Thm 8': If A is a SQUARE $n \times n$ matrix, then the following are equivalent.

- a.) A is invertible.
- b.) The row-reduced echelon form of A is I_n , the identity matrix.
- c.) An echelon form of A has n leading entries

[I.e., every column of an echelon form of A is a leading entry column – no free variables]. (A square => A has leading entry in every column if and only if A has leading entry in every row).

- d.) The column vectors of A are linearly independent.
- e.) Ax = 0 has only the trivial solution.
- f.) Ax = b has at most one sol'n for any b.
- g.) Ax = b has a unique sol'n for any b.
- h.) Ax = b is consistent for every $n \times 1$ matrix b.
- i.) Ax = b has at least one sol'n for any b.
- j.) The column vectors of A span \mathbb{R}^n . [every vector in \mathbb{R}^n can be written as a linear combination of the columns of A].
- k.) There is a square matrix C such that CA = I.
- 1.) There is a square matrix D such that AD = I.
- m.) A^T is invertible.
- n.) A is expressible as a product of elementary matrices.
- o.) The column vectors of A form a basis for \mathbb{R}^n .

[every vector in \mathbb{R}^n can be written uniquely as a linear combination of the columns of A].

- p.) Col $A = \mathbb{R}^n$.
- q.) dim Col A = n.
- r.) rank of A = n.
- s.) Nul $A = \{0\},\$
- t.) dim Nul A = 0.
- u.) A has nullity 0.
- v.) $\lambda = 0$ is NOT an eigenvalue of A