Thm 8^{\prime} : If A is a SQUARE $n \times n$ matrix, then the following are equivalent.
a.) A is invertible.
b.) The row-reduced echelon form of A is I_{n}, the identity matrix.
c.) An echelon form of A has n leading entries
[I.e., every column of an echelon form of A is a leading entry column - no free variables]. (A square $=>A$ has leading entry in every column if and only if A has leading entry in every row).
d.) The column vectors of A are linearly independent.
e.) $A x=0$ has only the trivial solution.
f.) $A x=b$ has at most one sol'n for any b.
g.) $A x=b$ has a unique sol'n for any b.
h.) $A x=b$ is consistent for every $n \times 1$ matrix b.
i.) $A x=b$ has at least one sol'n for any b.
j.) The column vectors of A span R^{n}.
[every vector in R^{n} can be written as a linear combination of the columns of A].
k.) There is a square matrix C such that $C A=I$.
l.) There is a square matrix D such that $A D=I$.
m.) A^{T} is invertible.
n.) A is expressible as a product of elementary matrices.
o.) The column vectors of A form a basis for R^{n}.
[every vector in R^{n} can be written uniquely as a linear combination of the columns of $A]$.
p.) $\operatorname{Col} A=R^{n}$.
q.) $\operatorname{dim} \operatorname{Col} A=n$.
r.) rank of $A=n$.
s.) $\operatorname{Nul} A=\{\mathbf{0}\}$,
t.) $\operatorname{dim} \operatorname{Nul} A=0$.
u.) A has nullity 0 .
v.) $\lambda=0$ is NOT an eigenvalue of A

