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ANHA Applied and Numerical Harmonic AnalysisWavelets Through A Looking Glass: 
The World of the Spectrum
Ola Bratteli and Palle Jorgensen

This book combining wavelets and the world of the spectrum
focuses on recent developments in wavelet theory, emphasizing
fundamental and relatively timeless techniques that have a
geometric and spectral-theoretic flavor. The exposition is clearly
motivated and unfolds systematically, aided by numerous graphics.

Key features of the book:
• The important role of the spectrum of a transfer operator is 

studied
• Excellent graphics show how wavelets depend on the spectra of

the transfer operators
• Key topics of wavelet theory are examined: connected

components in the variety of wavelets, the geometry of winding
numbers, the Galerkin projection method, classical functions 
of Weierstrass and Hurwitz and their role in describing the
eigenvalue-spectrum of the transfer operator, isospectral families
of wavelets, spectral radius formulas for the transfer operator,
PerronFrobenius theory, and quadrature mirror filters

• New, previously unpublished results appear on the homotopy of
multiresolutions, approximation theory, and the spectrum and
structure of the fixed points of the associated transfer and
subdivision operators

• Concise background material for each chapter, open problems,
exercises, bibliography, and comprehensive index make this a
fine pedagogical and reference resource.

This self-contained book deals with the tools for important
applications to signal processing, communications engineering,
computer graphics algorithms, qubit algorithms and chaos 
theory, and is aimed at a broad readership of graduate students,
practitioners, and researchers in applied mathematics and
engineering. The book is also useful for other mathematicians 
with an interest in the interface between mathematics and
communication theory.
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Preface

ADVANCES in communication, sensing, and computational power have led to an
explosion of data. The size and varied formats for these datasets challenge existing
techniques for transmission, storage, querying, display, and numerical manipula-
tion. This leads to the paradoxical situation where experiments or numerical com-
putations produce rich, detailed information, for which, at this point, no adequate
analysis tools exist. —Conference announcement, Joint IDR–IMA Workshop on
Ideal Data Representation, Minneapolis, R. DeVore and A. Ron, organizers

Wavelet theory stands on the interface between signal processing and harmonic analy-
sis, the mathematical tools involved in digitizing continuous data with a view to storage,
and the synthesis process, recreating, for example, a picture or time signal from stored
data. The algorithms involved go under the name of filter banks, and their spectacular
efficiency derives in part from the use of hidden self-similarity, relative to some scaling
operation, in the data being analyzed. Observations or time signals are functions, and
classes of functions make up linear spaces. Numerical correlations add structure to the
spaces at hand, Hilbert spaces. There are operators in the spaces deriving from the dis-
crete data and others from the spaces of continuous signals. The first type are good for
computations, while the second reflect the real world. The operators between the two
are the focus of the present monograph. Relations between operations in the discrete
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and continuous domains are studied as symbols. The mathematics involved in assigning
operators to the symbolic relations is developed as a representation theory. The presenta-
tion is self-contained, and may serve as an introduction for readers who encounter these
ideas for the first time and who would like to learn them from scratch.

A main point is the study of intertwining operators between, on the one side, the
discrete world of high-pass/low-pass filters of signal processing, and on the other side,
the continuous world of wavelets. There are significant issues in operator algebra and
representation theory on both sides of the divide, and the intertwining operators shed
light on central issues for wavelets in higher dimensions. Tools from diverse areas of
analysis, as well as from dynamical systems and operator algebra, merge into the wave-
let analysis. The diversity of techniques also adds to the charm of the subject, which
continues to generate new mathematics.

The purpose of this book is twofold: first, to give a general presentation of some recent
developments in wavelet theory, with an emphasis on techniques that are both fundamen-
tal and relatively timeless, and that have a geometric and spectral-theoretic flavor. It is
our hope that it can be used equally well as a text for graduate students, as a reference
book for specialists and researchers in neighboring fields, and in applications. Secondly,
we are presenting some new results for the first time that have not previously appeared
in papers, for example on the homotopy of multiresolutions, on approximation theory,
and on the spectrum of associated transfer and subdivision operators. The backdrop to
our book is Daubechies’s classic [Dau92], but we also wish to stress the influence of a
crucial paper of P. Auscher [Aus95] that solved two basic questions in wavelet theory,
and that motivated the direction the subject has taken since then. The first question at-
tacked in [Aus95] is about the limitations of the multiresolution method for wavelets:
What are the wavelets that do not directly derive from a scaling function, or from some
resolution subspace? The second question concerns localization in the dual variable, i.e.,
the frequency variableω of the Fourier transform̂ψ (ω) whenψ is given to be a wavelet
function: Couldψ̂ ( · ) be supported in a half-line,0 ≤ ω < ∞? The answer turns out
to be “no” unlessψ̂ is a rather singular function. In summary, both questions are about
frequency localization of wavelets, and our understanding of the tradeoffs between reg-
ularity and stability. Both questions are spectral-theoretic.

The interdependence among the chapters in this book can roughly be summarized as
follows.

1 2

3 4 5

6- -

- -
�
���

While this diagram does not exhaust all the interconnections among the chapters and the
topics of the book, we hope it will assist instructors (and students) who might perhaps
only need some, but not all, of the chapters in a semester-long course: An applied course
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that stresses wavelets and some of their applications could be based on the first row
1 2 6- - , while the variants of the second row could be used alternatively in
a course more focused toward operator theory. The tutorials at the start of each chapter
supply further guides to interconnections of topics, and cross-fertilization among the var-
ious ideas and techniques that make up the book. Section 3.3 and the tutorial of Chapter 3
are somewhat independent of the other material in the lower row, and could beneficially
be read in conjunction with Section 1.2 instead. In Section 2.5 we use some results from
Sections 3.4, 4.3, and 4.4, but we do not otherwise need techniques from these sections
here. Sections 1.3 and 1.4 are logically independent from the rest and may be omitted at
the first reading. Likewise the results on homotopy of wavelets in Sections 2.1 and 2.4
may be omitted at the first reading except for the sequence (2.1.11)–(2.1.28) that is basic
for Section 2.2. So in principle Chapters 3–5 (except Section 3.3) could be read as an
introduction to transfer operators and their dual subdivision operators, independently of
the wavelet applications of these results. Chapters 1–2 (with Section 3.3 added) could be
read as an introduction to multiresolution wavelet theory.

Each chapter, and some sections within chapters, open with tutorials or primers of
varying length. Written with minimal use of symbols and formulas, they serve both as
summaries of some main ideas worked out in full detail inside the chapter (or section)
in question, and also as guided tours through the background material, and especially
as motivation. The tutorials are written in a style that is much more informal than that
of the book proper, and this is intentional. They are in fact meant as friendly invita-
tions to the topics to follow, with the emphasis on friendliness, even at the cost of occa-
sional oversimplifications. The conclusions of tutorials and epigraphs are marked with
“dingbats,” typographic ornaments depicting scaling and wavelet functions. See Exam-
ple 2.5.3 within for a discussion of how these depictions are generated. The ones used as
dingbats are computed at the eighth cascade level. Brian Treadway is making available,
on the authors’ web sites (see note on next page), a sequence of such graphical depic-
tions arranged to show how variations in the masking coefficients propagate and create a
continuous moving picture in the variation of the scaling/wavelet functions, illustrating
the algorithm in Chapter 1, (1.2.9)–(1.2.10), and a theorem in Chapter 2, Theorem 2.5.8.

Each chapter concludes with exercises. Most of them can readily be assigned as home-
work by an instructor teaching from the book, but a few exercises are more challenging,
and they are marked with a star. Others will require the student to check journal articles,
and do some research. They are marked with two stars. You will notice that Chapter 1
concludes with a relatively larger number of exercises than do the other chapters: Chap-
ter 1 is where many basic concepts are first introduced. It is where the terminology for
the rest of the book is discussed, and a number of the exercises are meant to help the
student acquire a working familiarity with new terms and standard definitions. This is
also why Chapter 1 concludes with a list of terminology. It turns out that some words are
used differently by mathematicians, engineers, physicists, and computer scientists, and



xiv Preface

the list may perhaps serve as a dictionary. In fact, you might find it useful to consult this
list right from the start, or the first time you come across a concept that you wish to have
expounded.

You are invited to visit the World Wide Web pages of the authors∗ for updates and
corrections to the book, for example concerning the open problem in Section 2.6.

A relatively moderate-sized book like this must of necessity omit many topics that are
nonetheless both important and exciting. A list of exciting wavelet developments in the
1990s includes wavelet packets [CMW95, CoWi93], ridgelets and curvelets [CaDo00],
the method of successive liftings for the discrete wavelet transform algorithm [DaSw98],
[JelC01], applications to medicine and biology [AlUn96], and quantum computing wave-
let programs [Kla99], [FiWi99], [Fre00]. While these are mentioned, or touched upon,
inside the present book, they are treated only peripherally, as they branch off from the
central theme of our book, and space is limited. Readers who may wish to look at the
more advanced details of the exciting topics in the IMA workshop mentioned in the
header of our Preface can consult the book [DLLP01]. It covers applications to three-
dimensional computer graphics of the cascading refinement algorithm, and nonlinear
wavelet approximations, among a list of current topics on the frontier of applied wavelet
theory.†

The second named author (P.J.) thanks the Mathematics Institute of Oslo University
for kind hospitality, and for support during a visit when the research was done. We also
thank Brian Treadway for expert typesetting, graphics production, artistic and algorith-
mic creativity, corrections,MATHEMATICAwork, helpful suggestions, and arbitration
of disputes between the two authors. Among other things, Section 3.3 is almost en-
tirely due to him. For mathematical help, we gratefully acknowledge kind suggestions
from Erik Alfsen, Bill Arveson, Bachir Bekka (who provided the information in Section
1.8), David E. Evans, Peter Høyer, Gerald Kaiser, Andreas Klappenecker, David Kribs,
David Larson, Roger D. Nussbaum, William L. Paschke, Jean Renault, Gilbert Strang,
Brian Treadway, and Radka Turcajov´a. P.J. also acknowledges support from the Insti-
tute for Mathematics and its Applications in connection with the NSF-funded workshop
in March 2001 mentioned above. P.J. had many discussions about the research of the
present monograph with the other members of the workshop. Finally, we thank Gerald
Kaiser for kindly letting us quote the paragraph which opens Section 1.1, from his book
[Kai94]. In comparing our book with his, and others from that time, we note that the
use of algorithms now has a more dominant role in wavelet analysis, a fact that is also
reflected here. We are pleased to thank Ann Kostant for her encouragement from the
outset, and her professional editorial advice and kind help during the final stages of the

∗http://www.math.uio.no/˜bratteli/wavebook/info.html and http://www.math.uiowa.edu/˜jorgen/ .
†There are two lists of web addresses of researchers inwavelets and related fields that the reader may find useful:

http://www.cs.wisc.edu/˜amos/atpeople.html and http://www.cs.tamu.edu/faculty/klappi/people.html . A rich source of
information on the latest developments inwavelet theory may be found in http://www.wavelet.org/wavelet/index.html .
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preparation of this book. The editors John Benedetto and Akram Aldroubi of the ANHA
series also have been a constant source of help and encouragement. P.J.’s view of the
subject owes much to discussions he had with John and Akram at several conferences
on wavelet analysis (see the text below), and the interaction that results from attending
lectures from one or the other of us. We are grateful to reviewers for encouragement
and detailed suggestions: they include A. Aldroubi, G. Strang, and J. Benedetto. We also
benefited from a detailed list of helpful and constructive suggestions from an anonymous
referee.

The material and the texture of this book grew out of recent developments in wavelet
theory since the publication of [Dau92], and out of courses taught at the University of
Iowa over six years. The latter include both advanced undergraduate courses and more
specialized graduate courses. In addition, the authors have lectured at many universities
in the U.S., Europe, and Asia on wavelets, for example, Georgia Institute of Technology
(Atlanta), Louisiana State University, Wright State University (Ohio), Texas A & M
University, University of Iowa, Vanderbilt University (Tennessee), University of Cincin-
nati (Ohio), University of Oslo (Norway), University of Aarhus (Denmark), University
of Copenhagen (Denmark), University of Wales (U.K.), Imperial College (London),
University of Rome I (Italy), Mathematisches Forschungsinstitut Oberwolfach (Ger-
many), Universitatea Ovidius Constanta (Romania), Chinese University of Hong Kong,
Hong Kong City University, Zhongshan University (Guangzhou, China), University of
Shanghai (China), Australian National University, University of Newcastle (Australia),
National University of Singapore, University of Toronto, and University of Waterloo
(Canada). We are extremely grateful to the hosts at these universities, and to the stu-
dents attending the lectures for the feedback they gave on some of the material going
into the book. We wish to thank our hosts, Yang Wang, Chris Heil, and Jeff Geronimo
(Georgia Tech.), GestuŕOlafsson (LSU), Steen Pedersen (Wright State U.), Dave Larson
(Texas A & M), Akram Aldroubi, Doug Hardin, and Daoxing Xia (Vanderbilt U.), Klaus
Thomsen (U. of Aarhus), David Evans (Cardiff University), Ka-Sing Lau (CUHK, Hong
Kong), Judy Packer, Zuowei Shen, and S.L. Lee (Singapore), Derek Robinson (ANU,
Australia), Ken Davidson (U. of Waterloo), and G.A. Elliott (U. of Toronto).

Financial support for our work has come from the Institute of Mathematics of the
University of Oslo, Norway, the Norwegian Academy of Arts and Sciences through the
Centre for Advanced Study, and from the U.S. National Science Foundation.

Oslo and Iowa City, May 2002
Ola Bratteli and Palle E. T. Jorgensen

2000Mathematics Subject Classification:Primary 42C40, 46L60, 47L30, 42A16, 43A65; Secondary 46L45, 42A65,
41A15

Key words and phrases:wavelets, cascade approximation, cycle, homotopy, cascade algorithm, transfer operator,
Ruelle operator, orthogonal expansion, quadrature mirror filter, isometry in Hilbert space,C∗-algebra
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