^{T}A^{T}$

Thm 1 (Properties of matrix arithmetic) Let A, B, Cbe matrices. Let a, b be scalars. Assuming that the following operations are defined, then

a.)
$$A + B = B + A$$

b.) $A + (B + C) = (A + B) + C$
c.) $A + 0 = A$
d.) $A + (-A) = 0$
e.) $A(BC) = (AB)C$
f.) $AI = A, IB = B$
g.) $A(B + C) = AB + AC$,
. $(B + C)A = BA + CA$
h.) $a(B + C) = aB + aC$
i.) $(a + b)C = aC + bC$
j.) $(ab)C = a(bC)$
k.) $a(AB) = (aA)B = A(aB)$
l.) $1A = A$ Defn.) $-A = -1A$
Cor.) $A0 = 0, 0B = 0$ Cor.) $a0 = 0$

2.2:

Defn: A is invertible if there exists a matrix B such that AB = BA = I, and B is called the inverse of A. If the inverse of A does not exist, then A is said to be singular.

Note that if A is invertible, then A is a square matrix.

Thm: If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then A is invertible if and
only if $ad - bc \neq 0$, in which case
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Ex: The inverse of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is since

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} & & \\ & & \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} & & \\ & & \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Thm: Let A be a square matrix. If there exists a square matrix B such that AB = I, then BA = I and thus $B = A^{-1}$

Thm: If A is invertible, then its inverse is unique. Proof: Suppose AB = I and CA = I. Then, B = IB = CAB = CI = C.

Defn: $A^0 = I$, and if *n* is a positive integer $A^n = AA \cdots A$ and $A^{-n} = A^{-1}A^{-1} \cdots A^{-1}$.

Thm: If r, s integers, $A^r A^s = A^{r+s}$, $(A^r)^s = A^{rs}$

Thm: If A^{-1} and B^{-1} exist, then i.) AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

ii.) A^{-1} is invertible and $(A^{-1})^{-1} = A$

iii.) A^r is invertible and $(A^r)^{-1} = (A^{-1})^r$ where r is any integer

iv.) For any nonzero scalar k, kA is invertible and $(kA)^{-1} = \frac{1}{k}A^{-1}$ v.) A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$