Math 2550 Matrix Algebra Exam \#1 (Form D)
Feb. 26, 2014 SHOW ALL WORK
[30] 1.) Solve the following systems of equations. Write your answer in parametric vector format (note this is a multipart question).

1a.) $\left[\begin{array}{ccccc}2 & -4 & -36 & 26 & -12 \\ 7 & -1 & 4 & 0 & 2 \\ 0 & 0 & 0 & 0 & 3 \\ 1 & 0 & 2 & -1 & 1\end{array}\right] \mathbf{x}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$

Answer:

1b.) $\left[\begin{array}{ccccc}2 & -4 & -36 & 26 & -12 \\ 7 & -1 & 4 & 0 & 2 \\ 0 & 0 & 0 & 0 & 3 \\ 1 & 0 & 2 & -1 & 1\end{array}\right] \mathbf{x}=\left[\begin{array}{l}4 \\ 6 \\ 0 \\ 1\end{array}\right]$

Answer:

1c.) $\left[\begin{array}{ccccc}2 & -4 & -36 & 26 & -12 \\ 7 & -1 & 4 & 0 & 2 \\ 0 & 0 & 0 & 0 & 3 \\ 1 & 0 & 2 & -1 & 1\end{array}\right] \mathbf{x}=\left[\begin{array}{c}30 \\ 0 \\ 15 \\ 0\end{array}\right]$

Answer:
[20] 2.) Let A be the coefficient matrix from problem 1.
2a.) Is $\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$ in the span of the columns of $A ?$
If so, write $\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$ as a linear combination of the columns of A :

2b.) Is $\left[\begin{array}{l}4 \\ 6 \\ 0 \\ 1\end{array}\right]$ in the span of the columns of $A ?$ If so, write $\left[\begin{array}{l}4 \\ 6 \\ 0 \\ 1\end{array}\right]$ as a linear combination of the columns of A : 2c.) Is $\left[\begin{array}{c}30 \\ 0 \\ 15 \\ 0\end{array}\right]$ in the span of the columns of $A ?$ If so, write $\left[\begin{array}{c}30 \\ 0 \\ 15 \\ 0\end{array}\right]$ as a linear combination of the columns of A :
3.) Let A be the coefficient matrix from problem 1 .
[4] 3a.) Are the columns of A linearly independent? \qquad
[4] 3b.) Do the columns of $A \operatorname{span} R^{4}$? \qquad
[1 point extra credit] 3c.) Given an example of 4 vectors that span R^{4} where 3 of your vectors are columns of A. Briefly explain.
[10] 4a.) Find the inverse of $\left[\begin{array}{ll}3 & 12 \\ 2 & 10\end{array}\right]$

Answer:
[4] 4b.) Use the inverse found in part a to solve the following system of equations:

$$
\begin{gathered}
3 x+12 y=0 \\
2 x+10 y=1
\end{gathered}
$$

[5] 5.) Given an example of matrices A and B where neither are the zero matrix, but $A B=0$.

Answer: $A=$, $B=$
6.) Circle T for true and F for False (watch out for trick(s)).
[3] 6a.) If A, B, C are matrices and $A B=A C$, then $B=C$
[3] 6b.) If A, B, C are square matrices and $A B=A C$, then $B=C$
[4] 6c.) If A and B are matrices, then $A B=B A$
[4] 6.) If A is a 3×3 matrix and the equation $A \mathbf{x}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ had a unique solution, then
A is invertible.

Circle the correct answer:
[5] 7a.) Suppose $A \mathbf{x}=\mathbf{0}$ has a unique solution, then given a vector \mathbf{b} of the appropriate dimension, $A \mathbf{x}=\mathbf{b}$ has
A. No solution
B. Unique solution
C. Infinitely many solutions
D. at most one solution
E. either no solution or an infinite number of solutions
F. either a unique solution or an infinite number of solutions
G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
H. none of the above
[5] 7b.) Suppose A is a SQUARE matrix and $A \mathbf{x}=\mathbf{0}$ has a unique solution, then given a vector \mathbf{b} of the appropriate dimension, $A \mathbf{x}=\mathbf{b}$ has
A. No solution
B. Unique solution
C. Infinitely many solutions
D. at most one solution
E. either no solution or an infinite number of solutions
F. either a unique solution or an infinite number of solutions
G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
H. none of the above

