2.8 Subspaces of \mathbb{R}^n .

Example: The **nullspace of** A is the solution set of $A\mathbf{x} = \mathbf{0}$.

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 8 \\ 3 & 7 & 9 & 12 \\ 1 & 2 & 3 & 4 \end{bmatrix} \xrightarrow{R_2 - 2R_1 \to R_2, R_3 - 3R_1 \to R_3, R_4 - R_1 \to R_4} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \overrightarrow{R_3 - R_2 \to R_3} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Nullspace of $A =$ Solution space of $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 8 \\ 3 & 7 & 9 & 12 \\ 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \mathbf{0}$
= solution space of $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \mathbf{x} = \mathbf{0}$
= solution space of $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \mathbf{x} = \mathbf{0}$

2

•

Suppose $A\mathbf{v_1} = \mathbf{0}$ and $A\mathbf{v_2} = \mathbf{0}$, then $A(c_1\mathbf{v_1} + c_2\mathbf{v_2}) = \mathbf{0}$

NOTE: Nullspace of $A = \text{span}\{$

2.8 Subspaces of \mathbb{R}^n .

Long definition emphasizing important points:

Defn: Let W be a nonempty subset of \mathbb{R}^n . Then W is a subspace of \mathbb{R}^n if and only if the following three conditions are satisfied:

}

- i.) **0** is in W,
- ii.) if $\mathbf{v_1}, \mathbf{v_2}$ in W, then $\mathbf{v_1} + \mathbf{v_2}$ in W,
- iii.) if \mathbf{v} in W, then $c\mathbf{v}$ in W for any scalar c.

Short definition: Let W be a nonempty subset of \mathbb{R}^n . Then W is a subspace of \mathbb{R}^n if $\mathbf{v_1}, \mathbf{v_2}$ in W implies $c_1\mathbf{v_1} + c_2\mathbf{v_2}$ in W,

Note that if S is a subspace, then if $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}$ in S, then $c_1\mathbf{v_1} + c_2\mathbf{v_2} + ... + c_n\mathbf{v_n}$ is in S. $0\mathbf{v} = \mathbf{0}$ is in S.

Defn: Let S be a subspace of \mathbb{R}^k . A set \mathcal{T} is a **basis** for S if i.) \mathcal{T} is linearly independent and ii.) \mathcal{T} spans S. Examples: Nullspace and Column Space.

Let $A = [\mathbf{c_1}, \mathbf{c_2}, ..., \mathbf{c_n}]$, a $k \times n$ matrix.

Defn: The column space of $A = span\{\mathbf{c_1}, \mathbf{c_2}, ..., \mathbf{c_n}\}$

Thm: The column space of A is a subspace of R^k

Note: Suppose B is row equivalent to A, then the column space of B need not be the same as the column space of A.

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 8 \\ 3 & 7 & 9 & 12 \\ 1 & 2 & 3 & 4 \end{bmatrix} \xrightarrow{R_2 - 2R_1 \to R_2, R_3 - 3R_1 \to R_3, R_4 - R_1 \to R_4} \\ \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_3 - R_2 \to R_3} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The column space of $A = span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \\ 7 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ 9 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ 12 \\ 4 \end{bmatrix} \right\}$
$$= span \left\{$$

Thus a basis for the column space of A is $\{$

Note we took the leading entry columns in the ORIGINAL matrix.

Why are we so interested in the column space?

$$Does \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 8 \\ 3 & 7 & 9 & 12 \\ 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \text{ have a solution?}$$

$$Does \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix} x_1 + \begin{bmatrix} 2 \\ 5 \\ 7 \\ 2 \end{bmatrix} x_2 + \begin{bmatrix} 3 \\ 6 \\ 9 \\ 3 \end{bmatrix} x_3 + \begin{bmatrix} 4 \\ 2 \\ 12 \\ 4 \end{bmatrix} x_4 = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \text{ have a sol'n?}$$

$$Does \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix} x_1 + \begin{bmatrix} 2 \\ 5 \\ 7 \\ 2 \end{bmatrix} x_2 = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \text{ have a solution?}$$

$$Is \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \text{ in } span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \\ 7 \\ 2 \end{bmatrix} \right\} = \text{column space of} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 8 \\ 3 & 7 & 9 & 12 \\ 1 & 2 & 3 & 4 \end{bmatrix} ?$$

Example 1:	Does	$\begin{bmatrix} 1\\2\\3\\1 \end{bmatrix}$	$2 \\ 5 \\ 7 \\ 2$	3 6 9 3	$ \begin{bmatrix} 4\\8\\12\\4 \end{bmatrix} \begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix} = \begin{bmatrix} 9\\22\\31\\9 \end{bmatrix} $ have a sol'n?
Example 2:	Does	$\begin{bmatrix} 1\\ 2\\ 3\\ 1 \end{bmatrix}$	$2 \\ 5 \\ 7 \\ 2$	3 6 9 3	$ \begin{bmatrix} 4\\8\\12\\4 \end{bmatrix} \begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix} = \begin{bmatrix} 3\\7\\8\\4 \end{bmatrix} $ have a sol'n?

Long method for determining IF there is a solution:

Γ1	2	4	3	9	ך 3	Г	1	2	4	3	*	*]
2	5	8	7	22	7		0	1	0	0	*	*
3	7	12	8	31	8	\rightarrow	0	0	0	0	*	*
$\lfloor 1$	2	5	4	9	$4 \rfloor$		0	0	0	0	*	*

Shorter method for determining IF there is a solution WHEN you know a basis for the column space: