6.1: Inner Products.

Defn: Let V be a vector space over the real numbers. An inner product for V is a function that associates a real number $\mathbf{u} \cdot \mathbf{v}$ to every pair of vectors, \mathbf{u} and \mathbf{v} in V such that the following properties are satisfied for all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and scalars c :
a.) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
b.) $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
c.) $(c \mathbf{u}) \cdot v=c(\mathbf{u} \cdot \mathbf{v})=\mathbf{u} \cdot(c \mathbf{v})$
d.) $\mathbf{u} \cdot \mathbf{u} \geq 0$ and $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$

A vector space V together with an inner product is called an inner product space.

The 6.1.1': Let V be an inner product space. Then for all vectors $\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{v}$ in V and scalars c_{1}, c_{2} :
a.) $\left(c_{1} \mathbf{u}_{\mathbf{1}}+c_{2} \mathbf{u}_{\mathbf{2}}\right) \cdot \mathbf{v}=\mathbf{v} \cdot\left(c_{1} \mathbf{u}_{\mathbf{1}}+c_{2} \mathbf{u}_{\mathbf{2}}\right)$

$$
=c_{1}\left(\mathbf{u}_{\mathbf{1}} \cdot \mathbf{v}\right)+c_{2}\left(\mathbf{u}_{\mathbf{2}} \cdot \mathbf{v}\right)
$$

b.) $\mathbf{0} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{0}=0$

Inner Product Example: Dot product on R^{n}.
Defn: $\sum_{k=1}^{m} a_{k}=a_{1}+a_{2}+\ldots+a_{m}$

Defn:
The dot product of $\mathbf{u}=\left(u_{1}, \ldots, u_{m}\right) \& \mathbf{v}=\left(v_{1}, \ldots, v_{m}\right)$ is $\mathbf{u} \cdot \mathbf{v}=\sum_{k=1}^{m} u_{k} v_{k}$.

In words, $\mathbf{u} \cdot \mathbf{v}$ is the sum of the products of the corresponding components of \mathbf{u} and \mathbf{v}.

Note that $\mathbf{u} \cdot \mathbf{v}$ is a real number (not a vector).
Examples:
$(1,2,3) \cdot(4,5,6)=$
$\left[\begin{array}{l}1 \\ 2\end{array}\right] \cdot\left[\begin{array}{r}-2 \\ 1\end{array}\right]=$
its

Defn: Let \mathbf{v} be a vector in an inner product space \mathbf{V}. The length or norm of $\mathbf{v}=\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle}$.
$||(3,4)||=$
Defn: The vector \mathbf{u} is a unit vector if $\|\mathbf{u}\|=1$.

Note that $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ is a unit vector.
Create a unit vector in the direction of the vector $(3,4)$:

Create a unit vector in the direction of the vector $(1,2)$:

Create a unit vector in the direction of the vector $(-2,1)$:

Defn: \mathbf{u} and \mathbf{v} are orthogonal (or perpendicular) if $\mathbf{u} \cdot \mathbf{v}=0$.

Example: $\left[\begin{array}{l}1 \\ 2\end{array}\right] \cdot\left[\begin{array}{r}-2 \\ 1\end{array}\right]=1(-2)+2(1)=0$
Thus $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{r}-2 \\ 1\end{array}\right]\right\}$ is a set of orthogonal unit vectors.

Example: $\left[\begin{array}{c}\frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}}\end{array}\right] \cdot\left[\begin{array}{c}\frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}}\end{array}\right]=$
Thus $\left\{\left[\begin{array}{c}\frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}}\end{array}\right],\left[\begin{array}{c}\frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}}\end{array}\right]\right\}$ is a set of orthogonal unit vectors.

Observation: $\left[\begin{array}{cc}\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}}\end{array}\right]\left[\begin{array}{cc}\frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}\end{array}\right]=$

Suppose $\mathbf{u}=\left(u_{1}, u_{2}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}\right)$ is a pair of orthogonal unit vectors. Then
$\left[\begin{array}{ll}u_{1} & u_{2} \\ v_{1} & v_{2}\end{array}\right]\left[\begin{array}{ll}u_{1} & v_{1} \\ u_{2} & v_{2}\end{array}\right]=\left[\begin{array}{cc}\mathbf{u} \cdot \mathbf{u} & \mathbf{u} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{u} & \mathbf{v} \cdot \mathbf{v}\end{array}\right]=$

