Problem 1. Suppose A is a 5×6 matrix. If rank of $A=4$, then nullity of $A=$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Problem 2.

Let $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right]$. Is $A=$ diagonalizable?

- A. yes
- B. no
- C. none of the above

Problem 3. Suppose A is a 3×4 matrix. Then nul A is a subspace of R^{k} where $k=$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Problem 4. Suppose $A=P D P^{-1}$ where D is a diagonal matrix. Suppose also the $d_{i i}$ are the diagonal entries of D. If $P=\left[\overrightarrow{p_{1}} \overrightarrow{p_{2}} \overrightarrow{p_{3}}\right]$ and $d_{11}=d_{33}$, then $\overrightarrow{p_{1}}+\overrightarrow{p_{3}}$ is an eigenvector of A

- A. True
- B. False

Problem 5.

Which of the following is an eigenvalue of $\left[\begin{array}{ll}4 & 4 \\ 1 & 4\end{array}\right]$.

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Problem 6. If $\overrightarrow{x_{1}}$ and $\overrightarrow{x_{2}}$ are solutions to $A \vec{x}=\vec{b}$, then $-5 \overrightarrow{x_{1}}+8 \overrightarrow{x_{2}}$ is also a solution to $A \vec{x}=\vec{b}$.

- A. True
- B. False

Problem 7.

Calculate the determinant of $\left[\begin{array}{cc}-1.125 & -1 \\ 8 & 8\end{array}\right]$.

- A. -4
- B. -3
-C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. 5

Problem 8.

Suppose the orthogonal projection of $\left[\begin{array}{c}-4 \\ 7 \\ 2\end{array}\right]$ onto $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ is $\left(z_{1}, z_{2}, z_{3}\right)$. Then $z_{1}=$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Problem 9. Suppose A is a square matrix and $A \vec{x}=\overrightarrow{0}$ has an infinite number of solutions, then given a vector \vec{b} of the appropriate dimension, $A \vec{x}=\vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Problem 10.

Let $A=\left[\begin{array}{ccc}8 & -24 & 32 \\ 0 & 2 & 8 \\ 0 & 0 & 8\end{array}\right]$. Is $A=$ diagonalizable?

- A. yes
- B. no
- C. none of the above

Problem 11.

Let $A=\left[\begin{array}{ccc}5.31034482758621 & 2.12413793103448 & -5.7448275862069 \\ 4.22413793103448 & 1.68965517241379 & -5.7448275862069 \\ 0 & 0 & -2.46206896551724\end{array}\right]$
and let $P=\left[\begin{array}{ccc}-2 & -4 & 7 \\ 5 & -7 & 7 \\ 0 & -8 & 3\end{array}\right]$.
Suppose $A=P D P^{-1}$. Then if $d_{i i}$ are the diagonal entries of $D, d_{11}=$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. 5

Problem 12. Suppose $\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$ is a unit vector in the direction of $\left[\begin{array}{c}5 \\ 2 \\ 3.17214438511238\end{array}\right]$. Then $u_{1}=$

- A. -0.8
- B. -0.6
- C. -0.4
- D. -0.2
- E. 0
- F. 0.2
- G. 0.4
- H. 0.6
- I. 0.8
- J. 1

Problem 13. Suppose $A\left[\begin{array}{l}-2 \\ -2 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. Then an eigenvalue of A is

- A. -4
- B. -3
-C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Problem 14. The vector \vec{b} is in $\operatorname{Col} A$ if and only if $A \vec{v}=\vec{b}$ has a solution

- A. True
- B. False

Problem 15.

Let $A=\left[\begin{array}{cc}15 & -6 \\ 5 & -2\end{array}\right]$.
Which of the following could be a basis for $\operatorname{null}(A)$?

- A. $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
- B. $\left\{\left[\begin{array}{l}2 \\ 5\end{array}\right]\right\}$
-C. $\left\{\left[\begin{array}{c}15 \\ 5\end{array}\right]\right\}$
- D. $\left\{\left[\begin{array}{c}5 \\ -2\end{array}\right]\right\}$
- E. $\left\{\left[\begin{array}{c}15 \\ 5\end{array}\right],\left[\begin{array}{l}-6 \\ -2\end{array}\right]\right\}$
- F. $\left\{\left[\begin{array}{c}15 \\ -6\end{array}\right],\left[\begin{array}{c}5 \\ -2\end{array}\right]\right\}$
- G. \mathbb{R}^{2}
- H. none of the above

