References

Explanation: The list below includes both books and journal articles, listed alphabetically by author. The type style and punctuation are generated by BibTeX, and we follow a well established AMS prescription. One general rule applies to all different types of sources cited (books, journals, monographs, memoirs, edited volumes, web sources): The title of the work cited is in italic type. This makes it easy for readers to identify at a glance what is being cited. Thus "longer works" such as books are not given the special status of being in italic. This BibTeX styling makes it clear which item is a book and which a paper: entries for journal articles end with the volume number in bold, the year in parentheses, and the page range, while entries for books end with the publisher's name and address, and the year not in parentheses. Articles published in books such as proceedings volumes have the same book information near the end of the entry, but it is followed by the abbreviation "pp." and the page range of the article within the book.

Comments on our citations of a variety of websites: In general, websites might not have well-defined authors, and well-defined year of "publication," so we cite them as [WWW1], [WWW2], etc. Readers should keep in mind that we cite these URLs only as supplements to issues covered inside the book; and we hope that they will inspire readers to follow up on the themes covered in the book and in the various URLs.
[AgKu04a] B. Agard and A. Kusiak, A data-mining based methodology for the design of product families, International Journal of Production Research 42 (2004), no. 15, 2955-2969.
[AgKu04b] B. Agard and A. Kusiak, Data mining for subassembly selection, ASME Transactions: Journal of Manufacturing Science and Engineering 126 (2004), no. 3, 627-631.
[ACM04] A. Aldroubi, C.A. Cabrelli, and U.M. Molter, How to construct wavelet frames on irregular grids and arbitrary dilations in \mathbb{R}^{d}, Wavelets, Frames and Operator Theory (College Park, MD, 2003) (C. Heil, P.E.T. Jorgensen, and D.R. Larson, eds.), Contemp. Math., vol. 345, American Mathematical Society, Providence, 2004, pp. 1-9.
[AlGr01] A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev. 43 (2001), 585-620.
[Arv04] W. Arveson, The free cover of a row contraction, Doc. Math. 9 (2004), 137161.
[Ash90] R.B. Ash, Information Theory, Dover, New York, 1990, corrected reprint of the original 1965 Interscience/Wiley edition.
[AyTa03] A. Ayache and M.S. Taqqu, Rate optimality of wavelet series approximations of fractional Brownian motion, J. Fourier Anal. Appl. 9 (2003), 451-471.
[BaCM02] L.W. Baggett, J.E. Courter, and K.D. Merrill, The construction of wavelets from generalized conjugate mirror filters in $L^{2}\left(\mathbb{R}^{n}\right)$, Appl. Comput. Harmon. Anal. 13 (2002), 201-223.
[BaJMP04] L.W. Baggett, P.E.T. Jorgensen, K.D. Merrill, and J.A. Packer, An analogue of Bratteli-Jorgensen loop group actions for GMRA's, Wavelets, Frames, and Operator Theory (College Park, MD, 2003) (C. Heil, P.E.T. Jorgensen, and D.R. Larson, eds.), Contemp. Math., vol. 345, American Mathematical Society, Providence, 2004, pp. 11-25.
[BaJMP05] L.W. Baggett, P.E.T. Jorgensen, K.D. Merrill, and J.A. Packer, Construction of Parseval wavelets from redundant filter systems, J. Math. Phys. 46 (2005), no. 8, 083502, 28 pp., doi:10.1063/1.1982768.
[BaJMP06] L.W. Baggett, P.E.T. Jorgensen, K.D. Merrill, and J.A. Packer, A non-MRA C^{r} frame wavelet with rapid decay, Acta Appl. Math. 89 (2006), 251-270, doi:10.1007/s10440-005-9011-4.
[BaMM99] L.W. Baggett, H.A. Medina, and K.D. Merrill, Generalized multi-resolution analyses and a construction procedure for all wavelet sets in \mathbf{R}^{n}, J. Fourier Anal. Appl. 5 (1999), 563-573.
[BaMe99] L.W. Baggett and K.D. Merrill, Abstract harmonic analysis and wavelets in \mathbf{R}^{n}, The Functional and Harmonic Analysis of Wavelets and Frames (San Antonio, 1999) (L.W. Baggett and D.R. Larson, eds.), Contemp. Math., vol. 247, American Mathematical Society, Providence, 1999, pp. 17-27.
[Ba100] V. Baladi, Positive Transfer Operators and Decay of Correlations, World Scientific, River Edge, NJ, Singapore, 2000.
[BaCV05] J.A. Ball, C. Sadosky, and V. Vinnikov, Conservative input-state-output systems with evolution on a multidimensional integer lattice, Multidimens. Syst. Signal Process. 16 (2005), no. 2, 133-198.
[BaVi05] J.A. Ball and V. Vinnikov, Lax-Phillips Scattering and Conservative Linear Systems: A Cuntz-Algebra Multidimensional Setting, Mem. Amer. Math. Soc. 178 (2005), no. 837.
[BaNi70] M.N. Barber and B.W. Ninham, Random and Restricted Walks: Theory and Applications, Gordon and Breach, New York, 1970.
[Bas95] R.F. Bass, Probabilistic Techniques in Analysis, Probability and Its Applications, Springer-Verlag, New York, 1995.
[Bas03] R.F. Bass, Stochastic differential equations driven by symmetric stable processes, Séminaire de Probabilités, XXXVI (J. Azéma, M. Émery, M. Ledoux, and M. Yor, eds.), Lecture Notes in Math., vol. 1801, Springer-Verlag, Berlin, 2003, pp. 302-313.
[Bat87] G. Battle, A block spin construction of ondelettes, I: Lemarié functions, Comm. Math. Phys. 110 (1987), 601-615.
[Bea91] A.F. Beardon, Iteration of Rational Functions: Complex Analytic Dynamical Systems, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991.
[BeBe95] J.J. Benedetto and E.G. Bernstein, Pyramidal Riesz products associated with subband coding and self-similarity, Wavelet Applications II (H.H. Szu, ed.), Proceedings of SPIE, vol. 2491, SPIE, Bellingham, WA, 1995, pp. 212-221.
[BeBK05] J.J. Benedetto, E. Bernstein, and I. Konstantinidis, Multiscale Riesz products and their support properties, Acta Appl. Math. 88 (2005), no. 2, 201-227.
[Bi199] P. Billingsley, Convergence of Probability Measures, second ed., Wiley Series in Probability and Statistics, Wiley-Interscience, New York, 1999.
[BoNe03] E. Bondarenko and V.V. Nekrashevych, Post-critically finite self-similar groups, Algebra Discrete Math. 2003, 21-32.
[BrEJ00] O. Bratteli, D.E. Evans, and P.E.T. Jorgensen, Compactly supported wavelets and representations of the Cuntz relations, Appl. Comput. Harmon. Anal. 8 (2000), 166-196.
[BrJo97] O. Bratteli and P.E.T. Jorgensen, Isometries, shifts, Cuntz algebras and multiresolution wavelet analysis of scale N, Integral Equations Operator Theory 28 (1997), 382-443.
[BrJo99a] O. Bratteli and P.E.T. Jorgensen, Iterated function systems and permutation representations of the Cuntz algebra, Mem. Amer. Math. Soc. 139 (1999), no. 663.
[BrJo99b] O. Bratteli and P.E.T. Jorgensen, Convergence of the cascade algorithm at irregular scaling functions, The Functional and Harmonic Analysis of Wavelets and Frames (San Antonio, 1999) (L.W. Baggett and D.R. Larson, eds.), Contemp. Math., vol. 247, American Mathematical Society, Providence, 1999, pp. 93-130.
[BrJo02a] O. Bratteli and P.E.T. Jorgensen, Wavelet filters and infinite-dimensional unitary groups, Wavelet Analysis and Applications (Guangzhou, China, 1999) (D. Deng, D. Huang, R.-Q. Jia, W. Lin, and J. Wang, eds.), AMS/IP Studies in Advanced Mathematics, vol. 25, American Mathematical Society, Providence, International Press, Boston, 2002, pp. 35-65.
[BrJo02b] O. Bratteli and P.E.T. Jorgensen, Wavelets through a Looking Glass: The World of the Spectrum, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, 2002.
[BrJKW00] O. Bratteli, P.E.T. Jorgensen, A. Kishimoto, and R. Werner, Pure states on \mathcal{O}_{d}, J. Operator Theory 43 (2000), 97-143.
[BrJO04] O. Bratteli, P.E.T. Jorgensen, and V. Ostrovs'kyĭ, Representation Theory and Numerical AF-invariants: The Representations and Centralizers of Certain States on \mathcal{O}_{d}, Mem. Amer. Math. Soc. 168 (2004), no. 797.
[BrJP96] O. Bratteli, P.E.T. Jorgensen, and G.L. Price, Endomorphisms of $\mathcal{B}(\mathcal{H})$, Quantization, Nonlinear Partial Differential Equations, and Operator Algebra (W. Arveson, T. Branson, and I. Segal, eds.), Proc. Sympos. Pure Math., vol. 59, American Mathematical Society, Providence, 1996, pp. 93-138.
[Bri95] C. Brislawn, Fingerprints go digital, Notices Amer. Math. Soc. 42 (1995), 1278-1283.
[BrRo91] C. Brislawn and I.G. Rosen, Wavelet based approximation in the optimal control of distributed parameter systems, Numer. Funct. Anal. Optim. 12 (1991), 33-77.
[BrMo75] G. Brown and W. Moran, Products of random variables and Kakutani's criterion for orthogonality of product measures, J. London Math. Soc. (2) $\mathbf{1 0}$ (1975), no. part 4, 401-405.
[CaHM04] C.A. Cabrelli, C. Heil, and U.M. Molter, Self-similarity and multiwavelets in higher dimensions, Mem. Amer. Math. Soc. 170 (2004), no. 807.
[Chr03] O. Christensen, An Introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, 2003.
[Coh90] A. Cohen, Ondelettes, analyses multirésolutions et filtres miroirs en quadrature, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 439-459.
[Coh03] A. Cohen, Numerical Analysis of Wavelet Methods, Studies in Mathematics and Its Applications, vol. 32, North-Holland, Amsterdam, 2003.
[CoMW95] R.R. Coifman, Y. Meyer, and V. Wickerhauser, Numerical harmonic analysis, Essays on Fourier Analysis in Honor of Elias M. Stein (Princeton, 1991) (C. Fefferman, R. Fefferman, and S. Wainger, eds.), Princeton Mathematical Series, vol. 42, Princeton University Press, Princeton, NJ, 1995, pp. 162-174.
[CoWi93] R.R. Coifman and M.V. Wickerhauser, Wavelets and adapted waveform analysis: A toolkit for signal processing and numerical analysis, Different Perspectives on Wavelets (San Antonio, TX, 1993) (I. Daubechies, ed.), Proc. Sympos. Appl. Math., vol. 47, American Mathematical Society, Providence, 1993, pp. 119-153.
[CoHR97] J.-P. Conze, L. Hervé, and A. Raugi, Pavages auto-affines, opérateurs de transfert et critères de réseau dans \mathbb{R}^{d}, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), 1-42.
[CoRa90] J.-P. Conze and A. Raugi, Fonctions harmoniques pour un opérateur de transition et applications, Bull. Soc. Math. France 118 (1990), 273-310
[Cun77] J. Cuntz, Simple C^{*}-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173-185.
[DaSw98] I. Daubechies and W. Sweldens, Factoring wavelet transforms into lifting steps, J. Fourier Anal. Appl. 4 (1998), 247-269.
[CvSS85] P. Cvitanović, B. Shraiman, and B. Söderberg, Scaling laws for mode lockings in circle maps, Phys. Scripta 32 (1985), 263-270.
[Dau92] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., vol. 61, SIAM, Philadelphia, 1992.
[DaHRS03] I. Daubechies, B. Han, A. Ron, and Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14 (2003), 1-46.
[Dav96] K.R. Davidson, C^{*}-algebras by Example, Fields Institute Monographs, vol. 6, American Mathematical Society, Providence, 1996.
[DaKS01] K.R. Davidson, D.W. Kribs, and M.E. Shpigel, Isometric dilations of non-commuting finite rank n-tuples, Canad. J. Math. 53 (2001), 506-545, http://arxiv.org/abs/math.OA/0411521.
[DeSh04] V. Deaconu and F. Shultz, C^{*}-algebras associated with interval maps, Trans. Amer. Math. Soc., to appear, math.OA/0405469.
[Dev92] R.L. Devaney, A First Course in Chaotic Dynamical Systems: Theory and Experiment, Addison-Wesley Studies in Nonlinearity, Addison-Wesley Advanced Book Program, Reading, MA, 1992, with a separately available computer disk.
[DiFr99] P. Diaconis and D. Freedman, Iterated random functions, SIAM Rev. 41 (1999), 45-76, graphical supplement 77-82.
[DoGH00] V. Dobrić, R. Gundy, and P. Hitczenko, Characterizations of orthonormal scale functions: A probabilistic approach, J. Geom. Anal. 10 (2000), 417434.
[DoJo94] D.L. Donoho and I.M. Johnstone, Ideal denoising in an orthonormal basis chosen from a library of bases, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 1317-1322.
[DoMSS03] D.L. Donoho, S. Mallat, R. von Sachs, and Y. Samuelides, Locally stationary covariance and signal estimation with macrotiles, IEEE Trans. Signal Process. 51 (2003), 614-627.
[Doo94] J.L. Doob, Measure Theory, Graduate Texts in Mathematics, vol. 143, Springer-Verlag, New York, 1994.
[Doo01] J.L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Classics in Mathematics, Springer-Verlag, Berlin, 2001, reprint of the 1984 edition.
[Dut02] D.E. Dutkay, Harmonic analysis of signed Ruelle transfer operators, J. Math. Anal. Appl. 273 (2002), 590-617.
[Dut04a] D.E. Dutkay, The local trace function for super-wavelets, Wavelets, Frames, and Operator Theory (Focused Research Group Workshop, College Park, Maryland, January 15-21, 2003) (C. Heil, P.E.T. Jorgensen, and D. Larson, eds.), Contemp. Math., vol. 345, American Mathematical Society, Providence, 2004, pp. 115-136.
[Dut04b] D.E. Dutkay, Positive definite maps, representations and frames, Rev. Math. Phys. 16 (2004), no. 4, 451-477.
[DuJo05a] D.E. Dutkay and P.E.T. Jorgensen, Wavelet constructions in non-linear dynamics, Electron. Res. Announc. Amer. Math. Soc. 11 (2005), 21-33, http://www.ams.org/era/2005-11-03/S1079-6762-05-00143-5/home.html.
[DuJo05b] D.E. Dutkay and P.E.T. Jorgensen, Hilbert spaces of martingales supporting certain substitution-dynamical systems, Conform. Geom. Dyn. 9 (2005), 24-45, http://www.ams.org/ecgd/2005-09-02/S1088-4173-05-001359/home.html.
[DuJo06a] D.E. Dutkay and P.E.T. Jorgensen, Martingales, endomorphisms, and covariant systems of operators in Hilbert space, J. Operator Theory, to appear (in galley proof 2006, pp. 101-145), http://arXiv.org/abs/math.CA/0407330.
[DuJo06b] D.E. Dutkay and P.E.T. Jorgensen, Wavelets on fractals, Rev. Mat. Iberoamericana 22 (2006), 131-180.
[DuJo06c] D.E. Dutkay and P.E.T. Jorgensen, Oversampling generates super-wavelets, Proc. Amer. Math. Soc., to appear, http://arxiv.org/abs/math.FA/0511399.
[Edw01] H.M. Edwards, Riemann's Zeta Function, Dover, Mineola, NY, 2001, reprint of the 1974 original [Academic Press, New York].
[Fal85] K.J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1985.
[Fa190] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, Wiley, Chichester, 1990.
[FaLa99] A.H. Fan and K.-S. Lau, Iterated function system and Ruelle operator, J. Math. Anal. Appl. 231 (1999), 319-344.
[Fe171] W. Feller, An Introduction to Probability Theory and Its Applications, 3rd ed., vol. 2, Wiley, New York, 1971.
[FeLa02] D.-J. Feng and K.-S. Lau, The pressure function for products of non-negative matrices, Math. Res. Lett. 9 (2002), 363-378.
[FiEs61] M.E. Fisher and J.W. Essam, Some cluster size and percolation problems, J. Math. Phys. 2 (1961), 609-619
[FrLM83] A. Freire, A. Lopes, and R. Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), 45-62.
[Fug74] B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal. 16 (1974), 101-121.
[GaNa98b] J.-P. Gabardo and M.Z. Nashed, Nonuniform multiresolution analyses and spectral pairs, J. Funct. Anal. 158 (1998), no. 1, 209-241.
[GaYu05] J.-P. Gabardo and X. Yu, Wavelets associated with nonuniform multiresolution analyses and one-dimensional spectral pairs, preprint 2005, McMaster University
[GaNS01a] X.Q. Gao, T.Q. Nguyen, and G. Strang, Theory and lattice structure of complex paraunitary filterbanks with filters of (Hermitian-) symmetry/antisymmetry properties, IEEE Trans. Signal Process. 49 (2001), 10281043.
[GaNS01b] X.Q. Gao, T.Q. Nguyen, and G. Strang, On factorization of M-channel paraunitary filterbanks, IEEE Trans. Signal Process. 49 (2001), 1433-1446.
[GaNS02] X.Q. Gao, T.Q. Nguyen, and G. Strang, A study of two-channel complexvalued filterbanks and wavelets with orthogonality and symmetry properties, IEEE Trans. Signal Process. 50 (2002), 824-833.
[GlZu80] M.L. Glasser and I.J. Zucker, Lattice sums, Theor. Chem. Adv. Perspect. 5 (1980), 67-139.
[Gli60] J. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318-340.
[GrMa92] K. Gröchenig and W.R. Madych, Multiresolution analysis, Haar bases, and self-similar tilings of \mathbf{R}^{n}, IEEE Trans. Inform. Theory 38 (1992), 556-568.
[Gro01] K. Gröchenig, Foundations of Time-Frequency Analysis, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, 2001.
[GrMo84] A. Grossmann and J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal. 15 (1984), 723736.
[Gun00] R.F. Gundy, Low-pass filters, martingales, and multiresolution analyses, Appl. Comput. Harmon. Anal. 9 (2000), 204-219.
[Gun66] R.F. Gundy, Martingale theory and pointwise convergence of certain orthogonal series, Trans. Amer. Math. Soc. 124 (1966), 228-248.

[Gun99]	R.F. Gundy, Two remarks concerning wavelets: Cohen's criterion for low-pass filters and Meyer's theorem on linear independence, The Functional and Har- monic Analysis of Wavelets and Frames (San Antonio, 1999) (L.W. Baggett and D.R. Larson, eds.), Contemp. Math., vol. 247, American Mathematical
	Society, Providence, 1999, pp. 249-258.
[Gun04]	R.F. Gundy, Wavelets and probability, preprint, Rutgers Univer- sity, material presented during the author's lecture at the work- shop."Wavelets and Applications", Barcelona, Spain, July 1-6, 2002,
[GuKa00]	http://www.imub.ub.es/wavelets/Gundy.pdf. R.F. Gundy and K. Kazarian, Stopping times and local convergence for spline wavelet expansions, SIAM J. Math. Anal. 31 (2000), 561-573.
[Haa10]	A. Haar, Zur Theorie der orthogonalen Funktionensysteme, Math. Ann. 69 (1910), 331-371.
[Hal83]	F.D.M. Haldane, Fractional quantization of the Hall effect: A hierarchy of incompressible quantum fluid states, Phys. Rev. Lett. 51 (1983), 605-608.
[HeJL04]	P.R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand, Princeton, Toronto, London, 1967, Springer, 2nd edition, 1982, Graduate Texts in Math- ematics.
C. Heil, P.E.T. Jorgensen, and D.R. Larson (eds.), Wavelets, Frames, and Op-	
[HaMR01]	erator Theory: Papers from the Focused Research Group Workshop held at the
University of Maryland, College Park, MD, January 15-21, 2003, Contemp.	

[Jam64] B. Jamison, Asymptotic behavior of successive iterates of continuous functions under a Markov operator, J. Math. Anal. Appl. 9 (1964), 203-214.
[JiJS01] R.-Q. Jia, Q. Jiang, and Z. Shen, Convergence of cascade algorithms associated with nonhomogeneous refinement equations, Proc. Amer. Math. Soc. 129 (2001), 415-427.
[JiSh99] Q. Jiang and Z. Shen, On existence and weak stability of matrix refinable functions, Constr. Approx. 15 (1999), 337-353.
[Jor99] P.E.T. Jorgensen, A geometric approach to the cascade approximation operator for wavelets, Integral Equations Operator Theory 35 (1999), 125-171
[Jor01a] P.E.T. Jorgensen, Ruelle Operators: Functions Which Are Harmonic with Respect to a Transfer Operator, Mem. Amer. Math. Soc. 152 (2001), no. 720.
[Jor01b] P.E.T. Jorgensen, Minimality of the data in wavelet filters, Adv. Math. 159 (2001), 143-228.
[Jor01c] P.E.T. Jorgensen, Representations of Cuntz algebras, loop groups and wavelets, XIIIth International Congress on Mathematical Physics (London, 2000) (A. Fokas, A. Grigoryan, T. Kibble, and B. Zegarlinski, eds.), International Press, Boston, 2001, pp. 327-332.
[Jor03] P.E.T. Jorgensen, Matrix factorizations, algorithms, wavelets, Notices Amer. Math. Soc. 50 (2003), 880-894, http://www.ams.org/notices/200308/200308toc.html.
[Jor04a] P.E.T. Jorgensen, Iterated function systems, representations, and Hilbert space, Internat. J. Math. 15 (2004), 813-832.
[Jor04b] P.E.T. Jorgensen, Use of operator algebras in the analysis of measures from wavelets and iterated function systems, accepted for Operator Theory, Operator Algebras, and Applications (Deguang Han, Palle Jorgensen, and David R. Larson, eds.), Contemp. Math., American Mathematical Society, Providence, to appear 2006. http://arxiv.org/abs/math.OA/0509360.
[Jor05] P.E.T. Jorgensen, Measures in wavelet decompositions, Adv. Appl. Math. 34 (2005), 561-590.
[JoKr03] P.E.T. Jorgensen and D.W. Kribs, Wavelet representations and Fock space on positive matrices, J. Funct. Anal. 197 (2003), 526-559.
[JoPe92] P.E.T. Jorgensen and S. Pedersen, Spectral theory for Borel sets in \mathbb{R}^{n} of finite measure, J. Funct. Anal. 107 (1992), 72-104.
[JoPe93] P.E.T. Jorgensen and S. Pedersen, Group-theoretic and geometric properties of multivariable Fourier series, Exposition. Math. 11 (1993), 309-329.
[JoPe96] P.E.T. Jorgensen and S. Pedersen, Harmonic analysis of fractal measures, Constr. Approx. 12 (1996), 1-30.
[JoPe98] P.E.T. Jorgensen and S. Pedersen, Dense analytic subspaces in fractal L^{2} spaces, J. Analyse Math. 75 (1998), 185-228.
[JoSW95] P.E.T. Jorgensen, L.M. Schmitt, and R.F. Werner, Positive representations of general commutation relations allowing Wick ordering, J. Funct. Anal. 134 (1995), 33-99.
[JPEG00] The JPEG2000 resource webpage, http://stargate.ecn.purdue.edu/ips/tutorials/j2k/\#What-is.
[Kak48] S. Kakutani, On equivalence of infinite product measures, Ann. of Math. (2) 49 (1948), 214-224.
[Kat87] Y. Katznelson, Intégrales de produits de Riesz, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 67-69.
[Kea72] M. Keane, Strongly mixing g-measures, Invent. Math. 16 (1972), 309-324.
[Kig01] J. Kigami, Analysis on Fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001.
[Knu81] D.E. Knuth, The Art of Computer Programming: Vol. 2: Seminumerical Algorithms, 2nd ed., Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley, Reading, Mass., 1981.
[Knu84] D.E. Knuth, An algorithm for Brownian zeroes, Computing 33 (1984), 89-94.
[Kol77] A.N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, SpringerVerlag, Berlin-New York, 1977, reprint of the 1933 original; English translation: Foundations of the Theory of Probability, Chelsea, 1950.
[KoSp04] C. Köstler and R. Speicher, On the structure of non-commutative white noises, http://arxiv.org/abs/math.OA/0411519.
[KuDS05] A. Kusiak, B. Dixon, and S. Shah, Predicting survival time for kidney dialysis patients: A data mining approach, Computers in Biology and Medicine 35 (2005), no. 4, 311-327.
[Kus01] A. Kusiak, Feature transformation methods in data mining, IEEE Transactions on Electronics Packaging Manufacturing 24 (2001), no. 3, 214-221.
[Kus02] A. Kusiak, A data mining approach for generation of control signatures, ASME Transactions: Journal of Manufacturing Science and Engineering 124 (2002), no. 4, 923-926.
[Kus05] A. Kusiak, Selection of invariant objects with a data mining approach, IEEE Transactions on Electronics Packaging Manufacturing 28 (2005), no. 2, 187196.
[KuBu05] A. Kusiak and A. Burns, Mining temporal data: A coal-fired boiler case study, Knowledge-Based Intelligent Information and Engineering Systems, Proceedings of the 9th International Conference, KES 2005, Melbourne, Australia, September 14-16, 2005, Vol. III (R. Khosla, R.J. Howlett, and L.C. Jain, eds.), Lecture Notes in Artificial Intelligence, vol. 3683, Springer, Heidelberg, 2005, pp. 953-958.
[KuLD01] A. Kusiak, I.H. Law, and M.D. Dick, The G-algorithm for extraction of robust decision rules: Children's postoperative intra-atrial arrhythmia case study, IEEE Transactions on Information Technology in Biomedicine 5 (2001), no. 3, 225-235.
[ŁaWa02] I. Łaba and Y. Wang, On spectral Cantor measures, J. Funct. Anal. 193 (2002), 409-420.
[LaNg98] K.-S. Lau and S.-M. Ngai, L^{q}-spectrum of the Bernoulli convolution associated with the golden ratio, Studia Math. 131 (1998), 225-251.
[LaNR01] K.-S. Lau, S.-M. Ngai, and H. Rao, Iterated function systems with overlaps and self-similar measures, J. London Math. Soc. (2) 63 (2001), 99-116.
[LaRe91] W.M. Lawton and H.L. Resnikoff, Multidimensional wavelet bases, Report AD910130, AWARE, Inc., Cambridge, MA, 1991.
[Law91a] W.M. Lawton, Necessary and sufficient conditions for constructing orthonormal wavelet bases, J. Math. Phys. 32 (1991), 57-61.
[Law91b] W.M. Lawton, Multiresolution properties of the wavelet Galerkin operator, J. Math. Phys. 32 (1991), 1440-1443.
[LaLS96] W.M. Lawton, S.L. Lee, and Z. Shen, An algorithm for matrix extension and wavelet construction, Math. Comp. 65 (1996), no. 214, 723-737.
[LaLS98] W.M. Lawton, S.L. Lee, and Z. Shen, Convergence of multidimensional cascade algorithm, Numer. Math. 78 (1998), 427-438.
[LySt03] R. Lyons and J.E. Steif, Stationary determinantal processes: phase multiplicity, Bernoullicity, entropy, and domination, Duke Math. J. 120 (2003), 515575.
[Ma189] S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of $\mathbf{L}^{2}(\mathbf{R})$, Trans. Amer. Math. Soc. 315 (1989), 69-87.
[Ma198] S.G. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, 1998.
[Mar82] D. Marr, Vision: A Computational Investigation into the Human Representation and Processing of Visual Information, W.H. Freeman, San Francisco, 1982.
[May91] D.H. Mayer, Continued fractions and related transformations, Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces (Trieste, 1989) (T. Bedford, M. Keane, and C. Series, eds.), Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991, pp. 175-222.
[Mey79] Y. Meyer, Produits de Riesz généralisés, Séminaire d'Analyse Harmonique, 1978-1979, Publications Mathématiques d'Orsay 79, vol. 7, Université de Paris-Sud, Faculté des Sciences-Mathématiques, Orsay, 1979, pp. 38-48.
[Mey89] Y. Meyer, Wavelets and operators, Analysis at Urbana, Vol. I: Analysis in Function Spaces (Urbana, IL, 1986-1987) (E. Berkson and T. Peck, eds.), London Math. Soc. Lecture Note Ser., vol. 137, Cambridge University Press, Cambridge, 1989, pp. 256-365.
[Mey97] Y. Meyer, Wavelets and fast numerical algorithms, Handbook of Numerical Analysis, Vol. V: Techniques of Scientific Computing, Part 2 (P.G. Ciarlet and J.L. Lions, eds.), North-Holland, Amsterdam, 1997, pp. 639-713.
[Mey05] Y. Meyer, Compression des images fixes, Gaz. Math. (2005), no. 103, 9-23.
[MeCo97] Y. Meyer and R. Coifman, Wavelets: Calderón-Zygmund and Multilinear Operators, Cambridge Studies in Advanced Mathematics, vol. 48, Cambridge University Press, Cambridge, 1997, translated from the 1990 and 1991 French originals by David Salinger.
[Mon64] E.W. Montroll, Random walks on lattices, Stochastic Processes in Mathematical Physics and Engineering (R. Bellman, ed.), Proceedings of Symposia in Applied Mathematics, vol. 16, American Mathematical Society, Providence, 1964, reprinted 1980, pp. 193-220.
[Nek04] V.V. Nekrashevych, Cuntz-pimsner algebras of group actions, J. Operator Theory 52 (2004), 223-249.
[Ne159] E. Nelson, Regular probability measures on function space, Ann. of Math. (2) 69 (1959), 630-643.
[Nel64] E. Nelson, Feynman integrals and the Schrödinger equation, J. Math. Phys. 5 (1964), 332-343.
[Nel67] E. Nelson, Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, NJ, 1967.
[Ne169] E. Nelson, Topics in Dynamics, I: Flows, Mathematical Notes, Princeton University Press, Princeton, NJ, 1969.
[Nel73] E. Nelson, Construction of quantum fields from Markoff fields, J. Funct. Anal. 12 (1973), 97-112.
[Nev65] J. Neveu, Mathematical Foundations of the Calculus of Probability, HoldenDay Series in Probability and Statistics, Holden-Day, San Francisco, 1965, translated from the French by A. Feinstein.
[Nev75] J. Neveu, Discrete-Parameter Martingales, revised ed., North-Holland Mathematical Library, vol. 10, North-Holland, Amsterdam, 1975, translated from the French by T. P. Speed.
[OED] Oxford English Dictionary, second ed., Oxford University Press, Oxford, 1989.
[PaSW99] M. Papadakis, H. Šikić, and G. Weiss, The characterization of low pass filters and some basic properties of wavelets, scaling functions and related concepts, J. Fourier Anal. Appl. 5 (1999), 495-521.
[PaPo90] W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, vol. 187-188, Société Mathématique de France, Paris, 1990.
[PaSc72] K. R. Parthasarathy and K. Schmidt, Positive Definite Kernels, Continuous Tensor Products, and Central Limit Theorems of Probability Theory, Lecture Notes in Mathematics, vol. 272, Springer-Verlag, Berlin-New York, 1972.
[Per07] O. Perron, Zur Theorie der Matrizen, Math. Ann. 64 (1907), 248-263.
[Pop89] G. Popescu, Isometric dilations for infinite sequences of non-commuting operators, Trans. Amer. Math. Soc. 316 (1989), 523-536.
[PoSt70] R.T. Powers and E. Størmer, Free states of the canonical anti-commutation relations, Comm. Math. Phys. 16 (1970), 1-33.
[Rad99] C. Radin, Miles of tiles, Student Mathematical Library, vol. 1, American Mathematical Society, Providence, 1999.
[Rev84] D. Revuz, Markov Chains, second ed., North-Holland Mathematical Library, vol. 11, North-Holland, Amsterdam, 1984.
[RiSh00] S.D. Riemenschneider and Z. Shen, Interpolatory wavelet packets, Appl. Comput. Harmon. Anal. 8 (2000), 320-324.
[Rie18] F. Riesz, Über die Fourierkoeffizienten einer stetigen Funktion von beschränkter Schwankung, Math. Z. 2 (1918), 312-315.
[Rit79] G. Ritter, On Kakutani's dichotomy theorem for infinite products of not necessarily independent functions, Math. Ann. 239 (1979), 35-53.
[RoWi00] L.C.G. Rogers and D. Williams, Diffusions, Markov processes, and martingales, Vol. 1: Foundations, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2000, reprint of the second ed., Wiley, Chichester, 1994.
[RoSh97] A. Ron and Z. Shen, Affine systems in $L_{2}\left(\mathbf{R}^{d}\right)$: the analysis of the analysis operator, J. Funct. Anal. 148 (1997), 408-447.
[RoSh98] A. Ron and Z. Shen, Compactly supported tight affine spline frames in $L_{2}\left(\mathbf{R}^{d}\right)$, Math. Comp. 67 (1998), 191-207.
[RoSh00] A. Ron and Z. Shen, The Sobolev regularity of refinable functions, J. Approx. Theory 106 (2000), 185-225.
[RoSh03] A. Ron and Z. Shen, The wavelet dimension function is the trace function of a shift-invariant system, Proc. Amer. Math. Soc. 131 (2003), 1385-1398.
[RST01] A. Ron, Z. Shen, and K.-C. Toh, Computing the Sobolev regularity of refinable functions by the Arnoldi method, SIAM J. Matrix Anal. Appl. 23 (2001), 5776.
[Rud87] W. Rudin, Real and Complex Analysis, third ed., McGraw-Hill, New York, 1987.
[Rue69] D. Ruelle, Statistical Mechanics: Rigorous Results, W. A. Benjamin, Inc., New York-Amsterdam, 1969.
[Rue89] D. Ruelle, The thermodynamic formalism for expanding maps, Comm. Math. Phys. 125 (1989), no. 2, 239-262.
[Rue94] D. Ruelle, Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval, CRM Monograph Series, vol. 4, American Mathematical Society, Providence, 1994.
[Rue02] D. Ruelle, Dynamical zeta functions and transfer operators, Notices Amer. Math. Soc. 49 (2002), 887-895.
[Sat99] K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999, translated from the 1990 Japanese original, revised by the author.
[SchCC] Phil Schniter, Two-branch quadvalue mirror filterbank (QMF), see [WWW4].
[Sch1871] E. Schröder, Über iterirte Functionen, Math. Ann. 3 (1871), 296-322.
[SeCh67] A. Selberg and S. Chowla, On Epstein's zeta-function, J. Reine Angew. Math. 227 (1967), 86-110.
[ShKu04] S.C. Shah and A. Kusiak, Data mining and genetic programming based gene/SNP selection, Artificial Intelligence in Medicine 31 (2004), no. 3, 183196.
[Sha49] C.E. Shannon, Communication in the presence of noise, Proc. Inst. Radio Engineers 37 (1949), 10-21.
[She98] Z. Shen, Refinable function vectors, SIAM J. Math. Anal. 29 (1998), 235-250.
[StHS+99] V. Strela, P.N. Heller, G. Strang, P. Topiwala, and C. Heil, The application of multiwavelet filterbanks to image processing, IEEE Transactions on Image Processing 8 (1999), 548-563.
[Shu04] F. Shultz, Dimension groups for interval maps II: The transitive case, preprint, math.DS/0405467.
[Shu05] F. Shultz, Dimension groups for interval maps, New York J. Math. 11 (2005), 477-517.
[Sim79] B. Simon, Functional Integration and Quantum Physics, Pure and Applied Mathematics, vol. 86, Academic Press, New York, 1979.
[Sko61] A.V. Skorokhod, Issledovaniya po teorii sluchainykh protsessov (Stokhasticheskie differentsialnye uravneniya i predelnye teoremy dlya protsessov Markova), Izdat. Kiev. Univ., Kiev, 1961.
[Sk065] A.V. Skorokhod, Studies in the Theory of Random Processes, AddisonWesley, Reading, Mass., 1965, Translated from the Russian by Scripta Technica.
[Song05] M.-S. Song, Wavelet image compression, Ph.D. thesis, The University of Iowa, 2005.
[Song05a] M.-S. Song, Wavelet image decomposition, http://www.biblethumper.org/ msong/Images/waveletdec.html.
[Song05b] M.-S. Song, http://www.biblethumper.org/msong/Images/.
[Spi76] F. Spitzer, Principles of Random Walk, second ed., Graduate Texts in Mathematics, vol. 34, Springer-Verlag, New York, 1976, first softcover printing, 2001.
[StNg96] G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press, Wellesley, Massachusetts, 1996.
[Str98] R.S. Strichartz, Remarks on: "Dense analytic subspaces in fractal L^{2}-spaces" [J. Analyse Math. 75 (1998), 185-228] by P.E.T. Jorgensen and S. Pedersen, J. Analyse Math. 75 (1998), 229-231.
[Str00] R.S. Strichartz, Mock Fourier series and transforms associated with certain Cantor measures, J. Anal. Math. 81 (2000), 209-238.
[Str05] R.S. Strichartz, Convergence of Mock Fourier series, preprint, Cornell University.
[Stro96] D.W. Stroock, Gaussian measures in traditional and not so traditional settings, Bull. Amer. Math. Soc. (N.S.) 33 (1996), 135-155.
[Stro00] D.W. Stroock, An Introduction to the Analysis of Paths on a Riemannian Manifold, Mathematical Surveys and Monographs, vol. 74, American Mathematical Society, Providence, RI, 2000.
[Stro05] D.W. Stroock, An Introduction to Markov Processes, Graduate Texts in Mathematics, vol. 230, Springer, Berlin, 2005.
[Ta096] T. Tao, On the almost everywhere convergence of wavelet summation methods, Appl. Comput. Harmon. Anal. 3 (1996), no. 4, 384-387.
[Vai93] P.P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice-Hall Signal Processing Series, Prentice Hall, Englewood Cliffs, NJ, 1993.
[VaAk01] P.P. Vaidyanathan and S. Akkarakaran, A review of the theory and applications of optimal subband and transform coders, Appl. Comput. Harmon. Anal. 10 (2001), no. 3, 254-289.
[VeKo95] M. Vetterli and J. Kovačević, Wavelets and Subband Coding, Prentice-Hall Signal Processing Series, Prentice Hall PTR, Englewood Cliffs, NJ, 1995.
[ViMu95] B. Vidakovic and P. Mueller, Wavelets for kids: A tutorial introduction, preprint, 1995, Duke University, Institute of Statistics and Decision Sciences, and [WWW/wiki].
[VoDN92] D.V. Voiculescu, K.J. Dykema, and A. Nica, Free Random Variables: A Noncommutative Probability Approach to Free Products with Applications to Random Mmatrices, Operator Algebras and Harmonic Analysis on Free Groups, American Mathematical Society, Providence, 1992.
[Waln02] D.F. Walnut, An Introduction to Wavelet Analysis, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, 2002.
[Wal01] P. Walters, Convergence of the Ruelle operator for a function satisfying Bowen's condition, Trans. Amer. Math. Soc. 353 (2001), 327-347.
[Wic93] M.V. Wickerhauser, Best-adapted wavelet packet bases, Different Perspectives on Wavelets (San Antonio, TX, 1993) (I. Daubechies, ed.), Proc. Sympos. Appl. Math., vol. 47, American Mathematical Society, Providence, 1993, pp. 155-171.
[Wic94] M.V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software, IEEE Press, New York, A.K. Peters, Wellesley, MA, 1994.
[Wi191] D. Williams, Probability with Martingales, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1991.
[WWW1] Lifting-scheme-based wavelet transform, http://www.electronicsletters.com/papers/example/paper.html; [WWW2] and [WWW3] are Figures 5 and 6, respectively.
[WWW2] http://www.electronicsletters.com/papers/example/Psubsampletransform.gif; Figure 5 in [WWW1].
[WWW3] http://www.electronicsletters.com/papers/example/Pinversetransform.gif; Figure 6 in [WWW1].
[WWW4] Phil Schniter, Two-branch quadvalue mirror filterbank (QMF), http://cnx.rice.edu/content/m10426/latest/, Connexions module.
[WWW5] Ma Yi, Basic image processing demos (for EECS20), http://robotics.eecs.berkeley.edu/mayi/imgproc/.
[WWW/wiki] http://en.wikipedia.org/wiki/Wavelet.
[YaHK97] M. Yamaguti, M. Hata, and J. Kigami, Mathematics of Fractals, Translations of Mathematical Monographs, vol. 167, American Mathematical Society, Providence, 1997, translated from the 1993 Japanese original by Kiki Hudson.
[YiCC] Ma Yi, Basic image processing demos (for EECS20), see [WWW5].
[Zyg32] A. Zygmund, On lacunary trigonometric series, Trans. Amer. Math. Soc. 34 (1932), 435-446.

Symbols

Reminder: In the symbol list and in the chapters, function spaces are defined with respect to various integrability conditions. For a function f on a space X, absolute integrability refers to $|f|$, i.e., to the absolute value of f, and to a prescribed (standard) measure on X. This measure on X is often implicitly understood, as is its σ-algebra of measurable sets. Examples: If the space X is \mathbb{R}^{d}, the measure will be the standard d-dimensional Lebesgue measure; for the one-torus \mathbb{T} (i.e., the circle group), it will be normalized Haar measure, and similarly for the d-torus \mathbb{T}^{d}; for $X=\mathbb{Z}$, the measure will simply be counting measure; and for X_{3} (the middle-third Cantor set), the measure will be the corresponding Hausdorff measure h_{s} of fractal dimension $s=\log _{3}(2)$. In each case, we introduce Hilbert spaces of L^{2}-functions, and the measure will be understood to be the standard one. Same convention for the other L^{p}-spaces!
$A\left(i_{1}, \ldots, i_{n}\right)$: the cylinder set $\left\{\omega \in \Omega \mid \omega_{1}=i_{1}, \ldots, \omega_{n}=i_{n}\right\}$, i.e., the set of infinite strings $\omega=\left(\omega_{1}, \ldots\right)$ specified by $\omega_{1}=i_{1}, \ldots, \omega_{n}=i_{n}$ 43, 47, 85
\mathfrak{A} : the C^{*}-algebra of the canonical anticommutation relations
$139,140,141,154$
\mathfrak{A}_{n} : family of algebras increasing in the index $n,\{f \in C(\Omega)$
$\left.\mid f(\omega)=f\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)\right\}$
44, 45, 139
$B(\mathcal{H})$: bounded linear operators on a Hilbert space \mathcal{H}
183, 218
$\mathcal{B}:$ Borel σ-algebra
6, 40, 53, 204
$\mathcal{B}_{\Omega}:$ Borel σ-algebra on Ω
115
$C(\Omega)$: continuous functions on Ω 7, 27, 44, 46

CAR : canonical anticommutation relations
138-140, 154
\mathbb{C} : the complex numbers
$25,43,46,48-52,57,61,140,184$, 210, 214, 220
$\mathbb{C}^{k}: k$-dimensional complex vector space

31
$\mathbf{C}_{3}, \mathbf{C}_{4}$: Cantor sets
195, 197-199
\mathcal{D} : maximal abelian subalgebra
154
\mathcal{D}_{Y} : smallest σ-algebra with respect to which Y is measurable xxiv
\mathcal{D}_{φ} : closed linear span
209, 217
$e_{\lambda}(t):=e^{i 2 \pi \lambda t}, e_{k}(z)=z^{k}:$ Fourier basis functions
61, 71-79, 130, 192, 198
$E_{\omega, \xi}^{(n)}, e_{\omega, \xi}^{(n)}, e(i, j), e_{i_{1}, \ldots, i_{n} ; j_{1}, \ldots, j_{n}}^{(n)}:$
special matrix element generators 135, 139, 183
$\mathcal{F}: \sigma$-algebra
37
$\mathcal{F}_{n}:$ system of σ-algebras 37

GMRA : generalized multiresolution analysis
114
$h:$ special (harmonic) function, a
Perron-Frobenius eigenfunction for R_{W}, a measurable function on X such that $R_{W} h=h$
xxxiv, $11,19,49,55,92,101,105$, 116
$h_{\min }, h_{p}$: minimal eigenfunction for R_{W}
100-102, 105-107
h_{3} : minimal eigenfunction corresponding to the scale-3 stretched Haar wavelet
107
h_{s} : Hausdorff measure
14, 17
\mathcal{H} : some (complex) Hilbert space
$14,17,114-117,131,136,140$, 169-170, 180-184, 189, 190, 196, 210, 218-219
I : identity operator or identity matrix (see also $\mathbb{1}_{\mathcal{H}}$)
$115,131,135,136,139-141,184$, 211, 214-219
I : index set 172, 186, 189-190
I : multiindex 165-168

IFS : iterated function system
xxxv, xliv, 5, 14, 15, 34, 35, 67, 70, 80, 84, 99, 152, 182
$\operatorname{ind}_{n \rightarrow \infty} \lim _{n} \mathfrak{A}_{n}$: inductive limit of an ascending family of algebras 139
\mathcal{K} : some Hilbert space $161,169,170,172,189$
ℓ^{1} : all absolutely summable sequences 66

$\ell^{2}(\mathbb{N}), \ell^{2}\left(\mathbb{N}_{0}\right):$ all square-summable sequences indexed by \mathbb{N}, or by \mathbb{N}_{0} 31, 140, 162, 182, 190, 193, 197	$L^{2}(X, \mathcal{B}, \mu), L^{2}(\mu)$: all squareintegrable functions on the σ-finite measure space (X, \mathcal{B}, μ) 31, 72
$\begin{gathered} \ell^{2}(\mathbb{Z}): \text { all square-summable } \\ \text { sequences indexed by } \mathbb{Z} \\ 30,32,117,136,143,191,193, \\ 200-202,213,219 \end{gathered}$	$L^{\infty}(\mathbb{T})$: all essentially bounded and measurable functions on \mathbb{T} $95,163,190,191$
$\ell^{2}(X), \ell^{2}$: all square-summable sequences indexed by a set X or other index set $\begin{aligned} & 31,66,143,160,161,168,170 \\ & 172,184,189 \end{aligned}$	$L^{\infty}(X)$: all essentially bounded and measurable functions on X with respect to the standard measure and σ-algebra of measurable subsets $9,43,44,49,115$
$L^{1}(\mathbb{R})$: all absolutely integrable functions on \mathbb{R} 130	MRA : multiresolution analysis $6,181,194,198$
$\begin{aligned} & L^{2}(\mathbb{R}): \text { all square-integrable functions } \\ & \text { on } \mathbb{R} \\ & \text { xxxii, } 4,5,10,12-16,29,33,65, \\ & \quad 71,87,91,103-105,109,112, \\ & \quad 114,129,130,158,162-163,165, \\ & 181,190-194,198 \end{aligned}$	$\begin{aligned} & m: \text { function on } \mathbb{T} \text { representing a digital } \\ & \text { filter } \\ & 4,10,114 \\ & m_{i}: \text { multiband filter functions } \\ & \quad 123,126,190,191,194,211 \end{aligned}$
$L^{2}\left(\mathbb{R}^{d}\right)$: all square-integrable functions on \mathbb{R}^{d}	$m_{0},$$m_{0}$ 111, : low-pass filter
$4,22,97,109,142,229,230$ $L^{2}(\mathbb{T})$: all square-integrable functions on \mathbb{T}	$m_{1},$$m_{1}$ 111, : high-pass filter 129
$\begin{aligned} & 66,132,136,162,167,182,190 \\ & 192,193,196,197,210,213,214 \\ & 219 \end{aligned}$	M : multiplication operator 213
$L^{2}(\cdot)$: all square-integrable functions on some specified set with its standard measure	$\begin{aligned} & M_{n}=M_{n}(\mathbb{C}): n \times n \text { complex } \\ & \quad \text { matrices } \\ & \quad 139 \end{aligned}$
$\begin{aligned} & 14,17,72,77,79,112,132,136, \\ & 191,196-198 \end{aligned}$	$\begin{aligned} & M_{2^{n}}:=M_{2} \otimes \cdots \otimes M_{2} \\ & \quad{ }_{139} \end{aligned}$

\mathbb{N} : the positive integers or natural numbers
$6,11,135$
$\mathbb{N}_{0}:=\{0,1,2, \ldots\}=\{0\} \cup \mathbb{N}$
$5,11,59,66,85,116,117,159$, $160,164,166,182,186,188$

ONB : orthonormal basis in a Hilbert space
$13,15,16,56,71,72,76,77,103$, 104, 140-198 passim
$\mathcal{O}_{n}, \mathcal{O}_{N}, \mathcal{O}_{2}:$ Cuntz algebra
$131,136,139-152,154,158$,
$\quad 161-164,167,170,176,179-184$,
$189,190,192,194,196,203,205$,
$211,214,218,219$
$P_{x}:$ transition probability initialized at x; measure on Ω such that $P_{x}[f]=P_{x}^{(n)}[f]$ for all $f \in \mathfrak{A}_{n}$ $5-11,19,26,37,43,44,62,100$
$P_{x}(\cdot \mid \cdot):$ conditional probability initialized at x
51
$P_{x}\left(\mathbb{N}_{0}\right)$: path-space measure of the natural numbers \mathbb{N}_{0} as subset of Ω
$:=\sum_{k \in \mathbb{N}_{0}} P_{x}(\{\omega(k)\})$, where
$P_{x}(\{\omega(k)\})=$
$\prod_{p=1}^{n} W\left(\tau_{\omega_{p}} \cdots \tau_{\omega_{1}}(x)\right)$.
$\cdot \prod_{m=1}^{\infty} W\left(\tau_{0}^{m} \tau_{\omega_{n}} \cdots \tau_{\omega_{1}}(x)\right)$
$11,18,60,71,78,86,88-91,100$, 102, 116
$P_{x}(\mathbb{Z})$: path-space measure of the integers \mathbb{Z} as subset of Ω
$11,18,60,64,71,90,116$
$P_{x}^{(n)}[f]$: transition probability initialized at x and conditioned by n coordinates

$$
\begin{gathered}
:=\sum_{\left(\omega_{1}, \ldots, \omega_{n}\right)} \prod_{p=1}^{n} W\left(\tau_{\omega_{p}} \cdots \tau_{\omega_{1}}(x)\right) . \\
\quad \cdot f\left(\omega_{1}, \ldots, \omega_{n}\right), f \in \mathfrak{A}_{n} \\
21,44,45,63,64,116,122
\end{gathered}
$$

$\operatorname{Pos}(\mathcal{H}): \quad$ operator with spectrum contained in $[0, \infty)$ $114,115,117$
R_{W}, R : Perron-Frobenius-Ruelle transfer operator
$\left(R_{W} f\right)(x)=\sum_{\sigma(y)=x} W(y) f(y)$
xxxiv, 9, 11, 19, 26, 43, 45, 49, 51-57, 61, 64, 66, 76, 86, 91, 95, $100,101,105,115,116,200$
\mathbb{R} : the real numbers
$33,10,14,195,199$
\mathcal{R} : envelope of a fractal 195-199
$s:$ Hausdorff dimension $14,17,71,72,77$
$S:=F^{*}$: adjoint operator 67
$S_{i}, S_{i}^{*}, T_{i}, T_{i}^{*}$: the operators (isometries) and their adjoints (with stars) in a representation of the Cuntz relations (i.e., of the Cuntz algebra) $131,132,135,161,181,182,184$, 201, 211, 213, 214, 219
$\mathbb{T}:=\{z \in \mathbb{C}| | z \mid=1\}:$
circle group, or one-torus
$\cong \mathbb{R} / \mathbb{Z} \cong[0,1)$
$25,32,60,61,190,204$

U_{2} : dyadic scaling operator 200	$Z_{n}(x, \omega)$: canonical martingale 50, 51
V : cocycle, i.e., a measurable function on $X \times \Omega$ such that	\mathbb{Z} : the integers $5,19,22,59,66$
$\begin{aligned} & V\left(\tau_{\omega_{1}} x ;\left(\omega_{2}, \omega_{3}, \ldots\right)\right)=V(x ; \omega) \\ & \quad 43,49,92 \end{aligned}$	$\mathbb{Z}_{2}:=\{0,1\}$: cyclic group of order 2 27
$\begin{gathered} V_{0}, V_{1}, V_{n}: \text { resolution subspaces } \\ 22,33,104,111,123-128 \end{gathered}$	$\begin{aligned} & \mathbb{Z}_{N}: \text { : cyclic group of order } N \\ & \quad:=\mathbb{Z} / N \mathbb{Z} \cong\{0,1, \ldots, N-1\} \end{aligned}$
V_{i} : representation of Cuntz algebra 180-197 passim	$\begin{aligned} & 41,43,44,49,52,60,86,88,116 \\ & 211,214-219 \end{aligned}$
W : a measurable function	$\delta:$ Kronecker delta function
	15, 46, 47, 104, 116, 131, 139, 163,
$\begin{aligned} & \text { xxxiv, } 7-12,17-21,36,41-45,48 \\ & 49,51-57,61-66,69,71,76,77 \\ & 84-91,101,104,105,112-115 \\ & 117,140,141,162 \end{aligned}$	$\begin{aligned} & \delta_{0}: \text { Dirac mass at } x=0 \\ & 102,105 \end{aligned}$
$\begin{aligned} & W_{n}, W_{n}^{(i)}: \text { detail subspaces } \\ & 33,123-128 \end{aligned}$	$\lambda:$ Fourier frequency $71-78,112,198$
$X:$ a fractal	Λ : index set for a Fourier orthonormal basis
110	71-79, 198
X : a measurable space xxxiv, 6, 7, 39, 47, 115, 117	μ : the Haar measure, or other measure specified in the text
$\begin{gathered} X, X_{3}, X_{4}, \bar{X}_{4}: \text { Cantor sets } \\ 14,21,71-80,176 \end{gathered}$	$\begin{aligned} & 14,41,43,61,72,77,79,136-139 \\ & 167,168,195,198 \end{aligned}$
$X_{k}(\omega)=\omega_{k}:$ coordinate functions on a probability space	μ : multiplicity function 114, 117
50	$\mu \circ \sigma^{-1}:$ is the measure given by $\left(\mu \circ \sigma^{-1}\right)(B):=\mu\left(\sigma^{-1}(B)\right)$
(X, \mathcal{B}) : a set X with a σ-algebra	52,72
\mathcal{B} of measurable subsets	
$\begin{gathered} 6,40,84,114,115 \\ z:=e^{i 2 \pi t}: \text { Fourier variable } \end{gathered}$	$v:$ Perron-Frobenius-Ruelle measure, or other measure specified in the text
32	xxxiv, 52-54, 101, 105

256 Symbols	
ρ : representation or state $47,48,139-141,154$	$\begin{aligned} & \omega(k): \text { representation in } \Omega \text { of } \\ & \quad k \in \mathbb{N}_{0}: \text { If } k= \\ & \quad \omega_{1}+\omega_{2} N+\cdots+\omega_{n} N^{n-1} \end{aligned}$
$\left.\begin{array}{rl} \sigma: & \begin{array}{l} \text { one-sided shift, an onto map } \\ \\ \text { (actually endomorphism) } X \rightarrow X \end{array} \\ & \text { such that } \# \sigma^{-1}(\{x\}) \text { is constant } \end{array}\right\}$	$\begin{aligned} & \text { is the Euclid } N \text {-adic representa- } \\ & \text { tion, } \omega(k):= \\ & (\omega_{1}, \ldots, \omega_{n}, \underbrace{0,0,0, \ldots}_{\infty \text { string of zeroes }}) \\ & 11,18,77,79,92,101,122,130, \\ & 135,137,138,140 \end{aligned}$
$\begin{gathered} \sigma^{\Omega}: \operatorname{shift} \text { on } \Omega \\ 47,51,52 \end{gathered}$	$\begin{aligned} \Omega & : \text { probability space } \\ & :=\{0,1, \ldots, N-1\}^{\mathbb{N}} \\ & =\prod_{\mathbb{N}}\{0,1, \ldots, N-1\} \end{aligned}$
$\sigma^{-1}(B):$ pre-image under the mapping $\sigma:=\{x \in X \mid \sigma(x) \in B\}$	$\begin{aligned} & =\text { all functions: } \\ & \quad \mathbb{N} \rightarrow\{0,1, \ldots, N-1\} \\ & =\left\{\left(\omega_{1}, \omega_{2}, \ldots\right)\right. \end{aligned}$
$\left(\sigma^{\Omega}\right)^{-1}:$ pre-image under the mapping	$\begin{aligned} & \left.\mid \omega_{i} \in\{0,1, \ldots, N-1\}\right\} \\ & 5,7,11,18,20-37,43,46,47,49, \\ & 69,85,135 \end{aligned}$
52	(Ω, \mathcal{B}, v) : probability space
$\tau_{0}, \ldots, \tau_{N-1}$: branches of σ^{-1}, maps	56, 203
$\begin{aligned} & \quad X \rightarrow X \text { such that } \sigma \circ \tau_{i}=\mathrm{id}_{X} \\ & 7,41,47,52,72,89,115,159 \\ & \tau_{i}^{\Omega}: \text { branches of }\left(\sigma^{\Omega}\right)^{-1} \\ & 47,48,52 \end{aligned}$	0 : one-sided infinite string of zeroes $=\underset{\infty \text { string of zeroes }}{(0,0,0, \ldots)}$ $12,85,116,130$
$\begin{aligned} & \varphi: \text { scaling function } \\ & \quad \begin{array}{l} 3,10,12,13,15,23,102,103,114, \\ \\ \quad 134 \end{array} \end{aligned}$	```\(\{0\}\) : the set with the one element \(\mathbf{0}\) 12, 85, 116 \(\mathbb{1}_{\mathcal{H}}\) : identity operator (see also \(I\))```
$\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots$: wavelet packet system $112,113,118-122,168,191$	$\begin{aligned} & 114,115,117,122,160,161,181, \\ & 182,184 \end{aligned}$
χ : characteristic function $14,16,47$	$\mathbb{1}$: constant function equal to 1 46, 61, 64, 136
ψ : wavelet function $13,16,23,102,103,134$	$\begin{aligned} & * \text {-algebra, } * \text {-isomorphism } \\ & 221 \end{aligned}$
$\psi_{n, k}$: wavelets 15	$\begin{aligned} & \text { *-automorphism } \\ & 211 \end{aligned}$

\checkmark : lattice operation applied to closed subspaces in a Hilbert space: the lim sup lattice operation
169, 181
\wedge : lattice operation applied to closed subspaces in a Hilbert space: the lim inf lattice operation
169, 181
\varnothing : empty set
171, 172, 185,
\bar{E} : closure of a set E
44, 172
$\hat{\varphi}$: Fourier transform (of the scaling function φ)
$10,114,111$
\leqslant : relatively absolutely continuous (relation between measures)
50, 53
(1) : up-sampling

124, 132, 213, 214
(L) : down-sampling
$124-128,132,133,212,213,215$
\oplus : direct (orthogonal) sum
112, 172, 218
\otimes : tensor product
$139,158,161-163,165,170-172$, 180-183, 189, 190, 193, 194, 197
\ominus : relative orthogonal complement 169
\times : Cartesian product $11,43,49,52,88,117,130,164$, $166,185,188,218$
\# : counting function $6,41,72,101,159,184,196$
$\langle\cdot \mid \cdot\rangle$: inner product $16,75,77,79,104,114,140$
|.): Dirac vector 160-163, 171, 182, 184, 185, 189, 193, 194
$[\cdot, \cdot):$ interval closed to the left and open to the right $41,61,63,65,136-138,165,166$, 167, 192
$[\cdot, \cdot):$ segment of \mathbb{N}_{0} 165-167, 186, 188
$[\cdot, \cdot]$: interval closed at both ends $7,11,13,16-18,47,62-66,71,77$, 84, 89-92, 102, 105, 112, 125, 130, 135-139, 195

Index

Comments on the use of the index: Some terms in the index may appear in the text in a slight variant, or variation of the actual index-term itself. For example, we will have terms in the index referring to "theorem so and so." But when we use the Stone-Weierstraß theorem, I just say Stone-Weierstraß. The word "theorem" will be suppressed. It is implicitly understood.

Similarly, I often just say, "by domination" (or some variant thereof), when I mean, "by an application of the dominated convergence theorem," or more fully: "By Lebesgue's dominated convergence theorem." It will be the same theorem whether the name is abbreviated or not.

For Fubini, the word "theorem" may be implicitly understood. Guido Weiss has made a verb out of it: "Fubinate" means "to exchange the order of two integrals."
Similarly, the name Fatou often is used to mean "Fatou's lemma" (the one about lim inf). For some reason poor Fatou only got credit for a lemma. But I do not mind upgrading him to a theorem, although "Fatou's theorem" usually refers to the one about existence a.e of boundary values of bounded harmonic functions. I usually call that one "the Fatou-Primalov theorem."

\mathcal{A}-random variable, see random variable, $\mathcal{A}-$	- iterated function system, 5, 14, 15, 25,
abelian, see algebra, abelian; group, abelian;	$67,70-72,80,81$
\quad maximal abelian subalgebra	- iteration, 21
absolutely continuous, see measure,	- map, xxiii, 1, 3, 5, 81, 195
\quad absolutely continuous	self- - tiling, see tiling, self-affine
adjoint, see matrix, adjoint; operator, adjoint	- wavelet frame, see frame, affine
a.e. convergence, see convergence, a.e.	wavelet
algebra, xvii, xx, 1, 3, 27, 43, 44, 47, 54,	
affine	$140,176,251,252$
- fractal, xxiii, 3, 5, 15, 22, 26, 70-72,	abelian, $110,138,139$
$77,80,180,194,198$	C^{*}, see C^{*}-algebra

algebra. bases

CAR-, see CAR-algebra
Cuntz, see Cuntz algebra
Cuntz-Krieger, see Cuntz-Krieger algebra

$$
\text { dense sub-, } 46
$$

fermion, see fermion algebra
matrix, 139, 210
maximal abelian sub-, see maximal abelian subalgebra
non-abelian, xxviii, 138, 139, 155, 218
operator, see operator algebra
σ-, see σ-algebra
*-, 221
sub-, $44,139,154,155$
algebraic structures
representations of, see representation of algebraic structure
algorithm, xvi, xix, xx, xxv, xxvi, xxxiii, xxxiv, xxxvi, xliii, 3, 4, 10, 33, 35, 124, 125, 128, 147, 148, 164, 206, 210, 211, 215, 223-226, 230, 231
cascade, see cascade
Euclid's, xx, 11, 40, 63, 69, 85, 92, 164, 166
Gram-Schmidt, xv, xxvi
matrix, xxvi, xxviii, xxxii, 142, 147, $157,226,230$, see also matrix step in algorithm
pyramid, vi, xx, xxxiv, xxxv, xlv, 33, 111-113, 122, 123, 125, 128, 129, 134, 148, 157-159, 182, 225, 227, see also pyramid
recursive, xxvii, xxxii, xxxiv, xxxv, xlv, 6 , 109, 147, 157, 226
subdivision, xxix, xxxi, xxxii, xxxv, 124, 142, 227
wavelet, xiii, xvi, xix, xxvii-xxix, xxxi-xxxiii, 25, 33, 110, 123, 125, 133, 142, 147, 148, 151, 152, 156, 206, 210, 215, 226, 227, 230
N-adic, 125, 126
wavelet-like, xxv
wavelet packet, xxxiv, xxxv, $3,34,123$, 125, 126
alias, 229, 230
ambient

- Euclidean space, see space, Euclidean, ambient
- function space, see space, function, ambient
- Hausdorff measure, see measure, Hausdorff, ambient
- Hilbert space, see space, Hilbert, ambient
analysis
data, xxv
(engineering), xvi, xxii, xxvi, 124, 132, 148, 205-207, 214, 227, see also frequency band; perfect reconstruction; synthesis; signal analysis; signal processing
Fourier, see Fourier analysis
fractal, see fractal analysis
harmonic, see harmonic analysis
(mathematics), xvii, xxvii-xxxi, xxxiii, xliv, 3, 6, 9, 22, 26, 33-35, 37, 39, $59,80,81,84,87,98,206$, see also Fourier analysis; harmonic analysis; spectral analysis
multiresolution, see multiresolution analysis
numerical, xxvii, xxxii, 229
spectral, see spectral analysis
stochastic, 35
wavelet, see wavelet analysis
approximation, xxvi, 4, 6, 79, 90, 107, 109, 158, 226
cascade, see cascade approximation
- theory, xxix
atomic, see measure, atomic
attractor, 34, 187
automorphism
*-, 211
\mathcal{B}-measurable, see measurable, \mathcal{B} -
\mathcal{B}-measure, see measure, \mathcal{B} -
band-limited wavelet, see wavelet, band-limited
base-point representation, see representation, base-point
bases, see basis

Index
basis.
basis, xv, xvi, xx, xxvi, xxxi, xxxvi, xliv, 2, 5, 9, 22, 30, 59, 67, 70, 71, 87, 111, 143, 146, 148, 157, 162, 179, 182, 184, 228, 229
bi-orthogonal, 143
canonical, 143, 160, 202
dual, 143, 144
Fourier, xvi, 67, 144, 158, 168, 193, 252, 255
fractal, 21, 26, 70-72, 79
frame, 28, 29, 143, 229

- function, xv, xxxvi, 104, 106, 112, 113, 129, 166
localized, 67, 80, 157, 158, see also localization property of wavelet bases
orthogonal, xxvi, 36, 69, 70, 87
orthonormal, xxxi, $13,15,16,22,26,28$, $29,32,36,55,56,65,71,72,74,76$, 77, 79, 99, 103-106, 130, 139, 140, $143,144,149,150,162,163,165$, 166, 168, 177, 182, 184, 185, 189, 190, 192-194, 197, 198, 228, 229, 254, 255
Parseval, 103
permutation of, 182
recursive, 179
— transformation, 166
wavelet, xvi, xix, xxvi, xxxiii, xliii, xliv, $13,15,22,23,67,72,80,87,99,103$, 142, 176, 179, 180, 187-189, 208,
229 , see also localization
dyadic, 99, 202
fractal, 180
wavelet-like, 109
Bernoulli product measure, see measure, p-Bernoulli-product
Bethe lattice, see lattice, Bethe
bi-orthogonal, see basis, bi-orthogonal
black box, xx, xxi
Borel
- cross section, 183
- measure, see measure, Borel
- σ-algebra, see σ-algebra, Borel
— subsets, 135, 167, 199
M. Born, 176, 205, 236
boundary
- for harmonic function, see harmonic function, boundary for
— representation, 19, 48
- value, 21, 43, 48
branch mapping, 256
measurable, 41
n-fold, 184, 185, 188, 189
2-fold, 186, 187
branching, 5, 158, 161, see also random walk on branches
dyadic - system, 160
- system, 159, 171
C. Brislawn, xxxiii, xliv, 22, 234

Brownian motion, xxvi, xxvii, 56, 57
fractal, xxiii
fractional, xxvii, 57
s-fractal, xxiii
C^{*}-algebra, xxix, 5, 6, 131, 138-140, 142, 151, 154, 155, 183, 211, 251
canonical anticommutation relations, 5, 138-140, 154, 251, see also CAR-algebra
canonical basis vector, see basis, canonical
Cantor, 1, 69, 179

- construction, 69, 70, 74
- group, see group, Cantor
- measure, see measure, Cantor
-'s example, see measure, Cantor
- scaling identity, see scaling identity, Cantor
- set, 2, 5, 15, 71-73, 252, 255
conjugate, 73, 75-77
duality for - $\mathrm{s}, 69$
middle-third, $2,5,14,15,21,25,27$, 69-71, 73, 74, 80, 176, 189, 195, 251
quarter, 5, 26, 72-77, 79, 198
scale-4, see Cantor set, quarter
CAR-algebra, 5, 138, 139, 154, 155
representations of, see representation of CAR-algebra
L. Carleson, 32
cascade \qquad decision tree
cascade, 9, 130, see also closed subspaces, nested family of
- approximant, 134
- approximation, 4

Cauchy product, 87,206
closed linear span, 15, 169, 200, 207, 209, 252
closed subspaces nested family of, xviii-xx, xxii, xxix, 9, 33
cocycle, 43, 48-52, 91, 92, 255

- identity, 19, 20
- property, 49
coefficient, 168
autocorrelation, 104
filter, 4
Fourier, xvi, xxii, 87, 97
masking, 4, 10, 16, 23, 87, 91, 114, 123, $130,131,135,227$
matrix, 131
operator, 114
response, 10
wavelet, xxvi, 23, 25, 202, 225, 227, 230
wavepacket, 168
A. Cohen, xxxii, xxxiii, 33, 87
co-isometry, 162, 216
combinatorial
— probability theory, 5, 154
- tree, 6, 111, 129
commute, $94,135,234,235$, see also non-commutative setting
compact, $1,8,14,25,27,35,43,69,71,83$, $92,98,149,195,204$
- abelian group, see group, abelian, compact
- Hausdorff space, see space, compact Hausdorff
- operator, see operator, compact
- support, see wavelet, compactly supported
conditional expectation, 10, 57
conjugate Cantor set, see Cantor set, conjugate
conjugation, 150
consistency, xx, 80, 122, see also Kolmogorov consistency
continued fractions, 41
convergence, xxviii, $\mathrm{xxx}, 4,6,9,10,18,80$
a.e., $32,50,56,92,95,96$
dominated, 78, 89
dominated - theorem, see theorem, dominated convergence
martingale - theorem, see theorem, martingale convergence
- of infinite product, $5,8,11,17-19,21$, 60, 85
pointwise, 4, 5, 17-19
countable family of σ-algebras, see σ-algebras, countable family of
J. Cuntz, xxii, 183

Cuntz

- algebra, xxix, 5, 6, 22, 131, 136, 152, $154,155,158,161,162,179-183$, $187,196,205,208,210,222,254$, 255 , see also representation of Cuntz algebra
——Krieger algebra, xxix
- relations, xxii, $6,132,155,160,161$, 174, 179-182, 201, 203, 211, 214, 216, 219, 221, 222, 227, 231, 254, see also representation of Cuntz algebra
- representation, see representation of Cuntz algebra
- system, 208, 221
cycle, 26,87
cyclic group, see group, cyclic
cylinder set, $43,47,78,85,115,139,251$
data mining, xvii, xix, xxiv, xxv, xxviii, 107, 224
I. Daubechies, xxxii, xxxiii, 10, 33, 87 Daubechies
- scaling function, see scaling function, Daubechies
— wavelet, see wavelet, Daubechies
decision tree, xxxv
decomposition
expansion
decomposition, 166
Karhunen-Loève, see theorem, Karhunen-Loève
orthogonal, 172
Schmidt's, see theorem, Schmidt's
wavelet, xxxii, 190
Wold, 169
derivative
Radon-Nikodym, 50, 53
detail space, see space, detail
differentiability, 6
differentiable, xxxii-xxxiv, 14, 135
dimension, 4, 33, 117, 154, 210
fractal, 14, 195, 251
Hausdorff, xxiii, 2, 71, 72, 74, 77, 176, 195, 251, 254
scaling, 72
Dini regularity, see regularity, Dini
G. Dirac, 235
P.A.M. Dirac, 58, 234, 235

Dirac
—mass, 26, 102, 255
— notation, 55, 58, 182, 186, 257
discrete wavelet transform, see wavelet transform, discrete
distribution, xxiii, 130, 142, 168, 204
Gaussian, 56, 203, see also random variable, Gaussian
D. Donoho, xxxiii
J. Doob, xxiv, xxvi
down-sampling, see sampling, downdual

- basis, see basis, dual
- filter, see filter, dual

Fourier, see Fourier dual

- high-pass filter, see filter, dual high-pass
- lattice, see lattice, dual
- low-pass filter, see filter, dual low-pass
— variable, xxi, 206, 212
- wavelet, see wavelet, dual
duality, 69, 205, 207, 212
- for Cantor sets, see Cantor set, duality for

Fourier, 35, 60, 81, 207, 209, 210
particle-wave, 131
time-frequency, 207, 212
D. Dutkay, xliii, 57, 72, 87, 97, 194
dyadic

- branching system, see branching, dyadic - system
— fractional subinterval, 166-168
- Haar wavelet, see wavelet, Haar, dyadic
- pyramid, see pyramid, dyadic
- rationals, 66, 90, 167
- representation, 166
- scaling, see scaling, dyadic
- subdivision, see subdivision, dyadic
— tiles, see tiling, dyadic
- wavelet, see wavelet, dyadic
- wavelet packet, see wavelet packet, dyadic
dynamics, xxix, xxx, xxxvi, xliv, 9, 34, 37, 42, 168
complex, 25, 34
symbolic, xxxv, 34, 182
eigenfunction, 19
minimal, 15, 19, 99-102, 105, 252
Perron-Frobenius, 26, 97, 252
eigenspace, 19
Perron-Frobenius, 107
eigenvalue, $9,11,19,77,100,107,116$
endomorphism, xxxiv, 4, 52, 91, 101, 184, 256
engineering, xiii, xxviii, xxxi, xxxii, xxxiv-xxxvi, xliv, 17, 87, 88, 124, 204, 210, 212, 215, 227, 228, 230
equivalence
- class, 172, 183
-relation, 172
ergodic theory, xliv, 84
ergodicity, 155
Euclidean algorithm, see algorithm, Euclid's Euclid's algorithm, see algorithm, Euclid's
expansion, xxxi, 168
Fourier, see Fourier expansion
expansion frequency
N-adic, 11
orthogonal, xxix
wavelet, 23, 25
extension
unitary matrix, 107
unitary - principle, see unitary extension principle
factorization, 34
matrix, 210
— of unitary operators, 158,180
operator, 216
Schmidt's, see theorem, Schmidt's
tensor, 168, 170, 181, 186, 190, 194, 198
Farey tree, 41, 42
father function, see function, father Fatou
--Primalov theorem, see theorem, Fatou-Primalov
-'s lemma, see theorem, "Fatou's lemma"
- set, 25
fermion, 139, 154
— algebra, 154
filter, xxxiii, 4, 87, 124, 133, 205, 206, 210, 213, 215, 227, 231, 253
dual, 124, 205
dual high-pass, 124,132
dual low-pass, 124, 132
high-pass, $23,87,111,124,125,132,154$, 205, 253
low-pass, xxxiv, 4, 23, 37, 87, 104, 111, $124,125,132,154,204,205,253$
- orthogonality, see orthogonality, filter
quadrature-mirror, $3,4,10,23,40,87$, $135,168,186,205,212,217,227,228$
subband, xxix, xxxiv, 23, 26, 87, 123, 124, 126, 205, 210, 211, 213, 215, 228
wavelet, see wavelet filter
fixed-point problem, 10
four-tap, vi, 22, 134, 135, 146, 147, 202, 228
Jean Baptiste Joseph Fourier, xxxi
Fourier
—analysis, xv, xxviii, 2, 30, 225, 226
- basis, see basis, Fourier
- coefficient, see coefficient, Fourier
- correspondence, 67
- dual, xxi, xxx, 35, 60, 81, 198, 207, 209, 210
- pair, xxi, 36
- equivalence, 110
- expansion, xxii, 61, 157, 158
- frequency, 21, 26, 69, 70, 110, 255

Mock - series, 80

- series, xxi, xxii, xxvii, xxxi, 10, 32, 59, 67, 69, 80, 145, 163, 206
- transform, xxi, 4, 10, 35, 102, 105, 111, 114, 191, 208, 257
inverse, xxii
- variable, 255, see also dual variable fractal, xxviii, xxix, xxxvi, 7, 15, 21, 22, 34, $35,37,67,72,74,77,80,97,152,182$, 194, 198, 210, 211, 227, 231, 254, 255
affine, see affine fractal
— analysis, xxxv, xliv, 6, 36, 60, 98, 210
- dimension, see dimension, fractal
- Hilbert space, see space, Hilbert, fractal
- measure, see measure, fractal
- theory, xxix, 25
- wavelet, see wavelet, fractal
fractions
N-adic, 90, 92
2-adic, 89, 138
frame, xliii, 104, 126, 143, 176, 228-230
affine wavelet, 230
- bound, 29, 143, 207, 228
- constant, see frame bound
normalized tight, 16, 99, 104, 106, 176, see also frame, Parseval
- operator, 207

Parseval, 13, 16, 99, 104-106, 162, 228
super-, 230
tight, 162, 228

- wavelet, 100, 229
frequency, xxxi, xxxv, 23, 123, 125, 131, 204, 206, 207, 212, 213, 228
- band, xx, 87, 124, 177, 181, 210

- domain, 4, 87
--localized wavelet, see wavelet,
frequency-localized
— response, 4, 17, 87, 131, 204, 206, 207, 210, 227
- subband, 123

Frobenius, xliii, see also eigenfunction, Per-ron-Frobenius; eigenspace, PerronFrobenius; matrix, Perron-Frobenius; operator, Perron-Frobenius-Ruelle; Perron-Frobenius-Ruelle theory; theorem, Perron-Frobenius
Fubini's theorem, see theorem, Fubini's function
basis, see basis function
bounded continuous, 14, 195
bounded measurable, 43, 47, 49, 51, 53, 61, 115, 219, 253
constant, 15, 46, 61, 91, 136, 256
continuous, 7, 43, 105, 251
eigen, see eigenfunction
father, $\mathrm{xxx}, 13,102,123-125,128,134$, 135
filter, 4, 87, 104, 114, 123, 132, 192, 196, 207, 227, 253
filter response, 87
frequency response, see frequency response
generating, 206
harmonic, see harmonic function
indicator, 14, 52
iterated - system, see iterated function system
$L^{2}-, 13,14,111,190,210,251$
limit, 50, 54
Lipschitz, see Lipschitz function
matrix, $4,22,112,117,140,141,214,215$
unitary, 227
measurable, xxxiv, 7, 47, 54, 60-62, 65, $70,84,87,115,199,252,255$
mother, xxx, 13, 102, 123-125, 128, 134, 135
multiplicity, see multiplicity function

1-periodic, 18, 60-62, 66, 95-97, 104, 132, 174, 175, 217
operator, 114, 116, 117 unitary, xxix
periodic, $4,69,87,204,208$, see also function, 1-periodic
positive definite, 57, 203, 204
rational, 34
refinable, 107
scaling, 3 , see scaling function

- space, see space, function
square-integrable, 210, 253
step, xxxi
- theory, xxviii, xliv, 46
time-localized, xxx, 177
vector-valued, 131, 210
W-, xxxiv, $7,10,19,36,37,54,101,112$
wavelet, see wavelet function
zeta, 34
D. Gabor, xxxi
gap-filling, 14, see also wavelet, gap-filling
generalized multiresolution, xxv, 22, 110, 180, 181, 252
- analysis, 109, 114

GMRA, see generalized multiresolution
grayscale, xviii, 22, 147, 148, 152, 207, 227
A. Grossman, xxxii
group, $1,5,28,36,70,109,110,205,210$, 211, 214, 221
abelian, 27, 69
compact, 27
Cantor, 28
circle, 251, 254
cyclic, $60,174,255$
infinite-dimensional unitary, 155
Lie, 220
non-abelian, xxvi
renormalization, xxix
sub-, 230
torus, 204
transformation, 211
R. Gundy, xxxiii, xliii, 6, 33, 87
A. Haar, xvi, xxvi, xxxi, 131, 223

Haar Kolmogorov

Haar
dyadic - wavelet, see wavelet, Haar, dyadic

- measure, see measure, Haar
- wavelet, see wavelet, Haar
harmonic
- analysis, xix, xxviii-xxx, xliii, 2, 5, 19, $22,25,26,33,60,80,87,182,229$
discrete, 35
- of iterated function systems, xxx, 14, 67, 80
- function, $9,18,21,22,43,48-52,55$, $76,86,91,92,95,100,252$
boundary for, $21,43,48,50$
bounded, 43, 48-50
closed expression for, 15, 102, 105
construction of, 100
integral formula for, 50
minimal, 11, 22, 105
$P_{x}-, 100$
R-, xxxiv, 43, 50, 79, 91
Hausdorff
- dimension, see dimension, Hausdorff
- measure, see measure, Hausdorff
O. Heaviside, xvi, 157, 223, 235
W. Heisenberg, 58, 131, 176, 179, 235, 236
hermitian operator, see operator, hermitian
high-pass filter, see filter, high-pass
D. Hilbert, xxxi, 205

Hilbert space, see space, Hilbert
Hutchinson measure, see measure, Hutchinson
image processing, vi-viii, xv , $\mathrm{xix}, \mathrm{xx}$, xxii, xxvi, xxviii, xxxii-xxxvii, xliv, 6, 10, $23,33,40,87,142,147,148,151$, 152, 189, 206, 223-227, 230, 233, 235 , see also signal processing
infinite-dimensional unitary group, see group, infinite-dimensional unitary
infinite product, xxviii-xxx $4,5,7,8$, $10-12,17-19,21,27,33-35,60,67$, $83-85,96,97,116,138,154$, see also
measure, infinite-product; Tychonoff infinite-product topology
convergence of, see convergence of infinite product
matrix, 4, 22
random, 22, 34
tensor, 139, 148, 149, 158
integers, 5, 21, 22, 37, 60, 71, 166, 254, 255
integral translates, 18, 104, 181
intermediate differences, 147, 148
intertwining, 169, 200, 202, 209
interval, unit, see unit interval
invariant, 51, 52, 66

- measure, see measure, invariant
R-, 53
shift-, 51, 52, 92
$\sigma-, 52,53$
- subspace, 109, 110, 146, 202, 209, 221
translation-, 129
C.T. Ionescu Tulcea, 57
irreducible representation, see representation, irreducible
isometry, xix, $32,67,93-95,174,176$, 182-185, 200, 201, 208, 216, 221, 222, 229, 254
partial, 94, 150, 173
isomorphism, 47, 193, 194, 221
C^{*}-algebraic, 139
isometric, 30, 112, 149, 207
order-, 51
*-, 221
unitary, 162, 169, 191, 193, 194
iterated function system, $\mathrm{xxx}, \mathrm{xxxv}, \mathrm{xliv}, 34$, $35,47,57,67,70,84,99,152,182$, 252 , see also affine iterated function system

JPEG 2000, xxxiii

Karhunen-Loève decomposition theorem, see theorem, Karhunen-Loève
A.N. Kolmogorov, xxvi, xxxi, 7, 8, 39, 43, 46, 59, 84, 168, 170, 203, 204, 235

Kolmogorov matrix

Kolmogorov

- consistency, xxxi, 7, 45, 46, 48, 49, 141, 203
- extension, xxix, 21, 46, 48, 57, 97, 136, 139, 151
-'s lemma, see theorem, "Kolmogorov's lemma"
-'s 0-1 law, xxxiii, 37
Krieger
Cuntz-- algebra, see Cuntz-Krieger algebra
L^{1}-normalization, 12
L^{2}-normalization, 12
ℓ^{2}-sequence, 140
lacunary trigonometric series, 84
lattice, 4, 154
Bethe, 98
dual, 28, 36, 69
— operation, 169, 181, 257
- system, see statistical mechanics, quantum
W. Lawton, xxxiii, xliii, xliv, 21, 33, 57, 87

Lebesgue

- measure, see measure, Lebesgue
-'s dominated convergence theorem, see theorem, dominated convergence
limit, 20, 21, 50, 75, 76, 92, 154, 212
exchange of -s, 89, 101
- function, see function, limit
inductive, 139, 140, 252
martingale, 49
non-tangential, 50
Szego's - theorem, see theorem, Szego's limit
Lipschitz
- continuous, 77
— function, xxxiv, 57, 191
- regularity, see regularity, Lipschitz localization, 22, 158, see also basis, localized; function, time-localized; wavelet, frequency-localized
— of Mock Fourier series, 80
- property of wavelet bases, $80,87,157$, 225, 226
low-pass
- filter, see filter, low-pass
low-pass
- condition, 17, 228
— property, 125, 130
S. Mallat, xxxii, 33, 168

Mallat subdivision, xxxi
Markov

- chain, 50
- process, 21
- transition measure, see measure, transition
martingale, xxix, xxx, xxxiii, 10, 21, 35, 36, 50, 51, 57, 91, 168, 255
- convergence theorem, see theorem, martingale convergence
- limit, see limit, martingale
masking coefficient, see coefficient, masking
Mathematica, 35
graphics produced using, xxxiv, xliii, 2, $123,125,129,152$
matrix, $129,139,141,182,183,190,191$, $210,215,216,230,252,253$
adjoint, 147, 210, 214
- algebra, see algebra, matrix
- algorithm, see algorithm, matrix
- coefficient, see coefficient, matrix
diagonal, 140
- diagonal, 141
- element, 140, 154
- entry, 219
- factorization, see factorization, matrix
function, see function, matrix
identity, 183, 252
infinite, xxvii, 142, 231
infinite - product, see infinite product, matrix
integral, 3
- multiplication, 25, 128, 142, 143, 202, 210, 216, 230
- operation, 124
matrix \qquad measure
operator, 210, 214, 215, 218
Perron-Frobenius, 34
polyphase, 205, 210, 215, 218
positive, 34
positive definite, 203
positive semidefinite, 4
- product, xxvi, 25, 218, 219, see also infinite product, matrix
propagator, 34
- representation, see representation, matrix
slanted, 23-25, 142, 143, 145, 146, 202, 206, 225, 230, 231
sparse, 23, 206
- step in algorithm, $\mathrm{xxxv}, 206,207,210$
sub-, 139
— theory, 34
Toeplitz, 23, 146
- unit, 135
unitary, $109,129,174,182,191,201$, 205, 210, 211, 214, 216-218, 220,
221, 227, see also extension, unitary matrix; function, matrix, unitary
--valued
function, see function, matrix
measure, see measure, matrix-valued wavelet filter, see wavelet filter, matrix-valued
wavelet, 206, 225
maximal abelian subalgebra, 154, 252
measurable, xxiv, xxxiv, $5,6,40,41,47$, $115,199,252,255$
$\mathcal{B}-, 41,53$
branch, see branch mapping, measurable
- space, xxxiv
measure, xxiv, xxvii, 1, 5, 26, 32, 36, 39, 72, $78,85,101,136,139-141,154,166$, $168,204,251,253-255,257$
absolutely continuous, 50, 136, 154, 257
atomic, 100
\mathcal{B}-, 53
Bernoulli-product, see measure, p-Bernoulli-product
Borel, xxxiv, 9, 46, 80, 141, 149, 154

Cantor, 12, 14, 74, 198
determinantal, 5, 138, 154, 155
Dirac, see Dirac mass
equivalent, 154

- extension, 18, 21, 91, 116, 139, 141, 167, see also Kolmogorov extension
Feynman, 34
fractal, xxiii, 2, 3, 14, 70, 74, 77
full, 5, 22, 71, 79
Haar, xxvi, 28, 61, 66, 70, 93, 175, 212, 251, 255
Hausdorff, xxviii, 2, 14, 17, 72, 74, 97, 176, 196, 198, 199, 251, 252
ambient, 72
Hutchinson, 48
infinite-product, 149, 154
invariant, 52, 53, 70
Lebesgue, xxviii, 1, 3, 14, 15, 22, 32, 36, 55, 94, 106, 136, 137, 175, 251
matrix-valued, 111
non-atomic, 41, 91
operator-valued, 114, 115, 117
orthogonal, 167
p-Bernoulli-product, 27
path-space, xxviii, xxx, xxxi, 1, 4-9, 11, $18,19,21,26,34,35,37,43,45,51$, $57,59,60,65,70,71,77,79,84,91$, $98,100,111,115,122,130,254$
Perron-Frobenius, see measure, Perron-Frobenius-Ruelle
Perron-Frobenius-Ruelle, 26, 255
Poisson, 50
positive, xxxiv, 4, 36, 44, 46, 51, 115, 141
probability, xviii, xxxiv, $14,37,41,44$, 46, 53, 54, 59, 70, 80, 86, 94, 100, $115,117,122,149,167,195,204$
Borel, see measure, Borel
Radon, see measure, Radon
s-fractal, xxiii
product, xxvii, 91, 149, 157
projection-valued, 112, 135, 136, 142, 166, 167
Radon, 43, 44, 46, 49, 85, 86, 115-117, 122
measure operator

Ruelle, see measure, Perron-FrobeniusRuelle
σ-additive, 115, 167

- space, 6, 40, 84, 94, 115, 139, 149
σ-finite, 31, 253
spectral, 112
- theory, viii, 5, 6, 20, 22, 70, 195, 204
transition, xxxiv, 21, 90
W-, xxxiv, 9,26
Y. Meyer, xxxii, 33, 176
middle-third Cantor set, see Cantor set, middle-third
minimal, 11, 171, 172
- eigenfunction, see eigenfunction, minimal
mirror, 33, 212, 228
quadrature, see filter, quadrature-mirror
monotonicity, 92,155
J. Morlet, xxxii
mother function, see function, mother
MRA, see multiresolution analysis
multiindex, 165-167, 252
multiplicity, 111
- function, 114, 117
multiplicity function, 255
multiresolution, xviii-xx, xxvi, xxxi, xxxii, 9, 10, 35, 36, 59, 110, 114, 153, 168-171, 179, 187, 189, 198, 222, 223, see also generalized multiresolution; wavelet, multiresolution
— analysis, $6,16,36,109,181,194,198$, 252, 253
orthogonal, 172
- wavelet, see wavelet, multiresolution
multiwavelet, 5, 7, 111, 114, 116, 153
N-adic, 126
- map, 90
— rationals, 92
- subinterval, 47
n-fold branch mapping, see branch mapping, n-fold
natural numbers, xviii, $5,21,40,52,66,71$, 85, 167, 254

Nikodym
Radon-- derivative, see derivative, Radon-Nikodym
non-abelian, see algebra, non-abelian; group, non-abelian
non-atomic, see measure, non-atomic
non-commutative setting, xv , xxvi, xxix, $5,7,37,58,115,139,151,177$, 234 , see also canonical anticommutation relations; probability, non-commutative
non-overlapping, 187, 199

- partition, see partition, non-overlapping
norm, xviii, $12,14,17,31,44,48,139,168$, 173, 181, 204, 210, 228
normalization, $12,14,15,37,53,54,61,64$, $70,101,114,125,127,135$
normalized solution, 12,14
notational convention, 17, 204

ONB, see basis, orthonormal
one-torus, 60, 251, 254
operator, 132, 140, 141, 158, 160, 162, 172, 192, 196, 210-212, 215, 216, 219, 254
adjoint, 93, 144, 145, 147, 157, 160, 165, 185, 200, 209, 210, 212-214, 216, 217, 254

- algebra, xxviii-xxx, xxxvi, 6, 22, 37, $138,154,155,205,210,211,216,218$
bounded, 218
bounded linear, 218, 251
- coefficient, see coefficient, operator
compact, 55, 58
composition of -s, 210, 216
conjugation, see conjugation
- factorization, see factorization, operator
filter, 135
subband-, 213
frame, see frame operator
- function, see function, operator
hermitian, 209
Hilbert space, see space, Hilbert, operators in
operator. \qquad . Perron-Frobenius-Ruelle theory
identity, 131, 136, 174, 182, 209, 252, 256
linear, 140
- matrix, see matrix, operator
- monomial, 165
multi-, 165
multiplication, $94,95,110,142,147,198$, 209, 210, 213, 217, 221, 253
non-commuting, see non-commutative setting
Perron-Frobenius-Ruelle, xxxiv, xliv, 4, 8, 9, 19, 21, 26, 33, 43, 48, 49, 57, 61, 86, 87, 95, 97, 107, 155, 200, 254
positive, 117, 254
positive semidefinite, 114
- process, 116
- product, 115, 218
projection, see projection

$$
\text { row, } 210
$$

scaling, $\mathrm{xx}, 2,3,10,109,162,180,181$, 187, 188, 190, 200, 207-209, 255
unitary, $163,168,194,196$
selfadjoint, 138
semidefinite, 114
shift, 213, 256

- theory, xix, xxvi, xxix, 10, 37, 58, 109, 138, 142, 154, 170, 180, 181, 186, 210-212, 216, 221, 222, 229, 230
transfer, xxxiii, xliii, xliv, 4, 19, 26, 33-35, 57, 87, 115, 254, see also operator, Perron-Frobenius-Ruelle
wavelet, xxxiii, 33, 105, 107
transition, xxxiv, $8,9,21$, see also operator, Perron-Frobenius-Ruelle wavelet, xxxiv, 21
unitary, xix, 158, 161, 169, 179-183, 186, 188-190, 210, 211, 218, 219, 221, see also factorization of unitary operators; function, operator, unitary
--valued measure, see measure, operator-valued
zero-kernel, 116
ordering, 51, 209
orthogonal, 198
- basis, see basis, orthogonal
- complement, 190, 257
- decomposition, see decomposition, orthogonal
- expansion, see expansion, orthogonal
- function theory, 155
- measure, see measure, orthogonal
- multiresolution, see multiresolution, orthogonal
- projection, see projection, orthogonal
- sum, 210, 257
— vectors, 181, 190
- wavelet, see wavelet, orthogonal
orthogonality, 17, 129, 197
filter, 87
-relations, 13, 57
wavelet, xxxii-xxxiv, 5
orthonormal basis, see basis, orthonormal
p-Bernoulli product measure, see measure, p-Bernoulli product
p-subinterval, 166
Parseval
- basis, see basis, Parseval
- frame, see frame, Parseval
- identity, 13, 32, 66, 99, 103, 104, 137, 162, 168, 191, 193, 210, 228
- system, 13
- wavelet, see wavelet, Parseval
partial isometry, see isometry, partial
partition, 166
non-overlapping, 165, 186
path, $7,87,123,124,127,129$
- space, see space, path
perfect reconstruction, $87,124,132,205$
periodic function, see function, periodic
permutation of bases, see basis, permutation of
permutative representation, see representation, permutative
Perron, xliii
Perron-Frobenius-Ruelle theory, 99, see also eigenfunction, Perron-Frobenius; eigenspace, Perron-Frobenius; matrix, Perron-Frobenius; operator,

Perron-Frobenius-Ruelle theory

Perron-Frobenius-Ruelle; theorem, Perron-Frobenius
phase modulation, 198
phase transition, $33,34,87$
physics, xxviii, xxxi, xxxiii, xxxv, 33, 154, see also quantum physics
mathematical, 6
pixel, 33
Plancherel formula, 164
pointwise convergence, see convergence, pointwise
Poisson
— integral, 50

- measure, see measure, Poisson
polar decomposition, 150, 201
positional number system, $\mathrm{xx}, 33,40,69$
Powers-Størmer, 138, 154
probability, xxviii-xxxi, xxxiii, xliv, 6,17 , $18,33-37,84,87,88,108,125,168$
combinatorial - theory, see combinatorial probability theory
conditional, 45, 254
- distribution, Gaussian, see distribution, Gaussian
free, 177
- measure, see measure, probability
non-commutative, 37, 177
- space, see space, probability
transition, see transition probability
process, xxviii, xxx, 48, 49, 86
branching, 5 , see also branching
Markov, see Markov process
operator-valued, see operator process
processing, see signal processing; image processing
product, 76, 114, 115, 207, see also infinite product
Cartesian, 43, 257
Cauchy, see Cauchy product
infinite, see infinite product
infinite-- measure, see measure, infinite-product
inner, 9, 75, 114, 193, 212, 257
matrix, see matrix product
- measure, see measure, product
operator, see operator product
random, 34, 84
Riesz, see Riesz product
tensor, xxvii, 6, 56, 58, 109, 142, 147-149, $151,152,158,165,168,179,180,186$, 189, 257, see also infinite product, tensor
projection, 10, 55, 94, 112, 117, 173, 216, 228
final, 173
initial, 173
orthogonal, 10, 135, 141, 167, 216
--valued measure, see measure, projection-valued
pure, 169
pyramid, 125, 127, 158, 159, 173, 188, 226
- algorithm, see algorithm, pyramid
dyadic, 159
singly generated, 159
quadrature, xxix, 131, 227, 228
- mirror, see filter, quadrature-mirror quantization, xxxi, 224-226
quantum
- field theory, xxix, 154
--mechanical state, see state, quantummechanical
—particle, 154
— physics, xxix, xxxii, 37
- statistical mechanics, see statistical mechanics, quantum
- theory, 131
quarter
- Cantor set, see Cantor set, quarter
- division, 21
quasi-free state, see state, quasi-free
R-harmonic function, see harmonic function, R -
R-invariant, see invariant, R -
Radon
- measure, see measure, Radon
--Nikodym derivative, see derivative, Radon-Nikodym
random scaling
random, 18, 59, 83
- process, 36, 55, 204
- product, see product, random
- variable, xviii, 55-57
\mathcal{A}-, xxiv
Gaussian, 56, 57
- walk, vi, xviii, xxiv, xxviii-xxx, xxxiv, xliii, 4-7, 16, 21, 34, 39, 40, 42, $48,57,77,83,84,87,100$, see also process
- model, viii, 2, 8, 9, 12, 21, 26, 40, 41, 83, 98, 136
- on branches, xxviii, xxx, 70
- on fractal, 21
range subspace, 117, 162
reconstruction, see perfect reconstruction
recursive, 129, 131
- algorithm, see algorithm, recursive
- system, 197
redundancy, 228, 229
refinement, 4
- equation, 111
regularity, xxxiv, 5, 80, 87, 107
Dini, 4
Lipschitz, 4
renormalization group, see group, renormalization
renormalize, xxix
representation, xxix, 124, 140, 165, 172, 190, 197, 214, 254-256
base-point, 219
boundary, see boundary representation
irreducible, 183
matrix, 140, 218
N-adic, 90, 101, 256
- of algebraic structure, xxix, 37
- of CAR algebra, 138
- of Cuntz algebra, 5, 22, 131, 136, 139, 152, 154, 155, 158, 161-164, 167, $168,170,174,179,180,182,183$, 187, 192, 196, 205, 211, 214, 218, 219, 227
— of \mathbb{Z} by translation, 111
permutative, 6, 180, 184, 185, 189, 190, 194
spectral, 112
subband, 219
- theory, 154, 155, 180
unitary equivalence of, 184
wavelet, 102, 182
reproduction formula, 144
resolution, xix, xxii, xxvi, xxix, xxx, 9, 10, $22,33,111,147,148,181,225,230$, see also multiresolution
- subspace, xxvi, 23, 109, 110, 123, 126, 152, 180, 207, 255
multiply generated, 114
visual, xvi, xviii, xx, xxii, 40, 225

Riesz

— product, 84, 97
-'s theorem, see theorem, Riesz's
row-contraction, 217, 222
D. Ruelle, xliii, 33, 34, 87, 155

Ruelle, see also eigenfunction, PerronFrobenius; eigenspace, PerronFrobenius; matrix, Perron-Frobenius; operator, Perron-Frobenius-Ruelle; Perron-Frobenius-Ruelle theory; theorem, Perron-Frobenius

- measure, see measure, Ruelle
- operator, see operator, Perron-Frobe-nius-Ruelle
-'s theorem, see theorem, Ruelle's
sampling, $17,18,21,36,37,213,215$
down-, 87, 124, 128, 132, 133, 205, 206, 212, 213, 257
Shannon, xxxi, 18
— theory, 5,18
up-, 87, 124, 132, 205, 206, 212, 213, 257
scale- N
- wavelet, see wavelet, scale- N
scale number, $19,40,70,147,190$, see also scaling number
scaling, xxii, xxiii, $3,22,23,25,69,80,99$, 100, 110, 111, 123, 142, 181, 186, 188, 195, 198, 208
scaling . spectral
- dimension, see dimension, scaling
dyadic, $2,3,110,162,181,192,200,208$, 209, 255
- equation
wavelet, 25
- function, $\mathrm{xx}, \mathrm{xxx}, 3,4,12-14,16,23$, 25, 64, 111, 134, 207, 256
Daubechies, xxxv, 12, 13, 125
Haar, xxxv, 13, 14, 103
stretched Haar, 12, 13, 103
- identity, $\mathrm{xx}, 3,10,14,15,17,25,30$, 91, 102, 103, 109, 111, 123, 130, 131, 134, 199, 209
Cantor, 14
— in the large, 14
— number, 143, 146, 147, 188, 208
- operator, see operator, scaling
- relation, 3, 75
--similarity, 9, 33, 180
- transformation, 9, 66, 79, 80
fixed, $3,9,10,22,66,188$
Schmidt
Gram-, see algorithm, Gram-Schmidt
-'s decomposition theorem, see theorem, Schmidt's
segment, $165,166,186,257$
self-similarity, xxix, xxxv, 9, 48
separation of variables, 158, 179
C.E. Shannon, xxxi, 18

Shannon sampling, see sampling, Shannon shift-invariant, see invariant, shift-
σ-additive, see measure, σ-additive
σ-algebra, xviii, xxiv, 27, 28, 37, 40, 47, 94, 149, 204, 251-253, 255
Borel, xxiv, 43, 251
-s, countable family of, 37
sub-, xxiv, 37
tail-, 37
σ-invariant, see invariant, σ -
signal analysis, xvi, xxvi, 40, 223
signal processing, vi-viii, xv, xvi, xix-xxii, xxvi, xxviii, xxxi-xxxvii, xliv, 4, 6, 10, $18,23,25,26,33,37,39,87,123-125$, 130, 131, 135, 155, 181, 187, 189,

205, 206, 210-212, 215, 216, 218,
219, 223, 224, 227-229, 231, see also image processing; speech signal
singly generated, $\mathrm{xxx}, 159,160,173$
six-tap, 22, 146
slanted, see matrix, slanted
space
compact Hausdorff, 101
detail, 33, 123, 255
Euclidean, 22
ambient, 81
function, xxii, xxvi, $9,22,59,109,130$, $142,146,147,157,158,179,190$, 207, 210, 228, 251
ambient, 3
Hilbert, xviii-xxi, xxiii, xxvii, xxxvi, 3, 5, $6,10,14,15,22,28-31,33,36,37$, 58, 71, 79, 87, 93, 97, 109, 110, 114, 136, 139, 140, 142-144, 147-152,
$157,158,161,162,165,169,170$,
$172,174,176,180-184,186,188$, 189, 196-199, 204, 207, 210, 212, 213, 217, 218, 221, 222, 228-230, 251, 252, 254, 257
ambient, 25, 26, 142, 152, 188, 207, 229
complex, 58, 114, 143, 144, 173, 182-184, 203, 252
dilated, 229, 230
fractal, 14, 17, 72, 97, 110, 158, 196, 198

- geometry, xxvi, 109, 142, 148, 179, 198, 207, 221, 230
operators in, xxxii, 6, 37, 131, 138, 142, 143, 161, 177, 180, 183, 209-211, 216, 218, 221, 251
symbolic, 110
path, xxix, 5, 6, 34, see also measure, path-space
probability, xviii, xxiv, 5, 7, 9, 21, 22, 37, $47,50,55,56,60,70,114,135,203$, 233, 255, 256
sparse matrix, see matrix, sparse spectral
— analysis, 158, 181
spectral transfer operator
joint — radius, xxxiii
- measure, see measure, spectral
— pair, 36, 71, 74
- representation, see representation, spectral
- theorem, see theorem, spectral
- theory, xliv, 37, 57
- transform, 110
spectrum, $34,138,254$
peripheral, 57
speech signal, xxxi, 124, 205, 227
state, xviii, xxiii, 6, 26, 37, 139-141, 151, 154, 157, 256
equilibrium, 154
multi-, 139
- on graph configuration, 35
quantum-mechanical, xviii, xxxii, 154
quasi-equivalent, 154
quasi-free, 138, 139, 154
statistical mechanics, $33,34,42,87,154$
quantum, 34,154
statistics, xxxi, xxxiii, 154
Stone-Weierstraß theorem, see theorem, Stone-Weierstraß
stretched Haar wavelet, see wavelet, Haar, stretched
R. Strichartz, 26, 76, 80, 87
subband, $23,124,205,215,227$
- coding, xxxi, 123
— filter, see filter, subband
frequency, see frequency subband
- representation, see representation, subband
subdivision, xxxii, xxxv, 4, 123, 124, 195
- algorithm, see algorithm, subdivision
dyadic, xxxv
Mallat, see Mallat subdivision
subinterval, 167
dyadic fractional, see dyadic fractional subinterval
N-adic, see N-adic subinterval p-, see p-subinterval
subspace
invariant, see invariant subspace
resolution, see resolution subspace
substitution, iterated, 34
symbolic dynamics, see dynamics, symbolic synthesis, 124, 132, 205, 206, 227, see also analysis (engineering)
tap number, 147, see also two-tap; four-tap; six-tap
tensor, $140,148,150,162$
- factorization, see factorization, tensor
— product, see product, tensor
theorem
dominated convergence, 65, 79
Fatou-Primalov, 48, 50
"Fatou's lemma", 101
Fubini's, 191
Karhunen-Loève, 55, 58, 148, 204
Kolmogorov's, 204
"Kolmogorov's lemma", 48, 149
martingale convergence, $21,48,51,92$
Perron-Frobenius, 34, see also Perron-Frobenius-Ruelle theory
Riesz's, 37, 45, 46, 141
Ruelle's, xxxiv, see also Perron-Frobenius-Ruelle theory
Schmidt's, 58, 148, 150
"Schwarz's inequality", 31
spectral, 39, 55, 58, 110, 112, 150, 201
Stone-Weierstraß, 27, 39, 43-46, 79
Szego's limit, 154
uniqueness, 86
"Zorn's lemma", 172
tiling, 87, 124, 165, 166, 182, 185-189
dyadic, 187
self-affine, 100
time-localized function, see function, time-localized
torus, 25, 204, 251, see also one-torus
trace
- formula, 34
normalized, 184
traditional wavelet setup, $\mathrm{xxx}, 4,6,10,25$, 26, 71, 110, 112
transfer operator, see operator, transfer
transformation wavelet
transformation
- group, see group, transformation
- rule, 165, 166, see also basis transformation
transition
- measure, see measure, transition
- operator, see operator, transition
- probability, xxxiv, 5, 9, 12, 17, 19, 21, $34,37,39-41,48,50,59,62,63,70$, 254
translation, 110, 111, 198
integer, 126, see also integral translates
--invariant, see invariant, translation-
tree, xxxiv, 5, 42, 87, 124, see also combinatorial tree; decision tree; Farey tree
two-cycle, 160
2-fold branch mapping, see branch mapping, 2-fold
two-tap, 146
Tychonoff infinite-product topology, 7, 43
uniqueness theorem, see theorem, uniqueness
unit interval, 62, 90, 137, 139, 166
unitarity, 132, 174, 175, 183, 191, 220
unitary, xix
- equivalence, 151, 163, 169, 184
- extension principle, 107, 222
infinite-dimensional - group, see group, infinite-dimensional unitary
— isomorphism, see isomorphism, unitary
- matrix, see matrix, unitary
- operator, see operator, unitary
- scaling operator, see operator, scaling, unitary
up-sampling, see sampling, up-
variable
dual, see dual variable
Fourier-dual, see Fourier dual
random, see random variable
walk, $6,41,128$, see also transition; random walk
wavelet, vi, vii, $\mathrm{xv}-\mathrm{xvii}, \mathrm{xix}, \mathrm{xx}, \mathrm{xxv-xxx}$, xxxii-xxxvi, xliii, xliv, 1-7, 9, 14, 16, $17,22,23,25,33-37,39,40,57,58$, 64, 71, 79-81, 83, 87, 91, 99, 100, $104,105,107,109,111,122,130$, 131, 142, 151, 152, 155, 158, 179, 182, 189, 190, 211, 222-230, 235, 256, see also traditional wavelet setup
- algorithm, see algorithm, wavelet
- analysis, xv, xx, xxviii, xxx, xxxii, xxxiii, xliii, 4, 6, 10, 34, 57, 60, 84, 98, $99,109,181,188,208,210,225,226$
band-limited, 4
— basis, see basis, wavelet
- coefficient, see coefficient, wavelet
compactly supported, xxx, 14
- construction, xix, xxix-xxxi, xxxiii, 1, $4,5,7-9,13,14,36,57,83,97,119$, 121-124, 130, 131, 136, 157, 179, 180, 192, 198
Daubechies, 5, 14, 121, 122, 124, 127, 128, 134-136, 228
- decomposition, see decomposition, wavelet
dual, xxxii
dyadic, 15, 39, 99, 123-125, 146
- expansion, 230
- filter, xxxii, xxxiii, 5, 23, 33, 37, 83, 87, 112, 122, 130, 136, 227, 230
matrix-valued, 22
fractal, 15, 71, 180
frame, see frame wavelet
frequency-localized, $\mathrm{xxx}, 7$
- function, vi, xvi, xx, xxvii, xxx, 1, 16, 102, 103, 123, 134, 256
Daubechies, 110
Haar, 103
gap-filling, 22, 72
Haar, xvi, xxxi, 5, 12-14, 99, 102, 103, 106, 119, 124, 127, 128, 131, 148, 192, 229
dyadic, 136, 137

stretched, 12, 13, 15, 16, 99, 100, 104, 106, 252
- matrix, see matrix, wavelet
multi-, see multiwavelet
multiresolution, $\mathrm{xxx}, 10,16,97,110,142$, 181, 190
N-adic, 64, 123
orthogonal, 124
- orthogonality, see orthogonality, wavelet
- packet, vi, xxxiv, xxxv, 4, 6, 22, 35, 110, 117, 122-126, 129-131, 136, 142, 153, 159, 176, 180, 187-189, 256
algorithm, see algorithm, wavelet packet dyadic, 127, 158, 159
Parseval, 13, 16, 103, 105
- representation, see representation, wavelet
scale- $N, 64,65,190,252$
- theory, xxix, 9, 33, 87, 110, 168, 177, 222-224
time-frequency, xxxi
time-scale, xxxi
traditional - setup, see traditional wavelet setup
- transfer operator, see operator, transfer, wavelet
- transform, 142, 186
discrete, 142, 180, 202
- transition operator, see operator, transition, wavelet
wavepacket coefficient, see coefficient, wavepacket
Weierstraß
Stone-- theorem, see theorem, Stone-Weierstraß
weight function, see function, W -
M.V. Wickerhauser, 117, 176, 177
N. Wiener, 34

Wold decomposition, see decomposition, Wold
zeta function, see function, zeta
Zorn's lemma, see theorem, "Zorn's lemma"

