Math 2550 Matrix Algebra Exam \#2 (Form A)
April 9, 2014 SHOW ALL WORK and SIMPLIFY ANSWERS
[15] 1.) Use Cramer's rule to solve the following system of equations for y Note: Only solve for y. You do not need to solve for x or z

$$
\begin{aligned}
2 y+5 z & =0 \\
3 x+y-4 z & =0 \\
2 x+3 y+z & =10
\end{aligned}
$$

Answer: $y=$
2.) Let $D=\left[\begin{array}{cc}e^{5 t} & 2 e^{-4 t} \\ 5 e^{5 t} & -8 e^{-4 t}\end{array}\right]$.
[10] 2a.) $\operatorname{det} D=$
[10] 2b.) Does the matrix D have an inverse? \qquad . If so, find D^{-1}

Answer: $D^{-1}=$

Extra credit:

[1] 2c.) Are the columns of D linearly independent? \qquad
[1] 2d.) Are the rows of D linearly independent?
[1] 2e.) Solve $D \mathbf{x}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

$$
\text { Answer: } \mathbf{x}=
$$

3.) Let $E=\left[\begin{array}{ll}1 & 5 \\ 5 & 1\end{array}\right]$
[4] 3a.) The characteristic polynomial of the matrix E is
[16] 3b.) Find the eigenvalues of E and a basis for each eigenspace.

$$
\lambda_{1}=\ldots \quad \text { is an eigenvalue. A basis for its eigenspace is }
$$

$\lambda_{2}=\ldots$ is an eigenvalue. A basis for its eigenspace is
4.) Suppose $A=\left[\begin{array}{rlllr}1 & 2 & -4 & 3 & 2 \\ -5 & 2 & 20 & 6 & 11 \\ 2 & 2 & -8 & 9 & 7\end{array}\right]$

Suppose also that A is row equivalent to $C=\left[\begin{array}{rrrrr}1 & 0 & -4 & 6 & 5 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 3\end{array}\right]$
Hint: Recall definition of reduced echelon form.
[10] 4a.) The nullspace of $A=$ \qquad
[4] 4b.) A basis for the nullspace of $A=$ \qquad
[10] 4c.) The column space of $A=$
[2] 4d.) Do the columns of A span R^{3} ? \qquad
[2] 4e.) Do the columns of A span R^{5} ?
5.) Suppose A is a 4×8 matrix with rank 2 ,
[3] 5a.) The nullity of A is \qquad
[3] 5b.) The dimension of the column space of $A=$ \qquad
[2] 5c.) The nullspace of A is a subspace of R^{a} where $a=$ \qquad
[2] 5d.) The column space of A is a subspace of R^{b} where $b=$ \qquad
6.) Let A be a square matrix. Circle T for true and F for False.
[2] 6a.) $\operatorname{det} A=0$ if and only if $A \mathbf{x}=\mathbf{0}$ has an infinite number of solutions.
[2] 6b.) 0 is an eigenvalue of A if and only if $A \mathbf{x}=\mathbf{0}$ has an infinite number of solutions.
[3] 6c.) If \mathbf{v} is an eigenvector of A corresponding to eigenvalue λ_{0}, then $2 \mathbf{v}$ is also an eigenvector of A corresponding to eigenvalue λ_{0}

