7.2: Quadratic Forms $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ where A is symmetric. Example: $Q: R^2 \to R$ $Q(x,y) = \begin{bmatrix} x \\ y \end{bmatrix}^T \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ $\{x^2 + 4xy + 3y^2\}$

 $x^{2} + 4xy + 3y^{2} = 4 \quad x^{2} + 4xy + 3y^{2} = -1 \quad x^{2} + 4xy + 3y^{2} = 0$

More examples: $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ where A is symmetric.

$$Q(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$Q(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Defn and theorem:

A symmetric matrix A is **positive definite**

if and only if the $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$

if and only if all the eigenvalues of A are positive.

A symmetric matrix A is **negative definite**

if and only if the $\mathbf{x}^T A \mathbf{x} < 0$ for all $\mathbf{x} \neq \mathbf{0}$

if and only if all the eigenvalues of A are negative.

A symmetric matrix A is **indefinite**

if and only if the $\mathbf{x}^T A \mathbf{x}$ has both positive and negative values. if and only if A are positive and negative eigenvalues.

A symmetric matrix A is **positive semidefinite**

if and only if the $\mathbf{x}^T A \mathbf{x} \ge 0$

if and only if all the eigenvalues of A are non-negative.

A symmetric matrix A is **negative semidefinite**

if and only if the $\mathbf{x}^T A \mathbf{x} \leq 0$

if and only if all the eigenvalues of A are non-positive.

Change of variable:

Let
$$\mathbf{x} = P\mathbf{y}$$
.

$$Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} = (P \mathbf{y})^T A P \mathbf{y} = \mathbf{y}^T P^T A P \mathbf{y} = \mathbf{y}^T (P^T A P) \mathbf{y}$$
Suppose $A = P D P^{-1} = P D P^T$ where A is a symmetric matrix, D is diagonal, and P is orthonormal (i.e., $P^{-1} = P^T$).

$$A = P D P^T \text{ implies } P^T A P = P^T P D P^T P = D$$

$$Q(\mathbf{y}) = \mathbf{y}^T (P^T A P) \mathbf{y} = \mathbf{y}^T D \mathbf{y}$$

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$$

$$\begin{pmatrix} (x+2y)^2 \end{pmatrix}$$

$$Q(x,y) = [x \quad y] \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \quad Q(x,y) = [x \quad y] \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Make a change of variable that transforms the following quadratic form into a quadratic form with no cross-product term:

$$Q(x_1, x_2) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Step 1: Orthogonally diagonalize $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$

See section 7.1:

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} = A = PDP^{T} = \begin{bmatrix} \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$$

Step 2: Let $\mathbf{x} = P\mathbf{y}$

$$\begin{bmatrix} x_1\\x_2 \end{bmatrix} = \begin{bmatrix} \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}}\\\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} y_1\\y_2 \end{bmatrix} = \begin{bmatrix} \frac{-2}{\sqrt{5}}y_1 + \frac{1}{\sqrt{5}}y_2\\\frac{1}{\sqrt{5}}y_1 + \frac{2}{\sqrt{5}}y_2 \end{bmatrix}$$

After change of variable:

$$Q(y_1, y_2) = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}^T \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

