1. Let $A=\left[\begin{array}{cccc}1 & 3 & 10 & 6 \\ -3 & 7 & 0 & 6 \\ -2 & 2 & -5 & 0\end{array}\right]$
[8] 1a.) Find a basis for the column space of A :
[2] 1b.) $\operatorname{Rank}(A)=$ \qquad
[2] 1c.) $\operatorname{Nullity}(A)=$ \qquad
[3] 1d.) Are columns of A linearly independent?
[5] 1e.) If possible write one of the columns of A as a linear combination of the other columns of A.
2. Let $A=\left[\begin{array}{cccc}1 & 4 & 3 & 5 \\ -2 & 2 & -5 & 0 \\ -5 & 0 & -13 & -5\end{array}\right]$
[8] 1a.) Find a basis for the column space of A :
[2] 1b.) $\operatorname{Rank}(A)=$ \qquad
[2] 1c.) $\operatorname{Nullity}(A)=$ \qquad
[3] 1d.) Are columns of A linearly independent?
[5] 1e.) If possible write one of the columns of A as a linear combination of the other columns of A.
3. Let $A=\left[\begin{array}{cccc}1 & -4 & 5 & 3 \\ -2 & 2 & -5 & 0 \\ -3 & 0 & -5 & 3\end{array}\right]$
[8] 1a.) Find a basis for the column space of A :
[2] 1b.) $\operatorname{Rank}(A)=$ \qquad
[2] 1c.) $\operatorname{Nullity}(A)=$ \qquad
[3] 1d.) Are columns of A linearly independent?
[5] 1e.) If possible write one of the columns of A as a linear combination of the other columns of A.
4. Let $A=\left[\begin{array}{cccc}1 & 3 & 4 & 5 \\ -2 & 10 & 2 & 0 \\ -5 & 17 & 0 & -5\end{array}\right]$
[8] 1a.) Find a basis for the column space of A :
[2] 1b.) $\operatorname{Rank}(\mathrm{A})=$ \qquad
[2] 1c.) $\operatorname{Nullity}(A)=$ \qquad
[3] 1d.) Are columns of A linearly independent?
[5] 1e.) If possible write one of the columns of A as a linear combination of the other columns of A.
5. Let $A=\left[\begin{array}{cccc}12 & 4 & 0 & 0 \\ -30 & -10 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$.
[12] 3a). Find an invertible matrix P and a diagonal matrix D such that $D=P^{-1} A P$.
Note, you may use the following facts:
(1.) A has eigenvalue $\lambda_{1}=0$ with multiplicity 1 .
(2.) A has eigenvalue λ_{2} with multiplicity 3 .
(3.) The vector $\left[\begin{array}{c}0 \\ 0 \\ -3 \\ 1\end{array}\right]$ is an eigenvector of A.
$P=$ \qquad $D=$ \qquad
6. Let $A=\left[\begin{array}{cccc}2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 12 & 30 \\ 0 & 0 & -4 & -10\end{array}\right]$.
[12] 3a). Find an invertible matrix P and a diagonal matrix D such that $D=P^{-1} A P$.
Note, you may use the following facts:
(1.) A has eigenvalue $\lambda_{1}=0$ with multiplicity 1 .
(2.) A has eigenvalue λ_{2} with multiplicity 3 .
(3.) The vector $\left[\begin{array}{c}-2 \\ 5 \\ 0 \\ 0\end{array}\right]$ is an eigenvector of A.
$P=$ \qquad

3b. The characteristic polynomial of the matrix $A=$
3. Let $A=\left[\begin{array}{cccc}2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 12 & -30 \\ 0 & 0 & 4 & -10\end{array}\right]$.
[12] 3a). Find an invertible matrix P and a diagonal matrix D such that $D=P^{-1} A P$.
Note, you may use the following facts:
(1.) A has eigenvalue $\lambda_{1}=0$ with multiplicity 1 .
(2.) A has eigenvalue λ_{2} with multiplicity 3 .
(3.) The vector $\left[\begin{array}{l}2 \\ 5 \\ 0 \\ 0\end{array}\right]$ is an eigenvector of A.
$P=$ \qquad

3b. The characteristic polynomial of the matrix $A=$
3. Let $A=\left[\begin{array}{cccc}12 & -4 & 0 & 0 \\ 30 & -10 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$.
[12] 3a). Find an invertible matrix P and a diagonal matrix D such that $D=P^{-1} A P$.
Note, you may use the following facts:
(1.) A has eigenvalue $\lambda_{1}=0$ with multiplicity 1 .
(2.) A has eigenvalue λ_{2} with multiplicity 3 .
(3.) The vector $\left[\begin{array}{l}0 \\ 0 \\ 3 \\ 1\end{array}\right]$ is an eigenvector of A.
$P=$ \qquad $D=$ \qquad
[3] 4a. Calculate the dot product: $\left[\begin{array}{l}1 \\ 3 \\ 3 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}3 \\ -1 \\ -1 \\ 3\end{array}\right]=$
[8] 4b. Find the orthogonal projection of $v=\left[\begin{array}{c}5 \\ -4 \\ 1 \\ 0\end{array}\right]$ onto the subspace W of \mathbb{R}^{3} spanned by $\left[\begin{array}{l}1 \\ 3 \\ 3 \\ 1\end{array}\right] \&\left[\begin{array}{c}3 \\ -1 \\ -1 \\ 3\end{array}\right]$

$$
\operatorname{proj}_{W}(v)=
$$

\qquad
[6] 4c. Use the Gram-Schmidt process to determine an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by $\left[\begin{array}{l}1 \\ 3 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{c}3 \\ -1 \\ -1 \\ 3\end{array}\right],\left[\begin{array}{c}5 \\ -4 \\ 1 \\ 0\end{array}\right]$
\qquad
[3] 4a. Calculate the dot product: $\left[\begin{array}{l}1 \\ 3 \\ 3 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}3 \\ -1 \\ -1 \\ 3\end{array}\right]=$
[8] 4b. Find the orthogonal projection of $v=\left[\begin{array}{c}5 \\ 1 \\ -4 \\ 0\end{array}\right]$ onto the subspace W of \mathbb{R}^{3} spanned by $\left[\begin{array}{l}1 \\ 3 \\ 3 \\ 1\end{array}\right] \&\left[\begin{array}{c}3 \\ -1 \\ -1 \\ 3\end{array}\right]$

$$
\operatorname{proj}_{W}(v)=
$$

\qquad
[6] 4c. Use the Gram-Schmidt process to determine an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by $\left[\begin{array}{l}1 \\ 3 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{c}3 \\ -1 \\ -1 \\ 3\end{array}\right],\left[\begin{array}{c}5 \\ 1 \\ -4 \\ 0\end{array}\right]$
\qquad
[2] 5. Circle the correct answer:
Suppose $A \vec{x}=\vec{b}$ has a unique solution, then $A \vec{x}=\overrightarrow{0}$ has

- B. Unique solution

6. Fill in the SIX blanks below:

Suppose that A is a 7×9 matrix which has a 3 pivot columns, then
[2] 6a. The rank of $A=3$
[2] 6b. The nullity of $A=6$
[4] 6c. The column space of A is a 3 dimensional subspace of R^{k} where $k=7$
[4] 6d. The nullspace of A is a 6 dimensional subspace of R^{n} where $n=9$

