Math 2550 Matrix Algebra Exam \#2 (Form A)
April 9, 2014 SHOW ALL WORK and SIMPLIFY ANSWERS
[15] 1.) Use Cramer's rule to solve the following system of equations for y Note: Only solve for y. You do not need to solve for x or z

$$
\begin{aligned}
5 y+2 z & =0 \\
3 x+y-4 z & =0 \\
2 x+3 y+z & =10
\end{aligned}
$$

$$
\left|\begin{array}{rrr}
0 & 5 & 2 \\
3 & 1 & -4 \\
2 & 3 & 1
\end{array}\right|=-5(3+8)+2(9-2)=-55+14=-41
$$

or equivalently:

$$
\left|\begin{array}{rrr}
0 & 5 & 2 \\
3 & 1 & -4 \\
2 & 3 & 1
\end{array}\right|=-3(5-6)+2(-20-2)=3-44=-41
$$

replacing 2nd column:

$$
\left|\begin{array}{rrr}
0 & 0 & 2 \\
3 & 0 & -4 \\
2 & 10 & 1
\end{array}\right|=2(30-0)=-10(0-6)=60
$$

2.) Let $D=\left[\begin{array}{cc}e^{4 t} & 2 e^{-3 t} \\ 4 e^{4 t} & -6 e^{-3 t}\end{array}\right]$.
$\left|\begin{array}{cc}e^{4 t} & 2 e^{-3 t} \\ 4 e^{4 t} & -6 e^{-3 t}\end{array}\right|=e^{4 t}\left(-6 e^{-3 t}\right)-4 e^{4 t}\left(2 e^{-3 t}\right)=-6 e^{t}-8 e^{t}=-14 e^{t}$
$D^{-1}=\frac{1}{14 e^{t}}\left[\begin{array}{cc}-6 e^{-3 t} & -2 e^{-3 t} \\ -4 e^{4 t} & e^{4 t}\end{array}\right]=\left[\begin{array}{cc}\frac{3 e^{-4 t}}{7} & \frac{e^{-4 t}}{7} \\ \frac{2 e^{3 t}}{7} & -\frac{e^{3 t}}{14}\end{array}\right]$.
[10] 2a.) $\operatorname{det} D=\underline{-14 e^{t}}$
[10] 2b.) Does the matrix D have an inverse? yes. If so, find D^{-1}

$$
\text { Answer: } D^{-1}=\left[\begin{array}{cc}
\frac{3 e^{-4 t}}{7} & \frac{e^{-4 t}}{7} \\
\frac{2 e^{3 t}}{7} & -\frac{e^{3 t}}{14}
\end{array}\right]
$$

Extra credit:

[1] 2c.) Are the columns of D linearly independent? yes
[1] 2d.) Are the rows of D linearly independent? yes
[1] 2e.) Solve $D \mathbf{x}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
$D \mathbf{x}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
$D^{-1} D \mathbf{x}=D^{-1}\left[\begin{array}{l}0 \\ 1\end{array}\right]$
$\mathbf{x}=\left[\begin{array}{cc}\frac{3 e^{-4 t}}{7} & \frac{e^{-4 t}}{7} \\ \frac{2 e^{3 t}}{7} & -\frac{e^{3 t}}{14}\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}\frac{e^{-4 t}}{7} \\ -\frac{e^{3 t}}{14}\end{array}\right]$

$$
\text { Answer: } \mathbf{x}=\left[\begin{array}{c}
\frac{e^{-4 t}}{7} \\
-\frac{e^{3 t}}{14}
\end{array}\right]
$$

3.) Let $E=\left[\begin{array}{ll}1 & 6 \\ 6 & 1\end{array}\right]$
$\left|\begin{array}{cc}1-\lambda & 6 \\ 6 & 1-\lambda\end{array}\right|=(1-\lambda)^{2}-36=\lambda^{2}-2 \lambda-35=(\lambda+5)(\lambda-7)=0$
$\lambda=-5:\left[\begin{array}{ll}6 & 6 \\ 6 & 6\end{array}\right] \sim\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
Thus $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-x_{2} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-1 \\ 1\end{array}\right] x_{2}$
$\lambda=7:\left[\begin{array}{cc}-6 & 6 \\ 6 & -6\end{array}\right] \sim\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]$
Thus $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}x_{2} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right] x_{2}$
[4] 3a.) The characteristic polynomial of the matrix E is $\underline{(\lambda+5)(\lambda-7)}$
[16] 3b.) Find the eigenvalues of E and a basis for each eigenspace.
$\lambda_{1}=\underline{-5}$ is an eigenvalue. A basis for its eigenspace is $\left[\begin{array}{r}-1 \\ 1\end{array}\right]$

$$
\lambda_{2}=\underline{7} \text { is an eigenvalue. A basis for its eigenspace is }\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

4.) Suppose $A=\left[\begin{array}{rcccr}1 & 2 & -4 & 3 & 5 \\ -7 & 2 & 28 & 6 & -8 \\ 2 & 2 & -8 & 9 & 13\end{array}\right]$

Suppose also that A is row equivalent to $C=\left[\begin{array}{rrrrr}1 & 0 & -4 & 6 & 8 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 3\end{array}\right]$
Hint: Recall definition of reduced echelon form.
$C \sim\left[\begin{array}{rrrrr}1 & 0 & -4 & 0 & 2 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1\end{array}\right]$
Thus if $A \mathbf{x}=\mathbf{0}$, then $C \mathbf{x}=\mathbf{0}$ and $\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{c}4 x_{3}-2 x_{5} \\ 0 \\ x_{3} \\ -x_{5} \\ x_{5}\end{array}\right]=\left[\begin{array}{l}4 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right] x_{3}+\left[\begin{array}{r}-2 \\ 0 \\ 0 \\ -1 \\ 1\end{array}\right] x_{5}$
[10] 4a.) The nullspace of $A=\operatorname{span}\left\{\left[\begin{array}{l}4 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-2 \\ 0 \\ 0 \\ -1 \\ 1\end{array}\right]\right\}$
[4] 4b.) A basis for the nullspace of $A=\left\{\left[\begin{array}{l}4 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-2 \\ 0 \\ 0 \\ -1 \\ 1\end{array}\right]\right\}$
$[10]$ 4c.) The column space of $A=\operatorname{span}\left\{\left[\begin{array}{r}1 \\ -7 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]\right\}$
[2] 4d.) Do the columns of A span R^{3} ? yes
[2] 4e.) Do the columns of A span R^{5} ? no
5.) Suppose A is a 3×7 matrix with rank 2 ,
[3] 5a.) The nullity of A is $\underline{5}$
[3] 5b.) The dimension of the column space of $A=\underline{2}$
[2] 5c.) The nullspace of A is a subspace of R^{a} where $a=\underline{7}$
[2] 5d.) The column space of A is a subspace of R^{b} where $b=\underline{3}$
6.) Let A be a square matrix. Circle T for true and F for False.
[2] 6a.) $\operatorname{det} A=0$ if and only if $A \mathbf{x}=\mathbf{0}$ has an infinite number of solutions. T
[2] 6b.) 0 is an eigenvalue of A if and only if $A \mathbf{x}=\mathbf{0}$ has an infinite number of solutions.
[3] 6c.) If \mathbf{v} is an eigenvector of A corresponding to eigenvalue λ_{0}, then $2 \mathbf{v}$ is also an eigenvector of A corresponding to eigenvalue λ_{0}

