2.1 cont: Note

$$
A B \neq B A
$$

$\left[\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=$
$\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right]=$
It is also possible that $A B=A C$, but $B \neq C$.
In particular it is possible for $A B=0$, but $A \neq 0$ AND $B \neq 0$

Defn: If A is a square $(n \times n)$ matrix, $A^{0}=I$, $A^{1}=A, \quad A^{k}=A A \ldots A$.

Ex: $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]^{2}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=$
The transpose of the $m \times n$ matrix $A=A^{T}=\left(a_{j i}\right)$.
Ex: $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]^{T}=$
Transpose Properties:
a.) $\left(A^{T}\right)^{T}=A$
b.) $(A+B)^{T}=A^{T}+B^{T}$
c.) $(k A)^{T}=k A^{T}$
d.) $(A B)^{T}=B^{T} A^{T}$

Thm 1 (Properties of matrix arithmetic) Let A, B, C 【 be matrices. Let a, b be scalars. Assuming that the following operations are defined, then
a.) $A+B=B+A$
b.) $A+(B+C)=(A+B)+C$
c.) $A+0=A$
d.) $A+(-A)=0$
e.) $A(B C)=(A B) C$
f.) $A I=A, I B=B$
g.) $A(B+C)=A B+A C$,
$(B+C) A=B A+C A$
h.) $a(B+C)=a B+a C$
i.) $(a+b) C=a C+b C$
j.) $(a b) C=a(b C)$
k.) $a(A B)=(a A) B=A(a B)$
l.) $1 A=A$

Defn.) $-A=-1 A$
Cor.) $A 0=0,0 B=0$
Cor.) $a 0=0$
2.2:

Defn: A is invertible if there exists a matrix B such that $A B=B A=I$, and B is called the inverse of A. If the inverse of A does not exist, then A is said to be singular.

Note that if A is invertible, then A is a square matrix.

Thm: If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then A is invertible if and only if $a d-b c \neq 0$, in which case

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Ex: The inverse of $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ is since
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right][\quad]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$

Thm: Let A be a square matrix. If there exists a square matrix B such that $A B=I$, then $B A=I$ and thus $B=A^{-1}$

Thm: If A is invertible, then its inverse is unique. Proof: Suppose $A B=I$ and $C A=I$. Then, $B=I B=C A B=C I=C$.

Defn: $A^{0}=I$, and if n is a positive integer $A^{n}=A A \cdots A$ and $A^{-n}=A^{-1} A^{-1} \cdots A^{-1}$.

Thm: If r, s integers, $A^{r} A^{s}=A^{r+s},\left(A^{r}\right)^{s}=A^{r s}$
Thm: If A^{-1} and B^{-1} exist, then
i.) $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$
ii.) A^{-1} is invertible and $\left(A^{-1}\right)^{-1}=A$
iii.) A^{r} is invertible and $\left(A^{r}\right)^{-1}=\left(A^{-1}\right)^{r}$ where r is any integer
iv.) For any nonzero scalar k, $k A$ is invertible and $(k A)^{-1}=\frac{1}{k} A^{-1}$
v.) A^{T} is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

