7.2: Quadratic Forms $\quad Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$ where A is symmetric.

Example: $Q: R^{2} \rightarrow R$
$Q(x, y)=\left[\begin{array}{l}x \\ y\end{array}\right]^{T}\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

$x^{2}+4 x y+3 y^{2}=4 \quad x^{2}+4 x y+3 y^{2}=-1 \quad x^{2}+4 x y+3 y^{2}=0$

More examples: $Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$ where A is symmetric.
$Q(x, y)=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

$Q(x, y)=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{rr}1 & 0 \\ 0 & -4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

$Q(x, y)=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{rr}-1 & 0 \\ 0 & 4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

$Q(x, y)=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

$Q(x, y)=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

$$
Q(x, y)=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{rr}
0 & 0 \\
0 & -4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

(y from -1 to 1)

Defn and theorem:
A symmetric matrix A is positive definite
if and only if the $\mathbf{x}^{T} A \mathbf{x}>0$ for all $\mathbf{x} \neq \mathbf{0}$
if and only if all the eigenvalues of A are positive.

A symmetric matrix A is negative definite
if and only if the $\mathbf{x}^{T} A \mathbf{x}<0$ for all $\mathbf{x} \neq \mathbf{0}$
if and only if all the eigenvalues of A are negative.

A symmetric matrix A is indefinite
if and only if the $\mathbf{x}^{T} A \mathbf{x}$ has both positive and negative values.
if and only if A are positive and negative eigenvalues.

A symmetric matrix A is positive semidefinite
if and only if the $\mathbf{x}^{T} A \mathbf{x} \geq 0$
if and only if all the eigenvalues of A are non-negative.

A symmetric matrix A is negative semidefinite if and only if the $\mathbf{x}^{T} A \mathbf{x} \leq 0$
if and only if all the eigenvalues of A are non-positive.

Change of variable:
Let $\mathbf{x}=P \mathbf{y}$.
$Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}=(P \mathbf{y})^{T} A P \mathbf{y}=\mathbf{y}^{T} P^{T} A P \mathbf{y}=\mathbf{y}^{T}\left(P^{T} A P\right) \mathbf{y}$
Suppose $A=P D P^{-1}=P D P^{T}$ where A is a symmetric matrix, D is diagonal, and P is orthonormal (i.e., $P^{-1}=P^{T}$).
$A=P D P^{T}$ implies $P^{T} A P=P^{T} P D P^{T} P=D$
$Q(\mathbf{y})=\mathbf{y}^{T}\left(P^{T} A P\right) \mathbf{y}=\mathbf{y}^{T} D \mathbf{y}$

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]=\left[\begin{array}{cc}
\frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 5
\end{array}\right]\left[\begin{array}{cc}
\frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}
\end{array}\right]
$$

$Q(x, y)=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right] \quad Q(x, y)=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

Make a change of variable that transforms the following quadratic form into a quadratic form with no cross-product term:
$Q\left(x_{1}, x_{2}\right)=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]^{T}\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
Step 1: Orthogonally diagonalize $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$
See section 7.1:
$\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]=A=P D P^{T}=\left[\begin{array}{cc}\frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 5\end{array}\right]\left[\begin{array}{cc}\frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}\end{array}\right]$
Step 2: Let $\mathbf{x}=P \mathbf{y}$
$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{ll}\frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{l}\frac{-2}{\sqrt{5}} y_{1}+\frac{1}{\sqrt{5}} y_{2} \\ \frac{1}{\sqrt{5}} y_{1}+\frac{2}{\sqrt{5}} y_{2}\end{array}\right]$
After change of variable:
$Q\left(y_{1}, y_{2}\right)=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]^{T}\left[\begin{array}{ll}0 & 0 \\ 0 & 5\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{ll}y_{1} & y_{2}\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 5\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$

$\left(\left(-\frac{2 y_{1}}{\sqrt{5}}+\frac{y_{2}}{\sqrt{5}}\right)+2\left(\frac{y_{1}}{\sqrt{5}}+\frac{2 y_{2}}{\sqrt{5}}\right)\right)^{2}=4$

