5.3: Diagonalization

Note that multiplying diagonal matrices is easy:

Let
$$D = \begin{bmatrix} 10 & 0 \\ 0 & -1 \end{bmatrix}$$
. Then
$$D^2 = \begin{bmatrix} 10 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 10 & 0 \\ 0 & -1 \end{bmatrix} =$$

 $D^k =$

Defn: The matrices A and B are **similar** if there exists an invertible matrix P such that $B = P^{-1}AP$.

Defn: A matrix A is **diagonalizable** if A is similar to a diagonal matrix.

I.e. A is diagonalizable if there exists an invertible matrix P such that $P^{-1}AP = D$ where D is a diagonal matrix.

Application: Calculating A^k . $P^{-1}AP = D$ k = 1: A = $k = 2: A^2 = PDP^{-1}PDP^{-1}$ $k = 3: A^3 = PDP^{-1}PDP^{-1}PDP^{-1}$ Similarly $A^k =$ Example:

Let
$$D = \begin{bmatrix} 10 & 0 \\ 0 & -1 \end{bmatrix}$$
 and $A = \begin{bmatrix} -1 & 0 \\ -55 & 10 \end{bmatrix}$
Then $\begin{bmatrix} -1 & 0 \\ -55 & 10 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 5 \end{bmatrix} \begin{bmatrix} 10 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ 1 & 0 \end{bmatrix}$

Thus, $A^3 =$

Equivalent Questions:

• Given an $n \times n$ matrix, does there exist a basis for \mathbb{R}^n consisting of eigenvectors of A?

• Given an $n \times n$ matrix, does there exist an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix?

Thm: Let A be an $n \times n$ matrix. The following are equivalent:

a.) A is diagonalizable.

b.) A has n linearly independent eigenvectors.

c.) There exists a basis for \mathbb{R}^n consisting of eigenvectors of A.

Example: Suppose AP = PD where

$$P = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \text{ and } D = \begin{bmatrix} 5 & 0 \\ 0 & 6 \end{bmatrix}$$

Then $PD = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 6 \end{bmatrix} =$
Thus $AP = A \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} =$
Hence $A \begin{bmatrix} 1 \\ 3 \end{bmatrix} =$ and $A \begin{bmatrix} 2 \\ 4 \end{bmatrix} =$

Thus an eigenvalue of A = with eigenvector

Another eigenvalue of $A = _$ with eigenvector Thus if AP = PD, then if the diagonal entries of D are $d_1, ..., d_n$ and the i^{th} column of P is an ______. corresponding to the eigenvalue ______. Note P is an invertible SQUARE matrix where columns P are _______ of the matrix A To diagonalize a matrix A:

- 1.) Find the eigenvalues of A. Solve $det(\lambda I - A) = 0$ for λ .
- 2.) Find a basis for each of the eigenspaces. Solve $(\lambda_j I - A)\mathbf{x} = 0$ for \mathbf{x} .

Case 3a.) IF the geometric multiplicity is LESS then the algebraic multiplicity for at least ONE eigenvalue of A, then A is NOT diagonalizable. (Cannot find square matrix P).

Case 3b.) IF the geometric multiplicity equals the algebraic multiplicity for ALL the eigenvalues of A, then A is diagonalizable. Thus,

- \bullet Use the eigenvalues of A to construct the diagonal matrix D
- Use the basis of the corresponding eigenspaces for the corresponding columns of *P*. (NOTE: *P* is a SQUARE matrix).

NOTE: ORDER MATTERS.

Examples:

$$A = \begin{bmatrix} 4 & 1 \\ 7 & -2 \end{bmatrix} B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 4 \end{bmatrix} C = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

Thm: Suppose λ_i , i = 1, ..., n are DISTINCT eigenvalues of a matrix A. If \mathcal{B}_i is a basis for the eigenspace corresponding to λ_i , then

 $\mathcal{B} = \mathcal{B}_1 \cup \ldots \cup \mathcal{B}_n$ is linearly independent.

Defn: Suppose the characteristic polynomial of ${\cal A}$ is

$$(\lambda - \lambda_1)^{k_1} (\lambda - \lambda_2)^{k_2} ... (\lambda - \lambda_n)^{k_n}$$

where the λ_i , i = 1, ..., n are DISTINCT. Then the **algebraic multiplicity of** λ_i is k_i .

That is the **algebraic multiplicity of** λ_i is the number of times that $(\lambda - \lambda_i)$ appears as a factor of the characteristic polynomial of A.

Defn: The **geometric multiplicity of** λ_i = dimension of the eigenspace corresponding to λ_i .

Thm (Geometric and Algebraic Multiplicity):

a.) The geometric multiplicity is less than or equal to the algebraic multiplicity [That is, Nullity of $(\lambda_i I - A) \leq k_i$].

b.) A is diagonalizable if and only if the geometric multiplicity is equal to the algebraic multiplicity for every eigenvalue.