2.8 Subspaces of R^{n}.

Example: The nullspace of A is the solution set of $A \mathbf{x}=\mathbf{0}$.
$A=\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 8 \\ 3 & 7 & 9 & 12 \\ 1 & 2 & 3 & 4\end{array}\right] \xrightarrow[R_{2}-2 R_{1} \rightarrow R_{2}, R_{3}-3 R_{1} \rightarrow R_{3}, R_{4}-R_{1} \rightarrow R_{4}]{ }$

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \overrightarrow{R_{3}-R_{2} \rightarrow R_{3}}\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Nullspace of $A=$ Solution space of $\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 8 \\ 3 & 7 & 9 & 12 \\ 1 & 2 & 3 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\mathbf{0}$

$$
=\text { solution space of }\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \mathbf{x}=\mathbf{0}
$$

$=$ solution space of $\left[\begin{array}{llll}1 & 0 & 3 & 4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \mathbf{x}=\mathbf{0}$

Suppose $A \mathbf{v}_{\mathbf{1}}=\mathbf{0}$ and $A \mathbf{v}_{\mathbf{2}}=\mathbf{0}$, then $A\left(c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}\right)=\mathbf{0}$

NOTE: Nullspace of $A=\operatorname{span}\{$
2.8 Subspaces of R^{n}.

Long definition emphasizing important points:
Defn: Let W be a nonempty subset of R^{n}. Then W is a subspace of R^{n} if and only if the following three conditions are satisfied:
i.) $\mathbf{0}$ is in W,
ii.) if $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ in W, then $\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}$ in W,
iii.) if \mathbf{v} in W, then $c \mathbf{v}$ in W for any scalar c.

Short definition: Let W be a nonempty subset of R^{n}. Then W is a subspace of R^{n} if $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ in W implies $c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}$ in W,

Note that if S is a subspace, then

$$
\begin{aligned}
& \text { if } \mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}} \text { in } S \text {, then } c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\ldots+c_{n} \mathbf{v}_{\mathbf{n}} \text { is in } S . \\
& 0 \mathbf{v}=\mathbf{0} \text { is in } S .
\end{aligned}
$$

Defn: Let S be a subspace of R^{k}. A set \mathcal{T} is a basis for S if
i.) \mathcal{T} is linearly independent and
ii.) \mathcal{T} spans S.

Examples: Nullspace and Column Space.
Let $A=\left[\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}, \ldots, \mathbf{c}_{\mathbf{n}}\right]$, a $k \times n$ matrix.
Defn: The column space of $A=\operatorname{span}\left\{\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}, \ldots, \mathbf{c}_{\mathbf{n}}\right\}$
Thm: The column space of A is a subspace of R^{k}
Note: Suppose B is row equivalent to A, then the column space of B need not be the same as the column space of A.
$A=\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 8 \\ 3 & 7 & 9 & 12 \\ 1 & 2 & 3 & 4\end{array}\right] \xrightarrow{R_{2}-2 R_{1} \rightarrow R_{2}, R_{3}-3 R_{1} \rightarrow R_{3}, R_{4}-R_{1} \rightarrow R_{4}}$

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \overrightarrow{R_{3}-R_{2} \rightarrow R_{3}}\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The column space of $A=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 7 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 6 \\ 9 \\ 3\end{array}\right],\left[\begin{array}{c}4 \\ 2 \\ 12 \\ 4\end{array}\right]\right\}$

$$
=\operatorname{span}\{
$$

$$
\} .
$$

Thus a basis for the column space of A is $\{$

Note we took the leading entry columns in the ORIGINAL matrix.
Why are we so interested in the column space?
Does $\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 8 \\ 3 & 7 & 9 & 12 \\ 1 & 2 & 3 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right]$ have a solution?
Does $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 1\end{array}\right] x_{1}+\left[\begin{array}{l}2 \\ 5 \\ 7 \\ 2\end{array}\right] x_{2}+\left[\begin{array}{l}3 \\ 6 \\ 9 \\ 3\end{array}\right] x_{3}+\left[\begin{array}{c}4 \\ 2 \\ 12 \\ 4\end{array}\right] x_{4}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right]$ have a sol'n?
Does $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 1\end{array}\right] x_{1}+\left[\begin{array}{l}2 \\ 5 \\ 7 \\ 2\end{array}\right] x_{2}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right]$ have a solution?
Is $\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right]$ in span $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 7 \\ 2\end{array}\right]\right\}=$ column space of $\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 8 \\ 3 & 7 & 9 & 12 \\ 1 & 2 & 3 & 4\end{array}\right]$?

Example 1: Does $\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 8 \\ 3 & 7 & 9 & 12 \\ 1 & 2 & 3 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{r}9 \\ 22 \\ 31 \\ 9\end{array}\right]$ have a sol'n?

Example 2: Does $\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 8 \\ 3 & 7 & 9 & 12 \\ 1 & 2 & 3 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}3 \\ 7 \\ 8 \\ 4\end{array}\right]$ have a sol'n?

Long method for determining IF there is a solution:

$$
\left[\begin{array}{rrrr|rr}
1 & 2 & 4 & 3 & 9 & 3 \\
2 & 5 & 8 & 7 & 22 & 7 \\
3 & 7 & 12 & 8 & 31 & 8 \\
1 & 2 & 5 & 4 & 9 & 4
\end{array}\right] \rightarrow\left[\begin{array}{llll|ll}
1 & 2 & 4 & 3 & * & * \\
0 & 1 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * & *
\end{array}\right]
$$

Shorter method for determining IF there is a solution WHEN you know a basis for the column space:

