2.9: Basis and Dimension

Defn: Let S be a subspace of R^{k}. A set \mathcal{T} is a basis for S if i.) \mathcal{T} is linearly independent and
ii.) \mathcal{T} spans S.

Examples
a.) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 4 \\ 0\end{array}\right]\right\}$ is a basis for $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 4 \\ 0\end{array}\right]\right\}$
b.) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 4 \\ 0\end{array}\right],\left[\begin{array}{l}4 \\ 6 \\ 0\end{array}\right]\right\}$ is NOT a basis for $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 4 \\ 0\end{array}\right]\right\}$
c.) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]\right\}$ is NOT a basis for $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 4 \\ 0\end{array}\right]\right\}$

Defn: A vector space is called finite-dimensional if it has a basis consisting of a finite number of vectors. Otherwise, V is infinite dimensional.

Thm: All basis for a finite-dimensional vector space have the same number of elements.

Defn: $\operatorname{dim}(V)=$ the dimension of a finite-dimensional vector space $V=$ the number of vectors in any basis for S. If $\operatorname{dim}(V)=n$, then V is said to be n-dimensional.
$\operatorname{rank} A=$ Rank of a matrix $A=\operatorname{dimension~of~} \operatorname{Col} A$ $=$ number of pivot columns of A.
nullity of $A=\operatorname{dimension~of~} \operatorname{Nul} A=$ number of free variables.

Basis theorem: Let H be a p-dimensional subspace of R^{n}.
i.) If $H=\operatorname{span}\left\{w_{1}, \ldots, w_{p}\right\}$, then $\left\{w_{1}, \ldots, w_{p}\right\}$ is a basis for H.
ii.) If v_{1}, \ldots, v_{p} are linearly independent vectors in H, then $\left\{v_{1}, \ldots, v_{p}\right\}$ is a basis for H.

$\operatorname{Rank}(A)+\operatorname{nullity}(A)=$ Number of columns of A.

Ex. 1) Suppose A is a $5 X 7$ matrix.
If $\operatorname{Rank}(A)=4$, then $\operatorname{nullity}(A)=$
$A \mathrm{x}=\mathbf{0}$ has \qquad solutions.
$A \mathbf{x}=\mathbf{b}$ has \qquad solutions.

If $\operatorname{Rank}(A)=5$, then $\operatorname{nullity}(A)=$
$A \mathrm{x}=\mathbf{0}$ has \qquad solutions.
$A \mathbf{x}=\mathbf{b}$ has \qquad solutions.

If $\operatorname{Rank}(A)=5$, the column space of $A=$

