6.1: Inner Products.

Defn: Let V be a vector space over the real numbers. An inner product for V is a function that associates a real number $\mathbf{u} \cdot \mathbf{v}$ to every pair of vectors, \mathbf{u} and \mathbf{v} in V such that the following properties are satisfied for all \mathbf{u} , \mathbf{v} , \mathbf{w} in V and scalars c:

a.) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

b.) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$

c.)
$$(c\mathbf{u})\cdot v = c(\mathbf{u}\cdot\mathbf{v}) = \mathbf{u}\cdot(c\mathbf{v})$$

d.) $\mathbf{u} \cdot \mathbf{u} \ge 0$ and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$

A vector space V together with an inner product is called an **inner product space**.

Thm 6.1.1': Let V be an inner product space. Then for all vectors $\mathbf{u_1}, \mathbf{u_2}, \mathbf{v}$ in V and scalars c_1, c_2 :

a.)
$$(c_1\mathbf{u_1} + c_2\mathbf{u_2}) \cdot \mathbf{v} = \mathbf{v} \cdot (c_1\mathbf{u_1} + c_2\mathbf{u_2})$$

= $c_1(\mathbf{u_1} \cdot \mathbf{v}) + c_2(\mathbf{u_2} \cdot \mathbf{v})$

b.) $\mathbf{0} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{0} = 0$

Inner Product Example: Dot product on \mathbb{R}^n .

Defn: $\sum_{k=1}^{m} a_k = a_1 + a_2 + \dots + a_m$

Defn: The **dot product** of $\mathbf{u} = (u_1, ..., u_m)$ & $\mathbf{v} = (v_1, ..., v_m)$ is $\mathbf{u} \cdot \mathbf{v} = \sum_{k=1}^m u_k v_k.$

In words, $\mathbf{u} \cdot \mathbf{v}$ is the sum of the products of the corresponding components of \mathbf{u} and \mathbf{v} .

Note that $\mathbf{u} \cdot \mathbf{v}$ is a real number (not a vector).

Examples:

 $(1,2,3) \cdot (4,5,6) = \begin{bmatrix} 1\\2 \end{bmatrix} \cdot \begin{bmatrix} -2\\1 \end{bmatrix} =$

its

Defn: Let **v** be a vector in an inner product space **V**. The **length** or **norm** of $\mathbf{v} = ||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.

||(3,4)|| =

Defn: The vector \mathbf{u} is a **unit vector** if $||\mathbf{u}|| = 1$.

Note that $\frac{\mathbf{v}}{||\mathbf{v}||}$ is a unit vector.

Create a unit vector in the direction of the vector (3, 4):

Create a unit vector in the direction of the vector (1, 2):

Create a unit vector in the direction of the vector (-2, 1):

Defn: **u** and **v** are **orthogonal** (or **perpendicular**) if $\mathbf{u} \cdot \mathbf{v} = 0$.

Example:
$$\begin{bmatrix} 1\\2 \end{bmatrix} \cdot \begin{bmatrix} -2\\1 \end{bmatrix} = 1(-2) + 2(1) = 0$$

Thus $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -2\\1 \end{bmatrix} \right\}$ is a set of orthogonal unit vectors.

Example:
$$\begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix} \cdot \begin{bmatrix} \frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix} =$$

Thus $\left\{ \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix}, \begin{bmatrix} \frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix} \right\}$ is a set of orthogonal unit vectors.

Observation:
$$\begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} =$$

Suppose $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$ is a pair of orthogonal unit vectors. Then

$$\begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix} \begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \end{bmatrix} = \begin{bmatrix} \mathbf{u} \cdot \mathbf{u} & \mathbf{u} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{u} & \mathbf{v} \cdot \mathbf{v} \end{bmatrix} =$$