Find the inverse of $\left[\begin{array}{lll}2 & 3 & 4 \\ 4 & 5 & 6 \\ 6 & 7 & 9\end{array}\right]$.
Long method: $\left[\begin{array}{lll}2 & 3 & 4 \\ 4 & 5 & 6 \\ 6 & 7 & 9\end{array}\right]\left[\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33}\end{array}\right]=$

$$
\left.\begin{array}{ccc}
2 x_{11}+3 x_{21}+4 x_{31} & 2 x_{12}+3 x_{22}+4 x_{32} & 2 x_{13}+3 x_{23}+4 x_{33} \\
4 x_{11}+5 x_{21}+6 x_{31} & 4 x_{12}+5 x_{22}+6 x_{32} & 4 x_{13}+5 x_{23}+f x_{33} \\
6 x_{11}+7 x_{21}+9 x_{31} & 6 x_{12}+7 x_{22}+9 x_{32} & 6 x_{13}+7 x_{23}+9 x_{33}
\end{array}\right] \square .\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

So solve,

$$
\begin{aligned}
& {\left[\begin{array}{llll}
2 & 3 & 4 & 1 \\
4 & 5 & 6 & 0 \\
6 & 7 & 9 & 0
\end{array}\right] \text { for } x_{11}, x_{21}, x_{31}} \\
& {\left[\begin{array}{llll}
2 & 3 & 4 & 0 \\
4 & 5 & 6 & 1 \\
6 & 7 & 9 & 0
\end{array}\right] \text { for } x_{12}, x_{22}, x_{32}} \\
& {\left[\begin{array}{llll}
2 & 3 & 4 & 0 \\
4 & 5 & 6 & 0 \\
6 & 7 & 9 & 1
\end{array}\right] \text { for } x_{13}, x_{23}, x_{33} .}
\end{aligned}
$$

Or shorter method, solve

$$
\left[\begin{array}{llllll}
2 & 3 & 4 & 1 & 0 & 0 \\
4 & 5 & 6 & 0 & 1 & 0 \\
6 & 7 & 9 & 0 & 0 & 1
\end{array}\right]
$$

$\left[\begin{array}{llllll}2 & 3 & 4 & 1 & 0 & 0 \\ 4 & 5 & 6 & 0 & 1 & 0 \\ 6 & 7 & 9 & 0 & 0 & 1\end{array}\right]$
$\downarrow\left(R_{2}-2 R_{1} \rightarrow R_{2}, R_{3}-3 R_{1} \rightarrow R_{3}\right)$
$\left[\begin{array}{cccccc}2 & 3 & 4 & 1 & 0 & 0 \\ 0 & -1 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -3 & 0 & 1\end{array}\right]$
$\downarrow\left(-R_{2} \rightarrow R_{2}\right)$
$\left[\begin{array}{cccccc}2 & 3 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 2 & -1 & 0 \\ 0 & -2 & -3 & -3 & 0 & 1\end{array}\right]$
$\downarrow\left(R_{3}+2 R_{2} \rightarrow R_{3}\right)$
$\left[\begin{array}{cccccc}2 & 3 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 2 & -1 & 0 \\ 0 & 0 & 1 & 1 & -2 & 1\end{array}\right]$
$\downarrow\left(R_{1}-4 R_{3} \rightarrow R_{1}, R_{2}-2 R_{3} \rightarrow R_{2}\right)$
$\left[\begin{array}{cccccc}2 & 3 & 0 & -3 & 8 & -4 \\ 0 & 1 & 0 & 0 & 3 & -2 \\ 0 & 0 & 1 & 1 & -2 & 1\end{array}\right]$
$\downarrow\left(R_{1}-3 R_{2} \rightarrow R_{1}\right)$
$\left[\begin{array}{cccccc}2 & 0 & 0 & -3 & -1 & 2 \\ 0 & 1 & 0 & 0 & 3 & -2 \\ 0 & 0 & 1 & 1 & -2 & 1\end{array}\right] \xrightarrow[\left(\frac{1}{2} R_{1} \rightarrow R_{1}\right)]{ }\left[\begin{array}{cccccc}1 & 0 & 0 & -\frac{3}{2} & -\frac{1}{2} & 1 \\ 0 & 1 & 0 & 0 & 3 & -2 \\ 0 & 0 & 1 & 1 & -2 & 1\end{array}\right]$

Thus $\left[\begin{array}{llll}2 & 3 & 4 & 1 \\ 4 & 5 & 6 & 0 \\ 6 & 7 & 9 & 0\end{array}\right]$ is row equivalent to $\left[\begin{array}{cccc}1 & 0 & 0 & -\frac{3}{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$,
so $\left(x_{11}, x_{21}, x_{31}\right)=\left(-\frac{3}{2}, 0,1\right)$.
$\left[\begin{array}{llll}2 & 3 & 4 & 0 \\ 4 & 5 & 6 & 1 \\ 6 & 7 & 9 & 0\end{array}\right]$ is row equivalent to $\left[\begin{array}{cccc}1 & 0 & 0 & -\frac{1}{2} \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2\end{array}\right]$,
so $\left(x_{12}, x_{22}, x_{32}\right)=\left(\frac{-1}{2}, 3,-2\right)$.
$\left[\begin{array}{llll}2 & 3 & 4 & 0 \\ 4 & 5 & 6 & 0 \\ 6 & 7 & 9 & 1\end{array}\right]$ is row equivalent to $\left[\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1\end{array}\right]$,
so $\left(x_{13}, x_{23}, x_{33}\right)=(1,-2,1)$.
Shortest method:
Note that if $[A \mid I]$ is row equivalent to $[I \mid B]$, then $B=A^{-1}$.
Thus the inverse of $\left[\begin{array}{lll}2 & 3 & 4 \\ 4 & 5 & 6 \\ 6 & 7 & 9\end{array}\right]$ is $\left[\begin{array}{ccc}-\frac{3}{2} & -\frac{1}{2} & 1 \\ 0 & 3 & -2 \\ 1 & -2 & 1\end{array}\right]$

Check answer: $\left[\begin{array}{lll}2 & 3 & 4 \\ 4 & 5 & 6 \\ 6 & 7 & 9\end{array}\right]\left[\begin{array}{ccc}-\frac{3}{2} & -\frac{1}{2} & 1 \\ 0 & 3 & -2 \\ 1 & -2 & 1\end{array}\right]=$

WHEN DOES A^{-1} EXIST?

Solve $2 x+3 y+4 z=0$
$4 x+5 y+6 z=0$
$6 x+7 y+9 z=0$

Solve $2 x+3 y+4 z=0$
$4 x+5 y+6 z=2$
$6 x+7 y+9 z=1$

Elementary matrices and linear systems.
Definition: A matrix is called an elementary matrix if it can be obtained from an identity matrix by exactly one elementary row operation.

Examples:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow[R_{1} \leftrightarrow R_{2}]{ }\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow[R_{1} \leftrightarrow k R_{1}]{ }\left[\begin{array}{ccc}
k & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow[R_{2}+k R_{1} \leftrightarrow R_{2}]{ }\left[\begin{array}{ccc}
1 & 0 & 0 \\
k & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & j
\end{array}\right] \xrightarrow[R_{1} \leftrightarrow R_{2}]{ }\left[\begin{array}{lll}
d & e & f \\
a & b & c \\
g & h & j
\end{array}\right]} \\
& {\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & j
\end{array}\right]=}
\end{aligned}
$$

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & j
\end{array}\right] \overrightarrow{R_{1} \leftrightarrow k R_{1}}\left[\begin{array}{ccc}
k a & k b & k c \\
d & e & f \\
g & h & j
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
k & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & j
\end{array}\right]=
$$

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & j
\end{array}\right] \overrightarrow{R_{2}+k R_{1} \leftrightarrow R_{2}}\left[\begin{array}{ccc}
a & b & c \\
d+k a & e+k b & f+k c \\
g & h & j
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
k & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & j
\end{array}\right]=
$$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow[R_{1} \leftrightarrow R_{2}]{ }\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Note the opposite of exchanging row one with row two is exchanging row two with row one. That is
$\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \xrightarrow[R_{1} \leftrightarrow k R_{1}]{ }\left[\begin{array}{ccc}k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Note the opposite of multiplying row one by k is multiplying row one by $\frac{1}{k}$. That is,
$\left[\begin{array}{lll}\frac{1}{k} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \xrightarrow[R_{2}+k R_{1} \leftrightarrow R_{2}]{\longrightarrow}\left[\begin{array}{ccc}1 & 0 & 0 \\ k & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Note the opposite of adding k row 1 to row 2 is subtracting k row 1 from row 2 . That is,
$\left[\begin{array}{ccc}1 & 0 & 0 \\ -k & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ k & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Note $A \sim I$ if and only if A is invertible.

