Suppose
$$A\begin{bmatrix} v_1\\v_2 \end{bmatrix} = \lambda_1 \begin{bmatrix} v_1\\v_2 \end{bmatrix}$$
 and $A\begin{bmatrix} w_1\\w_2 \end{bmatrix} = \lambda_2 \begin{bmatrix} w_1\\w_2 \end{bmatrix}$

Claim:

If
$$A = A^T$$
 and $\lambda_1 \neq \lambda_2$, then $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ is perpendicular to $\begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$

I.e., If eigenvectors come from different eigenspaces, then the eigenvectors are orthogonal WHEN $A = A^T$.

Pf of claim: $\lambda_1(v_1, v_2) \cdot (w_1, w_2) = \lambda_1[v_1, v_2] \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ $= (\lambda_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix})^T \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = (A \begin{bmatrix} v_1 \\ v_2 \end{bmatrix})^T \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ $= \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}^T A^T \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = [v_1, v_2] A \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ $= [v_1, v_2] \lambda_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \lambda_2[v_1, v_2] \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ $= \lambda_2(v_1, v_2) \cdot (w_1, w_2)$ $\lambda_1(v_1, v_2) \cdot (w_1, w_2) = \lambda_2(v_1, v_2) \cdot (w_1, w_2)$

implies $\lambda_1(v_1, v_2) \cdot (w_1, w_2) - \lambda_2(v_1, v_2) \cdot (w_1, w_2) = 0$. Thus $(\lambda_1 - \lambda_2)(v_1, v_2) \cdot (w_1, w_2) = 0$ $\lambda_1 \neq \lambda_2$ implies $(v_1, v_2) \cdot (w_1, w_2) = 0$

Thus these eigenvectors are orthogonal.

7.1: Orthogonal Diagonalization

Equivalent Questions:

• Given an $n \times n$ matrix, does there exist an <u>orthonormal</u> basis for \mathbb{R}^n consisting of eigenvectors of A?

• Given an $n \times n$ matrix, does there exist an orthonormal matrix P such that $P^{-1}AP = P^TAP$ is a diagonal matrix?

• Is A symmetric?

Defn: A matrix is symmetric if $A = A^T$.

Recall An invertible matrix P is **orthogonal** if $P^{-1} = P^T$

Defn: A matrix A is **orthogonally diagonalizable** if there exists an orthogonal matrix P such that $P^{-1}AP = D$ where D is a diagonal matrix.

Thm: If A is an $n \times n$ matrix, then the following are equivalent:

a.) A is orthogonally diagonalizable.

b.) There exists an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A.

c.) A is symmetric.

Thm: If A is a symmetric matrix, then:

a.) The eigenvalues of A are all real numbers.

b.) Eigenvectors from different eigenspaces are orthogonal.

c.) Geometric multiplicity of an eigenvalue = its algebraic multiplicity

Note if $\{v_1, ..., v_n\}$ are linearly independent:

(1.) You can use the Gram-Schmidt algorithm to find an orthogonal basis for $span\{\mathbf{v_1},...,\mathbf{v_n}\}$.

(2.) You can normalize these orthogonal vectors to create an orthonormal basis for $span\{\mathbf{v_1},...,\mathbf{v_n}\}$.

(3.) These basis vectors are not normally eigenvectors of $A = [\mathbf{v_1}...\mathbf{v_n}]$ even if A is symmetric (note that there are an infinite number of orthogonal basis for $span\{\mathbf{v_1},...,\mathbf{v_n}\}$ even if n = 2 and $span\{\mathbf{v_1},\mathbf{v_2}\}$ is just a 2-dimensional plane)

Note if A is a $n \times n$ square matrix that is diagonalizable, then you can find n linearly independent eigenvectors of A.

Each eigenvector is in col(A): If **v** is an eigenvector of A with eigenvalue λ , then $A\mathbf{v} = \lambda \mathbf{v}$. Thus $\frac{1}{\lambda}A\mathbf{v} = \mathbf{v}$. Hence $A(\frac{1}{\lambda}\mathbf{v}) = \mathbf{v}$. Thus **v** is in col(A).

Thus col(A) is an *n*-dimensional subspace of \mathbb{R}^n . That is $col(A) = \mathbb{R}^n$, and you can find a basis for $col(A) = \mathbb{R}^n$ consisting of eigenvectors of A.

But these eigenvectors are NOT usually orthogonal UNLESS they come from different eigenspaces AND the matrix A is symmetric.

If A is NOT symmetric, then eigenvectors from different eigenspaces need NOT be orthogonal.

IF A is symmetric,

To orthogonally diagonalize a symmetric matrix A:

- 1.) Find the eigenvalues of A. Solve $det(A - \lambda I) = 0$ for λ .
- 2.) Find a basis for each of the eigenspaces. Solve $(A - \lambda_j I)\mathbf{x} = 0$ for \mathbf{x} .

3.) Use the Gram-Schmidt process to find an orthonormal basis for each eigenspace.

That is for each λ_j use Gram-Schmidt to find an orthonormal basis for $Nul(A - \lambda_j I)$.

Eigenvectors from different eigenspaces will be orthogonal, so you don't need to apply Gram-Schmidt to eigenvectors from different eigenspaces

4.) Use the eigenvalues of A to construct the diagonal matrix D, and use the orthonormal basis of the corresponding eigenspaces for the corresponding columns of P.

5.) Note $P^{-1} = P^T$ since the columns of P are orthonormal.

Example 1:

Orthogonally diagonalize $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$

Step 1: Find the eigenvalues of A:

$$det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 2 \\ 2 & 4 - \lambda \end{vmatrix} = (1 - \lambda)(4 - \lambda) - 4$$
$$= \lambda^2 - 5\lambda + 4 - 4 = \lambda^2 - 5\lambda = \lambda(\lambda - 5) = 0$$

Thus $\lambda = 0, 5$ are are eigenvalues of A.

2.) Find a basis for each of the eigenspaces:

$$\lambda = 0: (A - 0I) = A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$

Thus $\begin{bmatrix} -2\\ 1 \end{bmatrix}$ is an eigenvector of A with eigenvalue 0.

$$\lambda = 0: (A - 5I) = \begin{bmatrix} -4 & 2\\ 2 & -1 \end{bmatrix} \sim \begin{bmatrix} 2 & -1\\ 0 & 0 \end{bmatrix}$$

Thus $\begin{bmatrix} 1\\2 \end{bmatrix}$ is an eigenvector of A with eigenvalue 5.

3.) Create orthonormal basis:

Since A is symmetric and the eigenvectors $\begin{bmatrix} -2\\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1\\ 2 \end{bmatrix}$ come from different eigenspaces (ie their eigenvalues are different), these eigenvectors are orthogonal. Thus we only

need to normalize them:

$$\left| \left| \begin{array}{c} -2\\1 \end{array} \right| \right| = \sqrt{4+1} = \sqrt{5}$$
$$\left| \left| \begin{array}{c} 1\\2 \end{array} \right| \right| = \sqrt{1+4} = \sqrt{5}$$

Thus an orthonormal basis for $col(A) = R^2 = \left\{ \begin{bmatrix} \frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix}, \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix} \right\}$

4.) Construct D and P

$$D = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix}, \qquad P = \begin{bmatrix} \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$$

Make sure order of eigenvectors in D match order of eigenvalues in P.

5.) P orthonormal implies $P^{-1} = P^T$

Thus
$$P^{-1} = \begin{bmatrix} \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$$

Note that in this example, $P^{-1} = P$, but that is NOT normally the case.

Thus
$$A = PDP^{-1}$$

Thus $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$

Example 2: Orthogonally diagonalize $A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$

Step 1: Find the eigenvalues of A:

$$det(A-\lambda I) = \begin{vmatrix} 1-\lambda & -1 & 1\\ -1 & 1-\lambda & -1\\ 1 & -1 & 1-\lambda \end{vmatrix} = \begin{vmatrix} 1-\lambda & -1 & 1\\ -1 & 1-\lambda & -1\\ 0 & -\lambda & -\lambda \end{vmatrix}$$
$$= (1-\lambda) \begin{vmatrix} 1-\lambda & -1\\ -\lambda & -\lambda \end{vmatrix} - (-1) \begin{vmatrix} -1 & 1\\ -\lambda & -\lambda \end{vmatrix} + 0 \begin{vmatrix} -1 & 1\\ 1-\lambda & -1 \end{vmatrix}$$
$$= (1-\lambda)[(1-\lambda)(-\lambda) - \lambda] + [\lambda + \lambda]$$
$$= (1-\lambda)(-\lambda)[(1-\lambda) + 1] + 2\lambda = (1-\lambda)(-\lambda)(2-\lambda) + 2\lambda$$
Note I can factor out $-\lambda$, leaving only a quadratic to factor:
$$= -\lambda[(1-\lambda)(2-\lambda) - 2]$$
$$= -\lambda[\lambda^2 - 3\lambda + 2 - 2] = -\lambda[\lambda^2 - 3\lambda] = -\lambda^2[\lambda - 3]$$

Thus their are 2 eigenvalues:

 $\lambda = 0$ with algebraic multiplicity 2. Since A is symmetric, geometric multiplicity = algebraic multiplicity = 2. Thus the dimension of the eigenspace corresponding to $\lambda = 0$ [=Nul(A - 0I) = Nul(A)] is 2.

 $\lambda=3$ w/algebraic multiplicity = 1 = geometric multiplicity.

Thus we can find an orthogonal basis for R^3 where two of the basis vectors comes from the eigenspace corresponding to eigenvalue 0 while the third comes from the eigenspace corresponding to eigenvalue 3. 2.) Find a basis for each of the eigenspaces:

2a.)
$$\lambda = 0: A - 0I = A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_2 - x_3 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

Thus a basis for eigenspace corresponding to eigenvalue 0 is

$$\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}$$

We can now use Gram-Schmidt to turn this basis into an orthogonal basis for the eigenspace corresponding to eigenvalue 0 or we can continue finding eigenvalues.

3a.) Create orthonormal basis using Gram-Schmidt for the eigenspace corresponding to eigenvalue 0:

Let
$$\mathbf{v_1} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$$
 and $\mathbf{v_2} = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$

$$proj_{\mathbf{v_1}}\mathbf{v_2} = \frac{\mathbf{v_2} \cdot \mathbf{v_1}}{\mathbf{v_1} \cdot \mathbf{v_1}}\mathbf{v_1} = \frac{-1+0+0}{1+1+0} \begin{bmatrix} 1\\1\\0 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 1\\1\\0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}\\-\frac{1}{2}\\0 \end{bmatrix}$$

The vector component of $\mathbf{v_2}$ orthogonal to $\mathbf{v_1}$ is

$$\mathbf{v_2} - proj_{\mathbf{v_1}}\mathbf{v_2} = \begin{bmatrix} -1\\0\\1 \end{bmatrix} - \begin{bmatrix} -\frac{1}{2}\\-\frac{1}{2}\\0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}\\\frac{1}{2}\\1 \end{bmatrix}$$

Thus an orthogonal basis for the eigenspace corresponding to eigenvalue 0 is

$$\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} -\frac{1}{2}\\\frac{1}{2}\\1 \end{bmatrix} \right\}$$

To create orthonormal basis, divide each vector by its length:

$$\left\| \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\| = \sqrt{1^2 + 1^2 + 0^2} = \sqrt{2}$$
$$\left\| \begin{bmatrix} -\frac{1}{2}\\\frac{1}{2}\\1 \end{bmatrix} \right\| = \sqrt{\frac{1}{4} + \frac{1}{4} + 1} = \sqrt{\frac{3}{2}}$$

Thus an orthonormal basis for the eigenspace corresponding to eigenvalue 0 is

$$\left\{ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}, \begin{bmatrix} -\frac{\sqrt{2}}{2\sqrt{3}} \\ \frac{\sqrt{2}}{2\sqrt{3}} \\ \sqrt{\frac{2}{3}} \end{bmatrix} \right\} = \left\{ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}, \begin{bmatrix} -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{\sqrt{2}}{3} \end{bmatrix} \right\}$$

2b.) Find a basis for eigenspace corresponding to $\lambda = 3$:

$$A-3I = \begin{bmatrix} -2 & -1 & 1 \\ -1 & -2 & -1 \\ 1 & -1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -2 \\ 0 & -3 & -3 \\ 0 & -3 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus a basis for eigenspace corresponding to eigenvalue 3 is

$$\left\{ \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix} \right\}$$

FYI: Alternate method to find 3rd vector: Since you have two linearly independent vectors from the eigenspace corresponding to eigenvalue 0, you only need one more vector which is orthogonal to these two to form a basis for R^3 . Note since A is symmetric, any such vector will be an eigenvector of A with eigenvalue 3. Note this shortcut only works because we know what the eigenspace corresponding to eigenvalue 3 looks like: a line perpendicular to the plane representing the eigenspace corresponding to eigenvalue 0.

3b.) Create orthonormal basis for the eigenspace corresponding to eigenvalue 3:

We only need to normalize:

$$\left\| \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3}$$

Thus orthonormal basis for eigenspace corresponding to eigenvalue 3 is

$$\left\{ \begin{bmatrix} \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix} \right\}$$

4.) Construct D and P

$$D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \qquad P = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

Make sure order of eigenvectors in D match order of eigenvalues in P.

5.) P orthonormal implies $P^{-1} = P^T$

Thus
$$P^{-1} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \sqrt{\frac{2}{3}}\\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

Thus
$$\begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} = A = PDP^{-1} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \sqrt{\frac{2}{3}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$