5.1: Eigenvalues and Eigenvectors

Defn: λ is an **eigenvalue** of the matrix A if there exists a <u>nonzero</u> vector **x** such that $A\mathbf{x} = \lambda \mathbf{x}$.

The vector \mathbf{x} is said to be an **eigenvector** corresponding to the eigenvalue λ .

Example: Let $A = \begin{bmatrix} 4 & 1 \\ 5 & 0 \end{bmatrix}$.

Note
$$\begin{bmatrix} 4 & 1 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ -5 \end{bmatrix} = -1 \begin{bmatrix} -1 \\ 5 \end{bmatrix}$$

Thus -1 is an eigenvalue of A and $\begin{bmatrix} -1\\5 \end{bmatrix}$ is a corresponding eigenvector of A.

Note
$$\begin{bmatrix} 4 & 1 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Thus 5 is an eigenvalue of A and $\begin{bmatrix} 1\\1 \end{bmatrix}$ is a corresponding eigenvector of A.

Note
$$\begin{bmatrix} 4 & 1 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \end{bmatrix} = \begin{bmatrix} 16 \\ 10 \end{bmatrix} \neq k \begin{bmatrix} 2 \\ 8 \end{bmatrix}$$
 for any k .
Thus $\begin{bmatrix} 2 \\ 8 \end{bmatrix}$ is NOT an eigenvector of A .

MOTIVATION:
Note
$$\begin{bmatrix} 2\\8 \end{bmatrix} = \begin{bmatrix} -1\\5 \end{bmatrix} + 3 \begin{bmatrix} 1\\1 \end{bmatrix}$$

Thus $A \begin{bmatrix} 2\\8 \end{bmatrix} = A(\begin{bmatrix} -1\\5 \end{bmatrix} + 3 \begin{bmatrix} 1\\1 \end{bmatrix}) = A \begin{bmatrix} -1\\5 \end{bmatrix} + 3A \begin{bmatrix} 1\\1 \end{bmatrix}$
 $= -1 \begin{bmatrix} -1\\5 \end{bmatrix} + 3 \cdot 5 \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 16\\10 \end{bmatrix}$

Finding eigenvalues:

Suppose $A\mathbf{x} = \lambda \mathbf{x}$ (Note A is a SQUARE matrix).

Then $A\mathbf{x} = \lambda I\mathbf{x}$ where I is the identity matrix.

Thus $A\mathbf{x} - \lambda I\mathbf{x} = (A - \lambda I)\mathbf{x} = \mathbf{0}$

Thus if $A\mathbf{x} = \lambda \mathbf{x}$ for a nonzero \mathbf{x} , then $(A - \lambda I)\mathbf{x} = \mathbf{0}$ has a nonzero solution.

Thus $det(A - \lambda I)\mathbf{x} = 0.$

Note that the eigenvectors corresponding to λ are the nonzero solutions of $(A - \lambda I)\mathbf{x} = \mathbf{0}$.

Thus to find the eigenvalues of A and their corresponding eigenvectors:

Step 1: Find eigenvalues: Solve the equation

$$det(A - \lambda I) = 0$$
 for λ .

Step 2: For each eigenvalue λ_0 , find its corresponding eigenvectors by solving the homogeneous system of equations

$$(A - \lambda_0 I)\mathbf{x} = 0$$
 for \mathbf{x} .

Defn: $det(A - \lambda I) = 0$ is the characteristic equation of A.

Thm 3: The eigenvalues of an upper triangular or lower triangular matrix (including diagonal matrices) are identical to its diagonal entries.

Defn: The **eigenspace** corresponding to an eigenvalue λ_0 of a matrix A is the set of all solutions of $(A - \lambda_0 I)\mathbf{x} = \mathbf{0}$.

Note: An eigenspace is a vector space

The vector $\mathbf{0}$ is always in the eigenspace.

The vector $\mathbf{0}$ is never an eigenvector.

The number 0 can be an eigenvalue.

Thm: A square matrix is invertible if and only if $\lambda = 0$ is not an eigenvalue of A.

Thm: If $A\mathbf{x} = \lambda \mathbf{x}$, then $A^k \mathbf{x} = \lambda^k \mathbf{x}$. That is, if λ is an eigenvalue of A with corresponding eigenvector \mathbf{x} , then λ^k is an eigenvalue of A^k with corresponding eigenvector \mathbf{x} where k is any integer.

Defn: Suppose the characteristic polynomial of A is

$$(\lambda - \lambda_1)^{k_1} (\lambda - \lambda_2)^{k_2} \dots (\lambda - \lambda_n)^{k_p}$$

where the λ_i , i = 1, ..., p are DISTINCT. Then the **algebraic multiplicity of** λ_i is k_i .

That is the **algebraic multiplicity of** λ_i is the number of times that $(\lambda - \lambda_i)$ appears as a factor of the characteristic polynomial of A.

Defn: The geometric multiplicity of λ_i = dimension of the eigenspace corresponding to λ_i .

Thm (Geometric and Algebraic Multiplicity): The geometric multiplicity is less than or equal to the algebraic multiplicity [That is, Nullity of $(A - \lambda_i I) \leq k_i$].

Find the eigenvalues and their corresponding eigenspace of $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

Find the eigenvalues and their corresponding eigenspace of

Γ1	2	3	ך 4
0	2	6	5
0	0	2	0
$\lfloor 0 \rfloor$	0	0	$2 \rfloor$

Find the eigenvalues and their corresponding eigenspace of $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$