Math 2550 Matrix Algebra May 12, 2014

|                     | 1  | 3 | 10 | 6 |  |
|---------------------|----|---|----|---|--|
| <b>1.</b> Let $A =$ | -3 | 7 | 0  | 6 |  |
|                     | -2 | 2 | -5 | 0 |  |

[8] **1a.**) Find a basis for the column space of *A*:\_\_\_\_\_\_

- [2] **1b.**) Rank(A) = \_\_\_\_\_
- [2] **1c.**) Nullity(A) = \_\_\_\_\_
- [3] **1d.**) Are columns of *A* linearly independent?\_\_\_\_\_
- [5] **1e.**) If possible write one of the columns of *A* as a linear combination of the other columns of *A*.

|                     | [ 1 | 4 | 3   | 5  |
|---------------------|-----|---|-----|----|
| <b>1.</b> Let $A =$ | -2  | 2 | -5  | 0  |
|                     | -5  | 0 | -13 | -5 |

[8] **1a.**) Find a basis for the column space of *A*:\_\_\_\_\_\_

- [2] **1b.**) Rank(A) = \_\_\_\_\_
- [2] **1c.**) Nullity(A) = \_\_\_\_\_
- [3] **1d.**) Are columns of *A* linearly independent?\_\_\_\_\_
- [5] **1e.**) If possible write one of the columns of *A* as a linear combination of the other columns of *A*.

|                     | 1  | -4 | 5  | 3 |
|---------------------|----|----|----|---|
| <b>1.</b> Let $A =$ | -2 | 2  | -5 | 0 |
|                     | -3 | 0  | -5 | 3 |

[8] **1a.**) Find a basis for the column space of *A*:\_\_\_\_\_\_

- [2] **1b.**) Rank(A) = \_\_\_\_\_
- [2] **1c.**) Nullity(A) = \_\_\_\_\_
- [3] **1d.**) Are columns of *A* linearly independent?\_\_\_\_\_
- [5] **1e.**) If possible write one of the columns of *A* as a linear combination of the other columns of *A*.

Math 2550 Matrix Algebra May 12, 2014

|                     | 1  | 3  | 4 | 5 ] |
|---------------------|----|----|---|-----|
| <b>1.</b> Let $A =$ | -2 | 10 | 2 | 0   |
|                     | -5 | 17 | 0 | -5  |

[8] **1a.**) Find a basis for the column space of *A*:\_\_\_\_\_\_

- [2] **1b.**) Rank(A) = \_\_\_\_\_
- [2] **1c.**) Nullity(A) = \_\_\_\_\_
- **1d.**) Are columns of *A* linearly independent?\_\_\_\_\_ [3]
- [5] **1e.**) If possible write one of the columns of A as a linear combination of the other columns of A.

**3.** Let 
$$A = \begin{bmatrix} 12 & 4 & 0 & 0 \\ -30 & -10 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

**3a).** Find an invertible matrix *P* and a diagonal matrix *D* such that  $D = P^{-1}AP$ . [12]

Note, you may use the following facts:

- (1.) A has eigenvalue  $\lambda_1 = 0$  with multiplicity 1.
- (2.) A has eigenvalue  $\lambda_2$  with multiplicity 3.

(3.) The vector 
$$\begin{bmatrix} 0\\0\\-3\\1 \end{bmatrix}$$
 is an eigenvector of *A*.

**3.** Let 
$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 12 & 30 \\ 0 & 0 & -4 & -10 \end{bmatrix}$$
.

[12] **3a).** Find an invertible matrix *P* and a diagonal matrix *D* such that  $D = P^{-1}AP$ .

Note, you may use the following facts:

- (1.) A has eigenvalue  $\lambda_1 = 0$  with multiplicity 1.
- (2.) A has eigenvalue  $\lambda_2$  with multiplicity 3.

(3.) The vector 
$$\begin{bmatrix} -2 \\ 5 \\ 0 \\ 0 \end{bmatrix}$$
 is an eigenvector of *A*.

[3]

**3b.** The characteristic polynomial of the matrix A = \_\_\_\_\_

**3.** Let 
$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 12 & -30 \\ 0 & 0 & 4 & -10 \end{bmatrix}$$
.

[12] **3a).** Find an invertible matrix *P* and a diagonal matrix *D* such that  $D = P^{-1}AP$ .

Note, you may use the following facts:

- (1.) A has eigenvalue  $\lambda_1 = 0$  with multiplicity 1.
- (2.) A has eigenvalue  $\lambda_2$  with multiplicity 3.

(3.) The vector 
$$\begin{bmatrix} 2\\5\\0\\0 \end{bmatrix}$$
 is an eigenvector of *A*.

**3.** Let 
$$A = \begin{bmatrix} 12 & -4 & 0 & 0 \\ 30 & -10 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
.

[12] **3a).** Find an invertible matrix *P* and a diagonal matrix *D* such that  $D = P^{-1}AP$ .

Note, you may use the following facts:

- (1.) A has eigenvalue  $\lambda_1 = 0$  with multiplicity 1.
- (2.) A has eigenvalue  $\lambda_2$  with multiplicity 3.

(3.) The vector 
$$\begin{bmatrix} 0\\0\\3\\1 \end{bmatrix}$$
 is an eigenvector of *A*.





[6] **4c.** Use the Gram-Schmidt process to determine an orthonormal basis for the subspace of  $\mathbb{R}^4$  spanned

| 1 ] |                  | 3                 |                                                                                                     | 5                                                                                                                     |
|-----|------------------|-------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 3   |                  | -1                |                                                                                                     | -4                                                                                                                    |
| 3   | ,                | -1                | ,                                                                                                   | 1                                                                                                                     |
| 1   |                  | 3                 |                                                                                                     | 0                                                                                                                     |
|     | 1<br>3<br>3<br>1 | 1<br>3<br>3,<br>1 | $ \begin{array}{c} 1 \\ 3 \\ 3 \\ 1 \end{array}, \begin{bmatrix} 3 \\ -1 \\ -1 \\ 3 \end{bmatrix} $ | $ \begin{array}{c} 1 \\ 3 \\ 3 \\ 1 \end{array}, \begin{bmatrix} 3 \\ -1 \\ -1 \\ 3 \end{bmatrix}, \\ 1 \end{array} $ |





[6] **4c.** Use the Gram-Schmidt process to determine an orthonormal basis for the subspace of  $\mathbb{R}^4$  spanned

by  $\begin{bmatrix} 1\\3\\3\\1 \end{bmatrix}$ ,  $\begin{bmatrix} 3\\-1\\-1\\3 \end{bmatrix}$ ,  $\begin{bmatrix} 5\\1\\-4\\0 \end{bmatrix}$ 

[2] **5.** Circle the correct answer:

Suppose  $A\vec{x} = \vec{b}$  has a unique solution, then  $A\vec{x} = \vec{0}$  has

• B. Unique solution

**6.** Fill in the SIX blanks below:

Suppose that A is a  $7 \times 9$  matrix which has a 3 pivot columns, then

- [2] **6a.** The rank of A = 3
- [2] **6b.** The nullity of A = 6
- [4] 6c. The column space of A is a 3 dimensional subspace of  $R^k$  where k = 7
- [4] 6d. The nullspace of A is a 6 dimensional subspace of  $R^n$  where n = 9