5.1: Eigenvalues and Eigenvectors

Defn: λ is an eigenvalue of the matrix A if there exists a nonzero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$.

The vector \mathbf{x} is said to be an eigenvector corresponding to the eigenvalue λ.

Example: Let $A=\left[\begin{array}{ll}4 & 1 \\ 5 & 0\end{array}\right]$.

Note $\left[\begin{array}{ll}4 & 1 \\ 5 & 0\end{array}\right]\left[\begin{array}{r}-1 \\ 5\end{array}\right]=\left[\begin{array}{r}1 \\ -5\end{array}\right]=-1\left[\begin{array}{r}-1 \\ 5\end{array}\right]$
Thus -1 is an eigenvalue of A and $\left[\begin{array}{r}-1 \\ 5\end{array}\right]$ is a corresponding eigenvector of A.

Note $\left[\begin{array}{ll}4 & 1 \\ 5 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}5 \\ 5\end{array}\right]=5\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Thus 5 is an eigenvalue of A and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is a corresponding eigenvector of A.

Note $\left[\begin{array}{ll}4 & 1 \\ 5 & 0\end{array}\right]\left[\begin{array}{l}2 \\ 8\end{array}\right]=\left[\begin{array}{l}16 \\ 10\end{array}\right] \neq k\left[\begin{array}{l}2 \\ 8\end{array}\right]$ for any k.
Thus $\left[\begin{array}{l}2 \\ 8\end{array}\right]$ is NOT an eigenvector of A.

MOTIVATION:
Note $\left[\begin{array}{l}2 \\ 8\end{array}\right]=\left[\begin{array}{r}-1 \\ 5\end{array}\right]+3\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Thus $A\left[\begin{array}{l}2 \\ 8\end{array}\right]=A\left(\left[\begin{array}{r}-1 \\ 5\end{array}\right]+3\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=A\left[\begin{array}{r}-1 \\ 5\end{array}\right]+3 A\left[\begin{array}{l}1 \\ 1\end{array}\right]$

$$
=-1\left[\begin{array}{r}
-1 \\
5
\end{array}\right]+3 \cdot 5\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
16 \\
10
\end{array}\right]
$$

Finding eigenvalues:
Suppose $A \mathrm{x}=\lambda \mathbf{x} \quad$ (Note A is a SQUARE matrix).
Then $A \mathrm{x}=\lambda I \mathrm{x}$ where I is the identity matrix.
Thus $A \mathbf{x}-\lambda I \mathrm{x}=(A-\lambda I) \mathbf{x}=\mathbf{0}$
Thus if $A \mathbf{x}=\lambda \mathbf{x}$ for a nonzero \mathbf{x}, then $(A-\lambda I) \mathbf{x}=\mathbf{0}$ has a nonzero solution.

Thus $\operatorname{det}(A-\lambda I) \mathbf{x}=0$.
Note that the eigenvectors corresponding to λ are the nonzero solutions of $(A-\lambda I) \mathbf{x}=\mathbf{0}$.

Thus to find the eigenvalues of A and their corresponding eigenvectors:

Step 1: Find eigenvalues: Solve the equation

$$
\operatorname{det}(A-\lambda I)=0 \text { for } \lambda
$$

Step 2: For each eigenvalue λ_{0}, find its corresponding eigenvectors by solving the homogeneous system of equations

$$
\left(A-\lambda_{0} I\right) \mathbf{x}=0 \text { for } \mathbf{x}
$$

Defn: $\operatorname{det}(A-\lambda I)=0$ is the characteristic equation of A.
Thm 3: The eigenvalues of an upper triangular or lower triangular matrix (including diagonal matrices) are identical to its diagonal entries.

Defn: The eigenspace corresponding to an eigenvalue λ_{0} of a matrix A is the set of all solutions of $\left(A-\lambda_{0} I\right) \mathbf{x}=\mathbf{0}$.

Note: An eigenspace is a vector space
The vector $\mathbf{0}$ is always in the eigenspace.
The vector $\mathbf{0}$ is never an eigenvector.
The number 0 can be an eigenvalue.
Thm: A square matrix is invertible if and only if $\lambda=0$ is not an eigenvalue of A.

Thm: If $A \mathbf{x}=\lambda \mathbf{x}$, then $A^{k} \mathbf{x}=\lambda^{k} \mathbf{x}$. That is, if λ is an eigenvalue of A with corresponding eigenvector \mathbf{x}, then λ^{k} is an eigenvalue of A^{k} with corresponding eigenvector \mathbf{x} where k is any integer.

Defn: Suppose the characteristic polynomial of A is

$$
\left(\lambda-\lambda_{1}\right)^{k_{1}}\left(\lambda-\lambda_{2}\right)^{k_{2}} \ldots\left(\lambda-\lambda_{n}\right)^{k_{p}}
$$

where the $\lambda_{i}, i=1, \ldots, p$ are DISTINCT. Then the algebraic multiplicity of λ_{i} is k_{i}.
That is the algebraic multiplicity of λ_{i} is the number of times that $\left(\lambda-\lambda_{i}\right)$ appears as a factor of the characteristic polynomial of A.

Defn: The geometric multiplicity of λ_{i}
$=$ dimension of the eigenspace corresponding to λ_{i}.

Thm (Geometric and Algebraic Multiplicity): The geometric multiplicity is less than or equal to the algebraic multiplicity [That is, Nullity of $\left(A-\lambda_{i} I\right) \leq k_{i}$].

Find the eigenvalues and their corresponding eigenspace of $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$

Find the eigenvalues and their corresponding eigenspace of $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 2 & 6 & 5 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$

Find the eigenvalues and their corresponding eigenspace of $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$

