Math 2550 Matrix Algebra Exam \#1 (Form D)
Feb. 26, 2014 SHOW ALL WORK
[30] 1.) Solve the following systems of equations. Write your answer in parametric vector format (note this is a multipart question).

$$
\begin{aligned}
& \text { 1а.) }\left[\begin{array}{ccccc}
2 & -4 & -36 & 26 & -12 \\
7 & -1 & 4 & 0 & 2 \\
0 & 0 & 0 & 0 & 3 \\
1 & 0 & 2 & -1 & 1
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccccc|ccc}
2 & -4 & -36 & 26 & -12 & 0 & 4 & 30 \\
7 & -1 & 4 & 0 & 2 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 & 3 & 0 & 0 & 15 \\
1 & 0 & 2 & -1 & 1 & 0 & 1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{ccccc|ccc}
1 & 0 & 2 & -1 & 1 & 0 & 1 & 0 \\
2 & -4 & -36 & 26 & -12 & 0 & 4 & 30 \\
7 & -1 & 4 & 0 & 2 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 & 3 & 0 & 0 & 15
\end{array}\right]} \\
& {\left[\begin{array}{ccccc|ccc}
1 & 0 & 2 & -1 & 1 & 0 & 1 & 0 \\
0 & -4 & -40 & 28 & -14 & 0 & 2 & 30 \\
0 & -1 & -10 & 14 & -5 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 3 & 0 & 0 & 15
\end{array}\right]} \\
& {\left[\begin{array}{ccccc|ccc}
1 & 0 & 2 & -1 & 1 & 0 & 1 & 0 \\
0 & 1 & 10 & -7 & 5 & 0 & 1 & 0 \\
0 & -4 & -40 & 28 & -14 & 0 & 2 & 30 \\
0 & 0 & 0 & 0 & 3 & 0 & 0 & 15
\end{array}\right]} \\
& {\left[\begin{array}{ccccc|ccc}
1 & 0 & 2 & -1 & 1 & 0 & 1 & 0 \\
0 & 1 & 10 & -7 & 5 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 6 & 0 & 6 & 30 \\
0 & 0 & 0 & 0 & 3 & 0 & 0 & 15
\end{array}\right]} \\
& {\left[\begin{array}{ccccc|ccc}
1 & 0 & 2 & -1 & 1 & 0 & 1 & 0 \\
0 & 1 & 10 & -7 & 5 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 3 & 0 & 0 & 15 \\
0 & 0 & 0 & 0 & 6 & 0 & 6 & 30
\end{array}\right]} \\
& {\left[\begin{array}{ccccc|ccc}
1 & 0 & 2 & -1 & 1 & 0 & 1 & 0 \\
0 & 1 & 10 & -7 & 5 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 3 & 0 & 0 & 15 \\
0 & 0 & 0 & 0 & 0 & 0 & 6 & 0
\end{array}\right]}
\end{aligned}
$$

We now have echelon form.
Note last equation for 1 b .) $0=6$, thus no solution. Thus we can drop the system corresponding to problem 1 b as we already know the anwer for 1 b) no solution.

Working from right to left to get REF:
$\left[\begin{array}{ccccc|cc}1 & 0 & 2 & -1 & 1 & 0 & 0 \\ 0 & 1 & 10 & -7 & 5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 & 15 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccccc|cc}1 & 0 & 2 & -1 & 0 & 0 & -5 \\ 0 & 1 & 10 & -7 & 0 & 0 & -25 \\ 0 & 0 & 0 & 0 & 1 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Thus $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{c}-2 x_{3}+x_{4} \\ -10 x_{3}+7 x_{4} \\ x_{3} \\ x_{4} \\ 0\end{array}\right]=\left[\begin{array}{c}-2 \\ -10 \\ 1 \\ 0 \\ 0\end{array}\right] x_{3}+\left[\begin{array}{l}1 \\ 7 \\ 0 \\ 1 \\ 0\end{array}\right] x_{4}$
1а.) $\left[\begin{array}{ccccc}2 & -4 & -36 & 26 & -12 \\ 7 & -1 & 4 & 0 & 2 \\ 0 & 0 & 0 & 0 & 3 \\ 1 & 0 & 2 & -1 & 1\end{array}\right] \mathbf{x}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$
Answer: $\left[\begin{array}{c}-2 \\ -10 \\ 1 \\ 0 \\ 0\end{array}\right] x_{3}+\left[\begin{array}{l}1 \\ 7 \\ 0 \\ 1 \\ 0\end{array}\right] x_{4}$
1b.) $\left[\begin{array}{ccccc}2 & -4 & -36 & 26 & -12 \\ 7 & -1 & 4 & 0 & 2 \\ 0 & 0 & 0 & 0 & 3 \\ 1 & 0 & 2 & -1 & 1\end{array}\right] \mathbf{x}=\left[\begin{array}{l}4 \\ 6 \\ 0 \\ 1\end{array}\right]$
Answer: NoSolution
1c.) $\left[\begin{array}{ccccc}2 & -4 & -36 & 26 & -12 \\ 7 & -1 & 4 & 0 & 2 \\ 0 & 0 & 0 & 0 & 3 \\ 1 & 0 & 2 & -1 & 1\end{array}\right] \mathbf{x}=\left[\begin{array}{c}30 \\ 0 \\ 15 \\ 0\end{array}\right]$
Answer: $\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{c}-2 \\ -10 \\ 1 \\ 0 \\ 0\end{array}\right] x_{3}+\left[\begin{array}{l}1 \\ 7 \\ 0 \\ 1 \\ 0\end{array}\right] x_{4}+\left[\begin{array}{c}-5 \\ -25 \\ 0 \\ 0 \\ 5\end{array}\right]$
[20] 2.) Let A be the coefficient matrix from problem 1 .
2a.) Is $\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$ in the span of the columns of A ? yes
If so, write $\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$ as a linear combination of the columns of A :

$$
\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]=0\left[\begin{array}{l}
2 \\
7 \\
0 \\
1
\end{array}\right]+0\left[\begin{array}{c}
-4 \\
-1 \\
0 \\
0
\end{array}\right]+0\left[\begin{array}{c}
-36 \\
4 \\
0 \\
2
\end{array}\right]+0\left[\begin{array}{c}
26 \\
0 \\
0 \\
-1
\end{array}\right]+0\left[\begin{array}{c}
-12 \\
2 \\
3 \\
1
\end{array}\right]
$$

2b.) Is $\left[\begin{array}{l}4 \\ 6 \\ 0 \\ 1\end{array}\right]$ in the span of the columns of $A ? \underline{n o}$
If so, write $\left[\begin{array}{l}4 \\ 6 \\ 0 \\ 1\end{array}\right]$ as a linear combination of the columns of A :

2c.) Is $\left[\begin{array}{c}30 \\ 0 \\ 15 \\ 0\end{array}\right]$ in the span of the columns of $A ? \underline{\text { yes }}$
If so, write $\left[\begin{array}{c}30 \\ 0 \\ 15 \\ 0\end{array}\right]$ as a linear combination of the columns of A :

$$
\left[\begin{array}{c}
30 \\
0 \\
15 \\
0
\end{array}\right]=-5\left[\begin{array}{l}
2 \\
7 \\
0 \\
1
\end{array}\right]+-25\left[\begin{array}{c}
-4 \\
-1 \\
0 \\
0
\end{array}\right]+0\left[\begin{array}{c}
-36 \\
4 \\
0 \\
2
\end{array}\right]+0\left[\begin{array}{c}
26 \\
0 \\
0 \\
-1
\end{array}\right]+5\left[\begin{array}{c}
-12 \\
2 \\
3 \\
1
\end{array}\right]
$$

3.) Let A be the coefficient matrix from problem 1 .
[4] 3a.) Are the columns of A linearly independent? no
[4] 3b.) Do the columns of A span R^{4} ? no
[1 point extra credit] 3c.) Given an example of 4 vectors that span R^{4} where 3 of your vectors are columns of A. Briefly explain.

$$
\left[\begin{array}{l}
2 \\
7 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-4 \\
-1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-12 \\
2 \\
3 \\
1
\end{array}\right],\left[\begin{array}{l}
4 \\
6 \\
0 \\
1
\end{array}\right]
$$

By work on page 1, if I form a matrix from these 4 vectors, the echelon form of this matrix will have a pivot in all 4 rows. Thus $C x=b$ will have a solution for all b in R^{4} if the columns of C consist of the 4 vectors above.
[10] 4a.) Find the inverse of $\left[\begin{array}{ll}3 & 12 \\ 2 & 10\end{array}\right]$
$\left[\begin{array}{ll}3 & 12 \\ 2 & 10\end{array}\right]\left[\begin{array}{cc}10 & -12 \\ -2 & 3\end{array}\right]=\left[\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right]$
Answer: $\left[\begin{array}{rc}\frac{5}{3} & -2 \\ -\frac{1}{3} & \frac{1}{2}\end{array}\right]$
[4] 4b.) Use the inverse found in part a to solve the following system of equations:

$$
\begin{gathered}
3 \mathrm{x}+12 \mathrm{y}=0 \\
2 \mathrm{x}+10 \mathrm{y}=1 \\
{\left[\begin{array}{ll}
3 & 12 \\
2 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
{\left[\begin{array}{cc}
\frac{5}{3} & -2 \\
-\frac{1}{3} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{ll}
3 & 12 \\
2 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{5}{3} & -2 \\
-\frac{1}{3} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
\frac{1}{2}
\end{array}\right]} \\
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
\frac{1}{2}
\end{array}\right]} \\
\text { Answer: }\left[\begin{array}{c}
-2 \\
\frac{1}{2}
\end{array}\right]
\end{gathered}
$$

[5] 5.) Given an example of matrices A and B where neither are the zero matrix, but $A B=0$.

There are many possible examples such as $\left[\begin{array}{ll}1 & 0\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=[(1)(0)+(0)(1)]=[0]$

$$
\text { Answer: } A=\left[\begin{array}{ll}
1 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

$\operatorname{Or}\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
Answer: $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], \quad B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
Note there are many, many potential answers. I choose one with lots of zeros since I knew I wanted the product to be a zero matrix, but one can also use matrices such as:

$$
\text { Answer: } A=\left[\begin{array}{ll}
1 & -1
\end{array}\right], \quad B=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

6.) Circle T for true and F for False (watch out for trick(s)).
[3] 6a.) If A, B, C are matrices and $A B=A C$, then $B=C \quad \mathrm{~F}$ For example, take A, B from problem 5 and let C be a zero matrix
[3] 6b.) If A, B, C are square matrices and $A B=A C$, then $B=C$ or example, take square matrices A, B from problem 5 and let C be a square zero matrix
[4] 6c.) If A and B are matrices, then $A B=B A$
[4] 6.) If A is a 3×3 matrix and the equation $A \mathbf{x}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ had a unique solution,
then A is invertible.

Circle the correct answer:
[5] 7a.) Suppose $A \mathbf{x}=\mathbf{0}$ has a unique solution, then given a vector \mathbf{b} of the appropriate dimension, $A \mathbf{x}=\mathbf{b}$ has
D. at most one solution
[5] 7b.) Suppose A is a SQUARE matrix and $A \mathbf{x}=\mathbf{0}$ has a unique solution, then given a vector \mathbf{b} of the appropriate dimension, $A \mathbf{x}=\mathbf{b}$ has
B. Unique solution

