2.9: Basis and Dimension

Defn: Let S be a subspace of \mathbb{R}^k . A set \mathcal{T} is a **basis** for S if i.) \mathcal{T} is linearly independent and ii.) \mathcal{T} spans S.

Examples

a.) $\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 3\\4\\0 \end{bmatrix} \right\}$ is a basis for $span\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 3\\4\\0 \end{bmatrix} \right\}$ b.) $\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 3\\4\\0 \end{bmatrix}, \begin{bmatrix} 4\\6\\0 \end{bmatrix} \right\}$ is NOT a basis for $span\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 3\\4\\0 \end{bmatrix} \right\}$ c.) $\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix} \right\}$ is NOT a basis for $span\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 3\\4\\0 \end{bmatrix} \right\}$

Defn: A vector space is called **finite-dimensional** if it has a basis consisting of a finite number of vectors. Otherwise, V is **infinite dimensional**.

Thm: All basis for a finite-dimensional vector space have the same number of elements.

Defn: dim(V) = the **dimension** of a finite-dimensional vector space V = the number of vectors in any basis for S. If dim(V) = n, then V is said to be *n*-dimensional.

rank A = Rank of a matrix A = dimension of Col A= number of pivot columns of A.

nullity of A = dimension of Nul A = number of free variables.

Basis theorem: Let H be a p-dimensional subspace of \mathbb{R}^n .

i.) If $H = \text{span}\{w_1, ..., w_p\}$, then $\{w_1, ..., w_p\}$ is a basis for H.

ii.) If $v_1, ..., v_p$ are linearly independent vectors in H, then $\{v_1, ..., v_p\}$ is a basis for H.

 $\operatorname{Rank}(A) + \operatorname{nullity}(A) = \operatorname{Number of columns of } A.$

Ex. 1) Suppose A is a 5X7 matrix.

If $\operatorname{Rank}(A) = 4$, then $\operatorname{nullity}(A) =$

 $A\mathbf{x} = \mathbf{b}$ has _______ solutions.

If $\operatorname{Rank}(A) = 5$, then $\operatorname{nullity}(A) =$

 $A\mathbf{x} = \mathbf{0}$ has ________ solutions.

 $A\mathbf{x} = \mathbf{b}$ has _______ solutions.

If $\operatorname{Rank}(A) = 5$, the column space of A =