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Introduction

Prerequisites

See our suggestions in the Preface and in the following tutorial. What if, you say,
I don’t have the prerequisites for reading the prerequisites? Start the book anyway!
You will pick them up along the way.

Overture: Why wavelets?

The first wavelet was discovered by Alfred Haar long ago, but its use was limited
since it was based on step-functions, and the step-functions jump from one step to
the next. The implementation of Haar’s wavelet in the approximation problem for
continuous functions was therefore rather bad, and for differentiable functions it is
atrocious, and so Haar’s method was forgotten for many years. And yet it had in it
the one idea which proved so powerful in the recent rebirth (since the 1980’s) of
wavelet analysis: the idea of amultiresolution. You see it in its simplest form by
noticing that a box functionB of (1.1) may be scaled down by a half such that two
copiesB′ andB′′ of the smaller box then fit precisely insideB. See (1.1).
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This process may be continued if you scale by powers of2 in both directions,
i.e., by 2k for integralk, −∞ < k < ∞. So for everyk ∈ Z, there is a finer
resolution, and if you take an up- and a shifted mirror image down-version of the
dyadic scaling as in (1.2), and allow all linear combinations, you will notice that
arbitrary functionsf on the line−∞ < x < ∞, with reasonable integrability
properties, admit a representation

f (x) =
∑
k,n

ck,nψ
(
2kx− n

)
, (1.3)

where the summation is over all pairs of integersk, n ∈ Z, with k representing
scaling andn translation. The very simple idea of turning this construction into
a multiresolution (“multi” for the variety of scales in (1.3)) leads not only to an
algorithm for the analysis/synthesis problem,

f (x)←→ ck,n, (1.4)

in (1.3), but also to a construction of the single functionsψ which solve the problem
in (1.3), and which can be chosen differentiable, and yet with support contained in a
fixed finite interval. These two features, the algorithm and the finite support (called
compact support), are crucial for computations: Computers do algorithms, but they
do not do infinite intervals well. Computers do summations and algebra well, but
they do not do integrals and differential equations, unless the calculus problems are
discretized and turned into algorithms.

The prerequisites for our present book include some familiarity with function
spaces and with rudimentary ideas from harmonic analysis. And, of course, if you
have had experience with Hilbert space, or integration theory, then this is a help;
but you will be able to pick up what you need along the way. You will notice
that the multiresolution analysis viewpoint is dominant, which increases the role of
algorithms; for example, the so-called pyramid algorithm for analyzing signals, or
shapes, using wavelets, is an outgrowth of multiresolutions.

One way to quickly brush up on basic ideas that you will meet along the way
through the chapters of our book is to consult one or both of the two books [Hub98]
and [KaLe95]. The first is a wonderful summary of the fundamental ideas behind
the wave of wavelet analysis which began in the mid-1980’s, and it is written with
a minimal use of mathematical formulas and a maximal use of good writing. You
will also learn of the history, and you will meet some of the researchers who gave
the early push to the subject. The second book [KaLe95] has somewhat of the same
flavor, but it is written for mathematicians. It has formulas, and in addition a lot of
excellent writing. Like [Hub98], it stresses the intuitive ideas behind the formulas.
Actually, it is two books: the first one (primarily by Kahane) is classical Fourier
analysis, and the second one (primarily by P.-G. Lemari´e-Rieusset) is the wave-
let book. It will help you, among other things, to get a better feel for the French
connection, the Belgian connection, and the diverse and early impulses from appli-
cations in the subject. Enjoy!

We mention two fast and friendly guides through the basic ideas of harmonic
analysis terminating in multiresolution analysis: Chapter 11 in [McWe99], and
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Chapter 15 in [DaDo02]. Then there are two popular articles in theNotices of
the American Mathematical Society [Bri95, Wal97] which serve as entries to the
subject. Both are written for students and the general (mathematical) public. C.M.
Brislawn explains in [Bri95] how the idea of the two-channel multirate filter bank
and the wavelet packets have now turned into a commercial algorithm which is
used by the F.B.I. in digitizing, compressing, and storing fingerprints. The sec-
ondNotices article, by J.S. Walker, introduces in [Wal97] several discrete wavelet
algorithms to the public, and compares the classical Fourier approach to the analy-
sis/synthesis problem with the one based on wavelets and multirate analysis. Both
Notices articles include lots of examples and motivation which are ideally appropri-
ate for the viewpoint in our book: the Daubechies method, the vanishing moments,
the multiresolutions and their more recent variations and generalizations.

Returning to (1.1) and (1.2) (see also (1.13)), we see that the scaling functionϕ

itself may be expanded in the wavelet basis which is defined fromψ, and we arrive
at the infinite series

ϕ (x) =
∞∑

k=1

2−kψ
(
2−kx

)
(1.5)

which is pointwise convergent forx ∈ R. (It is a special case of the expansion
(1.3) whenf = ϕ.) In view of the picture ( ) below, (1.5) gives an alternative
meaning to the traditional concept of atelescoping infinite sum. If, for example,
0 < x < 1, then the representation (1.5) yieldsϕ (x) = 1 = 1

2 +
(

1
2

)2 + · · · , while

for 1 < x < 2, ϕ (x) = 0 = − 1
2 +

(
1
2

)2 +
(

1
2

)3 + · · · . More generally, ifn ∈ N,
and2n−1 < x < 2n, then

ϕ (x) = 0 = −
(

1
2

)n

+
∑
k>n

(
1
2

)k

.

So the functionϕ is itself in the spaceV0 ⊂ L2 (R), andϕ represents theinitial
resolution. The tail terms in (1.5) corresponding to∑

k>n

2−kψ
(
2−kx

)
=

1
2n

ϕ
( x

2n

)
(1.6)

represent thecoarser resolution. The finite sum
n∑

k=1

2−kψ
(
2−kx

)
represents themissing detail of ϕ as a “bump signal”. While the sum on the left-
hand side in (1.6) isinfinite, i.e., the summation indexk is in the rangen < k <∞,
the expression2−nϕ (2−nx) on the right-hand side is merely a coarser scaled ver-
sion of the original functionϕ from the subspaceV ⊂ L2 (R) which specifies the
initial resolution. Infinite sums areanalysis problems while a scale operation is a
single simplealgorithmic step. And so we have encountered a first (easy) instance
of the magic of a resolution algorithm; i.e., an instance of a transcendental step (the
analysis problem) which is converted into a programmable operation, here the op-
eration of scaling. (Other more powerful uses of the scaling operation may be found
in the recent book [Mey98, especially Ch. 5] by Yves Meyer and [HwMa94].)



4 1. Introduction

The sketch below allows you to visualize more clearly this resolution versus
detail concept which is so central to the wavelet algorithms, also for general wave-
lets which otherwise may be computationally more difficult than the Haar wavelet.
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The wavelet decomposition of Haar’s bump functionϕ in (1.1) and (1.5)

Using the sketch we see for example that the simple step function

f (x) = aϕ (x) + bϕ (x− 1) = aχ[0,1〉 (x) + bχ[1,2〉 (x) (1.7)

0 1 2

a

b

has the wavelet decomposition into a sum of acoarser resolution and aninterme-
diate detail as follows:

f (x) =
a− b

2
ψ
(x

2

)
︸ ︷︷ ︸
intermediate detail

+
a + b

2
ϕ
(x

2

)
︸ ︷︷ ︸

coarser version

, x ∈ R. (1.8)

Thus the details are measured as differences. This is a general feature that is valid
for other functions and other wavelet resolutions. See, for instance, Example 2.5.3,
Lemma 2.2.2, and Exercise 1–12.

Combining (1.5) and (1.8), we note that the complete orthogonal wavelet ex-
pansion for the functionf in (1.7) is

f (x) =
a− b

2
ψ
(x

2

)
+ (a + b)

∞∑
k=2

1
2k

ψ
( x

2k

)
. (1.9)

While this observation is immediate, it highlights a different feature of the wavelet
expansion which makes it far superior to the classical Fourier series: It is strikingly
effective in its analysis of point singularities, of which (1.7) is a natural case in
point. A glance at (1.9) reveals that for alln ∈ Z+, the number of wavelet co-
efficients exceeding1n is of the orderlogn, and this count is thus asymptotically
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	 n for largen. This turns out to be valid generally for scale-based wavelets. The
corresponding count of the number of Fourier coefficients is typically at least of
the ordern.

In summary, point singularities are localized in the world of wavelets, while
they are not for the typical classical orthogonal expansions. The effect of the point
singularity is encoded in a small number of big wavelet coefficients, and the rest
can be ignored. The recognition that wavelets analyze effectively functions which
are smooth away from isolated singularities has made them popular in applications
such as image coding and data compression.

An added significance of (1.8): It serves to illustrate the use of a quantum
computing algorithm for the implementation of multiresolution analysis for Haar’s
wavelet. In the realm of qubits (denoted|0〉 and|1〉), we work with quantum states
|0〉, |1〉, |+〉, and|−〉, where|±〉 = 1√

2
(|0〉 ± |1〉). So the assignmentϕ 
→ |0〉,

ϕ (x− 1) 
→ |1〉, 1√
2
ϕ
(

x
2

) 
→ |+〉, and 1√
2
ψ
(

x
2

) 
→ |−〉, turns (1.8) into the
beginning of a quantum computing algorithm. Have a look at Exercise 1–19. The
two quantum-mechanical states|±〉 = 1√

2
(|0〉 ± |1〉) are written in the lingo of

Dirac, i.e., as ket vectors, and they are taken up in much more detail in Section 1.3
below. We note here that they are basic to quantum information theory, where they
are calledcoherent states. It is a basic fact that coherent states are one of the sources
of the speedup of quantum computer programs over classical ones; the other source
of speedup is calledquantum entanglement. Both are discussed in Section 1.3.

With the work of P. Shor and others, it has been demonstrated that exponential
speedup of algorithms can be realized in the quantum realm, i.e., when registers of
qubits are used in place of the classical bits, and when quantum gates, in the form of
unitary matrices acting on tensor slots, take the role of the classical logic gates. Uni-
tary matrix factorizations are then used in the algorithms. If the quantum algorithms
are shorter than the best available (analogous) classical ones, there is of course
a gain. But the dictates of quantum theory introduce new and serious sources of
“error” called decoherence, i.e., when some qubits that are part of the program
degenerate and behave classically. Clifford analysis is used in error correction.
Wavelet algorithms split functions in a fixed resolution subspace into components,
a coarser one, and detail parts. This can be turned into a quantum algorithm, and
the factorization problem for the resulting unitary matrix can be implemented ef-
fectively, as we show in Section 1.3 and a number of the exercises in this chapter.

Wavelets really have an early start in modern mathematical history, going back almost a
hundred years, with a delayed reaction. In fact, the current attention they are receiving in
mathematics and its applications dates only from the mid-eighties, where Daubechies’s
discovery of the wavelets that have both compact support and a degree of smoothness
regularity stands out. Others had a hand in it as well; see [Dau92]. One reason for a
delay in the discovery of the “good” wavelets, long after the Haar one in [Haa10], is
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that the variety from which they are selected is a large one, with most of the territory
parameterizing rather raggedL2 (R)-wavelets. Here we take the view that the variety is
defined from the masking coefficients, or equivalently, the quadrature mirror filters of
electrical engineering. These filters in turn have a history of their own going back before
the eighties, in signal processing, and independently in operator algebra theory. One
aim of this book is to outline the algebraic variety of points which label the wavelets,
identify structural features of this variety, such as its connected components, and indicate
spectral-theoretic selection criteria which help us to pick out the regular wavelets from
the vast landscape of the more ragged or fractal-looking ones.

A second aim is to show that the space of scaling/wavelet functions with a fixed com-
pact support obtained by multiresolution analysis of scaleN has a finite number of
connected components which can be computed by using the winding number of the de-
terminant of the continuous function fromT into GL (N) defining the scaling/wavelet
functions. HereT denotes the torus, viewed alternately as{z ∈ C | |z| = 1} or R�2πZ;
andGL (N) is the general linear group. In order to analyze the connected components
of wavelets in stronger topologies we have to use spectral properties of the associated
transfer operator (see (1.19) below), and we show that operators of this type, as operators
onL2 (T), have the open unit disc in their point spectra, although it is well known that
the restrictions of these operator to the spaces

Eα =

{∑
n∈Z

xne
int

∣∣∣∣ ∑
n

|xn|2 e2α|n| <∞
}

(1.10)

for α > 0 are of trace class.
We also study the spectrum of the transfer operators in other function spaces onT,

and establish similar properties. Chapters 4 and 5 are devoted to a detailed study of pe-
ripheral spectral properties of the transfer operator in nongeneric cases, in the setting of
biorthogonal wavelet bases. (Nongeneric means that the eigenvalue1 occurs with mul-
tiplicity greater than1 for the transfer operator, in the setting of Proposition 4.3.1, or
that there are other eigenvalues of absolute value1.) It is demonstrated that the space
of fixed points of the transfer operatorR as an operator onC (T) has the structure of a
finite-dimensional commutativeC∗-algebra in a product different from the usual point-
wise product of functions inC (T). Thus theR-invariant positive functionalsω onC (T)
with ω (1) = 1 form a finite-dimensional simplex [Alf71], and the extremal points in this
simplex are certain measures on cycles onT under the mapz → zN which are charac-
terized. These cycles are important in wavelet theory because of their role in the study
of frame properties and of the orthogonality relations which go into the construction of
multiresolutions.

Before introducing systematically the concept ofmultiresolution analysis in Section
2.2, we sketch it briefly for the simple example in (1.2), i.e., for the Haar wavelet. Since
the Haar wavelet is so simple and transparent, it can well be understood without first in-
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troducing explicitly the multiresolution; our viewpoint is instead to use Haar’s intuitive
and easy construction for explaining the multiresolutions. The point is that the general
mechanics of multiresolution analysis may then be used much more widely for the pur-
pose of generating a variety of wavelets with general properties from a preassigned list
of specifications. The Haar wavelet itself may in fact not have all the properties that are
needed in a particular application.

Consider first the subspaceV0 of L2 (R) which is the closed linear span of the func-
tions {ϕ (x− k) | k ∈ Z} whereϕ is the unit bump function of (1.1). ThenV0 is the
space of all step functions inL2 (R) with jump points, or knots, at the integral points on
R. Let U : f (x) 
→ 1√

2
f
(

x
2

)
be the unitary operator onL2 (R) which scales functions

by the factor2. ThenU (V0) (⊂ V0) is a more coarse version of the resolutionV0. It
consists of the more special step functions inL2 (R) with knots only on2Z, i.e., only on
the even integers; and similarly,U−1 (V0) is the larger resolution subspace consisting of
all functions inL2 (R) which are step functions with knots on the finer grid1

2Z. Since
the constant (nonzero) functions are not inL2 (R), it is then clear that∧

j∈Z
U j (V0) = {0} (1.11)

and ∨
j∈Z

U j (V0) = L2 (R) , (1.12)

where the symbol
∧

applied to some closed subspaces inL2 (R) refers to intersection,
while

∨
refers to the closed linear span of the spaces, in the present case⋃

j<0

U j (V0)

with the overbar denoting closure inL2 (R). More generally, we say that a closed sub-
spaceV0 in L2 (R) which satisfiesU (V0) ⊂ V0 and (1.11)–(1.12) is aresolution. The
vectors in

V0 � U (V0) = {f ∈ V0 | 〈f g〉 = 0 for all g ∈ U (V0)}
then represent thedetail which must be added to thecoarser resolution U (V0) in order
to recover the original oneV0.

The geometry of the situation is again illustrated nicely by Haar’s example. To see
this, return to the functionsϕ andψ of the sketches (1.1)–(1.2). It is immediate that

ϕ
(x

2

)
= ϕ (x) + ϕ (x− 1) , ψ

(x
2

)
= ϕ (x)− ϕ (x− 1) . (1.13)

It follows that the second functionψ is the zig-zag function of (1.2), thatψ is in the
detail space D := U−1 (V0) � V0, and finally that the translates{ψ (x− k)}k∈Z form



8 1. Introduction

an orthonormal basis for D. The last assertion means that the translated functions are
mutually orthogonal, that they haveL2 (R)-norm equal to1, and that their closed linear
span isD. Introducing

m0 (t) := m0

(
e−it
)

=
1√
2

(
1 + e−it

)
, (1.14)

called the low-pass filter, and

m1 (t) := m1

(
e−it
)

=
1√
2

(
1− e−it

)
, (1.15)

called the high-pass filter, and applying the Fourier transform to (1.13), we get the equiv-
alent relations

√
2ϕ̂ (2t) = m0 (t) ϕ̂ (t) ,

√
2ψ̂ (2t) = m1 (t) ϕ̂ (t) . (1.16)

But a direct computation also yields

ϕ̂ (2t) = e−it sin t

t
=: e−it sinc (t) = 1− it− 2t2

3
+ · · · (1.17)

and

ψ̂ (2t) = ie−it tan
(
t

2

)
sinc (t) = ie−it 1− cos t

t
=

it

2
+

t2

2
+ · · · (1.18)

(where we have indicated the start of the power series); and we get, from (1.16), as a
bonus, an independent verification of the classical infinite product formula

sinc (t) =
∞∏

k=1

cos
(

t

2k

)
.

In this book we will also consider scaling by a generalN ∈ {2, 3, 4, . . . } in addition
to scaling by2 as above. We will consider atransfer operator R constructed from a
functionm0 (z) which is a polynomial or a Lipschitz function ofz ∈ T = R�2πZ,

Rm0 (f) (z) = Rm0f (z) =
1
N

∑
w∈T

wN=z

|m0 (w)|2 f (w) . (1.19)

It is defined on suitable functionsf on T. The spectral theory ofRm0 depends on the
space of functionsf which is chosen (see Sections 3.2 and 3.4). For example, if this
space is the set of Fourier polynomials inz (see Definition 3.2.1),Rm0 has a finite
spectrum, and it keeps the same finite spectrum if it is extended to Hilbert spaces of
functions which are analytic in an open annulus containingT; see Proposition 3.5.1
or [Dau95]. However, we will see in Section 3.2 that ifRm0 is extended toL2 (T),
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the eigenvalue spectrum ofRm0 contains an open disc around the origin. We will call
the spectrum of the restriction ofRm0 to the two former spaces the Perron–Frobenius
spectrum. The spectrum ofRm0 is of interest in multiresolution wavelet analysis for the
following reason: if

m0 (z) =
∑

n

anz
n (1.20)

is the Fourier decomposition of the low-pass filterm0, then thescaling function associ-
ated tom0 is a function or distributionϕ on R satisfying the identity

ϕ (x) =
√
N
∑
n∈Z

anϕ (Nx− n) , (1.21)

which is called thescaling identity. In general, a solutionϕ of this equation may just be
a distribution, andϕ may even be a function which is not locally integrable. (We will
see an example of this in Exercise 1–7, and, in the context of a slightly different scaling
identity, in (3.5.30)–(3.5.32).) Solutions of (1.21) can sometimes be found by iterating
the right-hand side in (1.21), starting at

χ (x) =

{
1, 0 ≤ x < 1,
0, x ∈ R \ [0, 1〉 , (1.22)

by using thecascade iteration

Ma : ψ 
−→
√
N
∑

n

anψ (Nx− n) . (1.23)

If m0 is a polynomial satisfying (1.25) and (1.26) below, then‖R‖ = 1 onL∞ (T), and
the cascade iteration converges inL2 (R) if and only if the peripheral spectrum (= the
intersection of the spectrum with the unit circleT) of R as an operator onC (T) consists
of 1 alone, and the eigenvalue1 is nondegenerate; see Section 2.5 for this and more
general results. (It may happen that even though the eigenvalue1 is nondegenerate for
R|C(T), it is degenerate forR|L∞(T)! See Example 3.5.5.)

A second significance of the eigenspaceker (1−Rm0) for the transfer operator of
(1.19) is that it predicts orthogonality of theZ-translates for a scaling functionϕ, i.e., a
solutionϕ to (1.21): Supposeϕ ∈ L2 (R) satisfies (1.21), and setc = (cn)n∈Z, where
cn =

∫
R
ϕ (x)ϕ (x− n) dx are the correlation coefficients. IfRm0 is viewed as an

∞×∞ matrix relative to the Fourier basis(zn)n∈Z, then it can be easily checked that
Rm0c = c. Hence, ifc is in a spaceC of sequences containing the sequence(δ0,n)n∈Z,
and if ker (1−Rm0 |C) = C (δ0,n)n∈Z, then it follows that the set of translates

{ϕ (x− n)}n∈Z (1.24)

is an orthogonal family of functions inL2 (R). Even if theZ-translates in (1.24) are not
an orthogonal set of functions, an identification of spacesC, and the structure of the cor-
responding eigenspacesker (1−Rm0 |C), predicta priori the possible orthogonality re-
lations for theZ-translates of scaling functionsϕ. Hence these1-eigenspaces are studied
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in detail in Chapters 4 and 5 below. See also the study guide in Section 1.5. We do a sim-
ilar analysis of the other eigenspaces ofRm0 in Chapter 3 below. In Section 3.3 the set-
ting is specialized to a particular two-parameter family of compactly supported wavelets
on R, and we indicate, by comparing the spectrum ofRm0 with the graph of the corre-
sponding scaling functionϕm0 , that the shape ofϕm0 , and therefore of the waveletψm0 ,
depends on the spectrum ofRm0 computed on a certain finite-dimensional space. Specif-
ically, if (θ, ρ) are the two parameters, we study the eigenvaluesλ

(θ,ρ)
i of R(θ,ρ)

m0 , and the

respective graphs ofx 
→ ϕ
(θ,ρ)
m0 (x) on R. The results are summarized in Figure 3.2.

Definitions. A function, or a distribution,ϕ satisfying (1.21) is said to berefinable, the
equation (1.21) is called therefinement equation, or also, as noted above, the “scaling
identity”, andϕ is called the scaling function. The coefficientsan of (1.21) are called
themasking coefficients (see Definition 3.2.1).

We will mainly concentrate on the case when the set{an} is finite. But in general,
a functionϕ ∈ L2 (R) is said to be refinable with scale numberN if ϕ (x/N) is in
theL2-closed linear span of the translates{ϕ (x− k)}k∈Z⊂ L2 (R); see, e.g., [HSS96,
SSZ99, StZh98, StZh01].

Since there are refinement operations which are more general than scaling (see for
example [DLLP01]), there are variations of (1.21) which are correspondingly more gen-
eral, with regard to both the refinement steps that are used and the dimension of the
spaces. The term “scaling identity” is usually, but not always, reserved for (1.21), while
more general refinements lead to “refinement equations”. However, (1.21) often goes un-
der both names. The vector versions of the identities get the prefix “multi-”, for example
multiscaling andmultiwavelet; see Section 2.6.

If m0 satisfies a condition for obtaining orthogonal wavelets,∑
wN=z

|m0 (w)|2 = N, (1.25)

together with the normalization

m0 (1) =
√
N, (1.26)

then (1.21) has a solutionϕ in L2 (R) which can be obtained by taking the inverse
Fourier transform of the product expansion

ϕ̂ (t) =
∞∏

k=1

(
m0

(
tN−k

)
√
N

)
. (1.27)

(Here and later we use the convention that ifm (z) is a function ofz ∈ T, thenm (t) =
m
(
e−it
)
.) That (1.27) gives a solutionϕ of (1.21) follows from the relation

ϕ̂ (t) =
1√
N
m0

(
t

N

)
ϕ̂

(
t

N

)
, (1.28)
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which is equivalent to (1.21). Note that in this case the constant function1 is an eigenvec-
tor for Rm0 with eigenvalue1. We mentioned after (1.23) (see also [BrJo99b, Theorem
2.5]) that if all other eigenvalues in the Perron–Frobenius spectrum have absolute value
strictly less than1, then the iteration converges inL2 (R) towards a scaling functionϕ
with ‖ϕ‖2 = 1. If N = 2, the spectral condition on the transfer operator has been used
to show existence of unconditional biorthogonal wavelet bases of compactly supported
wavelets under weaker conditions onm0 than (1.25) and (1.26) above, as was done in
[CoRy95, Theorem 4.2]. Instead of (1.25)–(1.26), one then assumes that there exists
another trigonometric polynomial̃m0 such that (whenN = 2)

m0 (ω) m̃0 (ω) + m0 (ω + π) m̃0 (ω + π) = 2 (1.29)

and
m0 (0) = m̃0 (0) =

√
2. (1.30)

If thenRm0 andRm̃0 are the associated transfer operators, andm0 andm̃0 are Fourier
polynomials of orderD, then the dual filtersm0 andm̃0 generate unconditional biorthog-
onal wavelet bases inL2 (R) if and only if the spectral radii of the restrictions ofRm0

andRm̃0 to the(4D + 1)-dimensional Hilbert space

FD =
{∑2D

k=−2D
ckz

k

∣∣∣∣ ∑2D

k=−2D
ck = 0

}
(1.31)

are both strictly less than1.
We mentioned that there is a direct connection betweenm0 =

∑
anz

n and the scal-
ing functionϕ on R given in (1.20)–(1.21) and (1.27). There is a similar correspon-
dence between the high-pass filtersmi and the wavelet generatorsψi ∈ L2 (R). In the
biorthogonal case, there is a second systemm̃i ↔ ψ̃i and the two systems

{
N

j
2ψi

(
N jx− k

)}
and

{
N

j′
2 ψ̃i′

(
N j′x− k′

)}
,

i, i′ ∈ {1, 2, . . . , N − 1} , j, j′, k, k′ ∈ Z, (1.32)

then form a dual wavelet basis, or dual wavelet frame forL2 (R) in the sense of [Dau92,
Chapter 5]. We will consider this biorthogonal case in more detail in Section 6.4.

The idea of constructing maximally smooth wavelets when some side conditions are
specified has been central to much of the activity in wavelet analysis and its applications
since the mid-1980’s. In addition to [Dau92], the survey article [Str93] is enjoyable
reading as a backdrop to our book. See also the latter half of the tutorial to Chapter 3.
The paper [LaHe96] treats the issue in a more specialized setting and is focussed on the
moment method. Some of the early applications to data compression and image coding
are done very nicely in [HSS+95], [SHS+99], and [HSW95]. An interesting, related but
different, algebraic and geometric approach to the problem is offered in [PeWi99].
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The Fourier transform and the Fourier series. Let us record at the outset the following
conventions pertaining to Fourier transforms and Fourier series: Iff is a function onR,
then itsFourier transform is

f̂ (t) =
∫
R

e−itxf (x) dx, (1.33)

and theinverse Fourier transform is

f (x) =
1

2π

∫
R

eitxf̂ (t) dt, (1.34)

soPlancherel’s formula becomes∫
R

|f (x)|2 dx =
1

2π

∫
R

∣∣∣f̂ (t)
∣∣∣2 dt. (1.35)

If f is a function on the circleT = R�2πZ, its Fourier coefficients are

cn =
1

2π

∫ π

−π
e−inxf (x) dx =

∫
T

z−nf (z) dµ (z) , (1.36)

whereµ is normalized Haar measure on the circle, so

f (x) =
∑
k∈Z

cke
ikx =

∑
k∈Z

ckz
k, (1.37)

and Plancherel’s formula becomes∑
n

|cn|2 =
1

2π

∫ π

−π
|f (x)|2 dx =

∫
T

|f (z)|2 dµ (z) . (1.38)

Illustration. Consider now the families of functions from (1.32) which go into the con-
struction of wavelets through the looking glass of the Fourier transform (1.33). Each of
the doubly indexed function systems (1.32) then takes the form{

N
j
2 eiNj ·ktψ̂

(
N jt

)}
j,k∈Z

. (1.39)

This makes it clear, for example, that all function systemsψ1, . . . , ψN−1 in L2 (R) which
generate a wavelet basis, even of the general form (1.32), have the support of the trans-
formsψ̂i confined to certain prescribed subsets ofR, as noted in Section 1.6 below.

1.1 Subband filters and sieves

AROUND 1986, aradically new method for performing discrete wavelet analysis
and synthesis was born, known asmultiresolution analysis. This method is com-
pletely recursive and therefore ideal for computations. One begins with a version



1.1 Subband filters and sieves 13

f0 =
{
f0

n

}
n∈Z

of the signalsampled at regular time intervals∆t = τ > 0. f 0

is split into a “blurred” versionf 1 at the coarser scale∆t = 2τ and “detail”d1 at
scale∆t = τ . This process is repeated, giving a sequencef 0, f1, f2, . . . of more
and more blurred versions together with the detailsd1, d2, d3, . . . removed at every
scale (∆t = 2mτ in fm anddm−1). —Gerald Kaiser,A Friendly Guide to Wavelets
[Kai94], Chapter 7 summary

One of Stéphane Mallat’s early contributions [Mal89] was to show thatmultiresolution
analysis in the context of wavelets could be viewed as (just) another form of what is
called thepyramid algorithm in computer graphics, thereby making the connection be-
tween subband filtering in signal processing, and the theory of subdivision algorithms
in computer imaging and data compression (see Exercise 1–12). This was one of the
happy marriages of separate fields of science which had not been previously thought to
be related, and it was brought about by the focus on wavelet ideas. More such connec-
tions and marriages of ideas are outlined in Mallat’s lovely book [Mal99], which even
contains much more than a review of multiresolution analysis and its applications: it
treats, for example,wavelet packets and local cosine bases which are different but yet
share a theoretical foundation with the wavelets. Both are put in a form which brings
the geometry of Hilbert space into focus. And then there is the French view of history,
starting with theFourier Kingdom, and followed by theDiscrete Revolution of 1989.

In electrical engineering [Vai93], [VNDS89], [DjVa94], the functionsm0, . . . ,mN−1

on T go under the name ofsubband filters, the subbands are defined relative to the clas-
sical Fourier duality of time and frequency, and thebands themselves are the subbands
of values of the frequency variable. They are used both in classical time series, or time
signals, and also in digital signals of optical communications engineering. The estimates
of the form (1.5.4) from wavelet theory motivate the term “filter” in the name: if

m (ξ) =
∑
n∈Z

ane
inξ, (1.1.1)

then the subband filtering in one ofN subbands is an action on time signals(xk)k∈Z
which has the following form, transforming a signalx into a new oney:

x 
−→ y = Fmx, (1.1.2)

where
yk =

∑
n∈Z

aNk−nxn. (1.1.3)

We then say thatm is a low-pass filter (the lowest frequency band) if, for some smallε,
the values of|m (ξ)| are concentrated on a frequency band of the form−ε < ξ < ε. This
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condition will be refined in the sequel. See for example (1.5.1) where all the weight is
placed on the frequencyξ = 0, and as a consequencem = 0 at the remainingN−1 band
points. A variant of the filters also arises in number theory, but then under the name of
sieves [Ten95, p. 62]. For example, we say thatm in (1.1.1) is alarge sieve if, for every
k ∈ N and everyδ ∈ R+, the function

mp,k (ξ) =
∑

p<n≤p+k

ane
inξ, ξ ∈ R, (1.1.4)

satisfies the following analogue of the estimate (1.5.4):∑
j

|mp,k (ξj)|2 ≤
(
k + δ−1 − 1

) ∑
p<n≤p+k

|an|2 (1.1.5)

for all p ∈ Z, and all finite sets(ξj) of sampled frequencies for which∣∣ξj − ξj′
∣∣ ≥ δ for all j, j′, j �= j′. (1.1.6)

The points{ξj} are calledsample points. An important special case of (1.1.6) which
will be used in the study of wavelets constitutes the special finite arithmetic sets{ξj}
defined as follows: ForN ∈ N and ξ ∈ R, the setsSN,ξ have the formSN,ξ :={
ξ + j 2π

N | 0 ≤ j < N
}

. In this case,δ = 2π
N , butξ ∈ R is a free variable.

While the engineering applications of sampling methods, scaling identities, and mul-
tiresolutions are very impressive and covered widely in the literature, see, e.g., [Vai93],
[Wic93], the applications to physics are equally impressive, see, e.g., [vdB99].

When working with functions, or more generally, vectors in some Hilbert space, say
H, it will be useful for us, on occasion, to adopt a view from quantum mechanics: for
example, a vectorψ ∈ H which is normalized by‖ψ‖2 = 〈ψ ψ〉 = 1 represents a
quantum-mechanical state. In Dirac’s bra-ket terminology, it is denoted|ψ〉. Theprojec-
tion Eψ onto the one-dimensional subspaceCψ is denotedEψ = |ψ〉 〈ψ|. A bonus of
Dirac’s notation is that many statements made with bras and kets become, so to speak,
true by virtue of being grammatically correct (and meaningful). It also emphasizes the
probabilistic contents of the Hilbert-space formalism: for instance, if{ψi} is a fixed
orthonormal basis forH, then a given state|ψ〉 produces a probability distribution by
virtue of Bessel’s identity

1 = ‖ψ‖2 =
∑

i

|〈ψi ψ〉|2 . (1.1.7)

In wavelet theory, it turns out that the identity (1.1.7) is also useful for vector systems
{ψi} which are not necessarily orthonormal bases; they are calledtight frames.

Wavelets in one dimension live in the Hilbert spaceL2 (R) of all square-integrable
functions on the line−∞ < x < ∞. The traditional approach is to specify ascaling
number N ∈ Z+, N ≥ 2, and a lattice of translationsZ, calledsample points, but there
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are interesting variations of this setup, including higher dimensions, when the Hilbert
space isL2

(
Rd
)
, d = 2, 3, . . . . Staying withd = 1, andN fixed, we will take the

viewpoint of what is calledresolutions, but here understood in a broad sense of closed
subspaces: A closed linear subspaceV ⊂ L2 (R) is said to be anN -resolution if it is
invariant under the unitary operator

U = UN : f 
−→ N− 1
2 f
( x

N

)
, (1.1.8)

i.e., ifU mapsV into a proper subspace of itself. The subspaceV is said to betranslation
invariant if

f ∈ V ⇐⇒ f ( · − k) ∈ V for all k ∈ Z. (1.1.9)

If there is a functionϕ such thatV = Vϕ is the closed linear span of

{ϕ ( · − k) | k ∈ Z} , (1.1.10)

then clearlyV is translation invariant. The translation-invariant resolution subspacesV
are actively studied and reasonably well understood. IfV is of the formVϕ in (1.1.10),
then we say that it issingly generated, and thatϕ is a scaling function of scaleN . But the
case whenV is not singly generated is also interesting, and these resolution subspaces are
frequently calledgeneralized multiresolution subspaces. There is much current and very
active research on them; see, for example, [BaLa99], [LPT01], [BaMe99], [HLPS99],
[HSS01], [SSZ99], and [Jor01a]. The case whenV is not singly generated as a resolution
subspace of scaleN > 2, i.e., whenV is not of the form (1.1.10), occurs in the study of
wavelet sets. Wavelet sets are measurable subsetsE ⊂ R of finite measure such that the
doubly indexed family

{
N

j
2ψE

(
N jx− k

)}
j,k∈Z

defined from the function

ψE (x) = χ̌E (x) =
1

2π

∫
E
eitx dt (1.1.11)

forms an orthonormal basis forL2 (R). It follows from (1.39) thatE ⊂ R is a wavelet
set for scaleN if and only if the four conditions (a)–(d) hold:

(a)
⋃

j∈ZN
jE = R, except for a set inR of measure zero, where

N jE :=
{
N jx | x ∈ E

}
;

(b) meas
(
N jE ∩NkE

)
= 0 if j �= k in Z;

(c)
⋃

k∈Z(E + 2πk) = R, except for a set inR of measure zero; and

(d) meas ((E + 2πk) ∩ (E + 2πn)) = 0 if k �= n in Z.

If, for example,N = 2, then the subset ofR, E := [−2π,−π〉 ∪ [π, 2π〉, is a wavelet
set. (For others, see Exercise 1–46.) In the list (a)–(d), the first two properties state that
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E tiles R under a multiplicative action ofZ onR (dilations in both small and large scale),
while the last two properties refer to atiling in the additive sense. The modification and
generalization of the properties to higher dimensionsd > 1 are clear: theN is an integral
d × d matrix such that its eigenvaluesλ satisfy |λ| > 1. It is known that wavelet sets
exist also in higher dimensions; see the references mentioned above.

However, in this book we will primarily be concerned with the resolution subspaces
which are singly generated. They are relatively better known, some would say com-
pletely understood. Yet we will encounter a number of natural questions which have
only incomplete answers as of the present.

We now turn to a group-theoretic formulation of multiresolution analysis, which will
be needed in Chapter 2 for charting the connected components of wavelet systems.

1.2 Matrix functions and multiresolutions

The two groups of matrix functionsC (T,UN (C)) andC (T,GLN (C)), i.e., the con-
tinuous functions from the torus into the respective groups, enter wavelet analysis via
the associated wavelet filters(mi)

N−1
i=0 .

In Sections 2.1 and 6.3, we give the details of the multiple correspondence between:

(i) matrix functions,A : T→ GLN (C),

(ii) high- and low-pass wavelet filtersmi, m̃i′ , i, i′ = 0, 1, . . . , N − 1, and

(iii) wavelet generatorsψi, ψ̃i′ , i, i′ = 1, . . . , N − 1, together with scaling functions
ϕ, ϕ̃.

In particular,

Ai,j (z) =
1
N

∑
wN=z

mi (w)w−j , z ∈ T, (1.2.1)

(
A−1

)
i,j

=
1
N

∑
wN=z

m̃j (w)wi, z ∈ T. (1.2.2)

The dependence of theL2 (R)-functions in (iii) on the group elementsA from (i) gives
rise to homotopy properties, and the results in Sections 4.3, 5.4, 6.2, and 6.3 are building
up to that, while the final results are stated in Section 2.1. The standard orthogonal wave-
lets represent the special case whenmi = m̃i, or equivalently,A (z) = ((A (z))∗)−1,
z ∈ T. Hence, the matrix functions are unitary in this case.

The scaling/wavelet functionsϕ,ψ1, . . . , ψN−1 with support on a fixed compact in-
terval, say[0, kN + 1], k = 0, 1, . . . , can be parameterized with a finite number of
parameters since the unitary-valued functionz → A (z) in (1.2.1) then is a polynomial
in z of degree at mostk (N − 1). It is well-known folklore from computer-generated
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pictures that the shape of the scaling/wavelet functions depends continuously on these
parameters; see Figures 1.1–1.7 and [Tre01b].

The scaling functionϕ ∈ L2 (R) of (1.21) is illustrated in Figures 1.1–1.7, in the case
N = 2, and for orthogonalZ-translates, i.e., the case (1.25). These pictures illustrate the
dependence ofϕ on the masking coefficients(an) in the case of [Tre01b]:

a0 = (η0 − η1 − η2 + η3 + η4)/4, a1 = (η0 + η1 − η2 + η3 − η4)/4,

a2 = (η0 − η3 − η4)/2, a3 = (η0 − η3 + η4)/2,

a4 = (η0 + η1 + η2 + η3 + η4)/4, a5 = (η0 − η1 + η2 + η3 − η4)/4,

(1.2.3)

where

η0 = 1/
√

2, η1 = (cos 2θ + cos 2ρ)/
√

2, η2 = (sin 2θ + sin 2ρ)/
√

2,

η3 = cos(2θ − 2ρ)/
√

2, η4 = sin(2θ − 2ρ)/
√

2.
(1.2.4)

These formulas arise from an independent pair of rotations by anglesθ andρ of two “spin
vectors”, i.e., by taking the matrix functionA in (1.2.1) unitary,T # z → Aθ,ρ (z) ∈
U2 (C), and setting

A(z) = V (Q⊥
θ + zQθ)(Q⊥

ρ + zQρ) = V Uθ(z)Uρ(z) (1.2.5)

with

V =
1√
2

(
1 1
1 −1

)
, (1.2.6)

Qθ =

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
=

1
2

((
1 0
0 1

)
+

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

))
,

(1.2.7)
and the orthogonal complement to the one-dimensional projectionQθ,

Q⊥
θ = Qθ+(π/2). (1.2.8)

With the coefficientsa0, a1, a2, a3, a4, a5 given by (1.2.3), the algorithmic approach to
graphing the solutionϕ to the scaling identity (1.21) is as follows (see [Jor01b], [Tre01b]
for details): the relation (1.21) forN = 2 is interpreted as giving the values of the left-
handϕ by an operation performed on those of theϕ on the right, and a binary digit
inversion transforms this into the form

f ′k+1

(
x +

1
2k+1

)
= Afk (x) , (1.2.9)

whereA is the2 × 3 matrix Ai,j =
√

2a4+i−2j constructed from the coefficients in
(1.21), andfj andf ′j are the vector functions

fj (x) =

ϕ
(
x− 2

2j

)
ϕ
(
x− 1

2j

)
ϕ (x)

 , f ′j (x) =

(
ϕ
(
x− 1

2j

)
ϕ (x)

)
. (1.2.10)
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Figure 1.1. Chaos. Wavelets aroundθ = ρ = 0. L2-convergence of cascade approximation fails
at the central Haar point, where the spectral condition (2.5.3) fails. At this point theL 2-continuity
of the map from the parameter space into the scaling functions fails, although continuity holds
in the distribution topology. See also Figure 1.6. The scaling functions in this figure as well
as in Figures 1.2–1.7 are actually 8th-order cascade approximants to the real scaling functions
(see Section 2.5, in particular Theorem 2.5.1). In particular, the central Haar point here is really
the graph of a function which is1 at 1

3 of the points in[1, 4] and0 at all remaining points. See
Example 2.5.6 for the coarser approximants. The layered structure of the graphs above and below
the Haar point disappears under further iterations of the cascade, and is replaced by a completely
chaotic picture; see [BrJo99b, Figures 6–10].

Iterations of this operation give values of an approximation toϕ on successively finer
dyadic grids in thex variable.



1.2 Matrix functions and multiresolutions 19

Figure 1.2. Wavelets aroundθ = 0, ρ = π/2. One-dimensional subvariety of Haar wavelets; see
also Figure 1.5.

Figures 1.2, 1.3, 1.4, and 1.5 include one of the orthogonal Haar scaling functionsϕH ,
i.e.,ϕH = χI whereI is a unit interval of the formI = [k, k + 1], while Figures 1.1
and 1.6 each have one of the nonorthogonal Haar wavelets

ϕH′ =
1
3
χJ ′ , J ′ = [1, 4] (Figure 1.1) (1.2.11)

or
ϕH′′ =

1
5
χJ ′′ , J ′′ = [0, 5] (Figure 1.6). (1.2.12)

It is in neighborhoods (relative toθ, ρ) of the nonorthogonal scaling functions where the
cascade approximation (which is the one used in the sampling of scaling functions shown
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Figure 1.3. Absence of chaos. Wavelets aroundθ = π/4, ρ = 0. Both an isolated point and a
one-dimensional subvariety of Haar wavelets.

in Figures 1.1–1.7) is especially “fractal-looking”. It is also for the nonorthogonal Haar
wavelets that anL2 (R)-approximation in the form of a Cesaro summation (see Remark
2.5.5) is required. IfN = 2, andp ∈ N is odd, thenmp (z) = 1√

2
(1 + zp) satisfies

mp (z) = m1 (zp), and so the scaling functionsϕ1 andϕp may both be determined from
(1.27), and the formulamp

(
eit
)

= m1

(
eipt
)

yields ϕ̂p (t) = ϕ̂1 (pt) where

ϕ̂1 (t) =
e−

it
2 sin

t

2
t

2

(1.2.13)
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Figure 1.4. Wavelets aroundθ = ρ = π/4. An isolated Haar wavelet.

andϕ1 (x) = χ[0,1] (x). It follows that

ϕp (x) =
1

2π

∫ ∞

−∞
ϕ̂1 (pt) eitx dt (1.2.14)

=
1
p

1
2π

∫ ∞

−∞
ϕ̂ (t) eit x

p dt =
1
p
ϕ1

(
x

p

)
=

1
p
χ[0,p] (x) ,

and‖ϕp‖L2(R) = 1√
p . Otherwise we show in Theorem 2.5.1 that the cascades (1.23)

converge as sequences. Since this convergence is inL2 (R), there are problems with
computer graphics in the case of discontinuous scaling functionsx 
→ ϕθ,ρ (x) even
if they have compact support; see for example Figures 1.1 and 1.6 for illustrations of
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Figure 1.5. Wavelets aroundθ = π/2, ρ = 0. One-dimensional subvariety of Haar wavelets.

this point. These pictures are generated by a mathematics program and the use of the
subdivision algorithm (1.5.9). For the interpretation and limitations of the subdivision
algorithm, the reader is referred to the tutorial in Section 3.3.∗

In Section 2.1 we make a more rigorous study of the continuous dependence of the
scaling/wavelet functions on the parameters, and the main result in Theorem 2.1.3 gives
a parameterization of the connected components in the scaling/wavelet function space.
The parameter used is the winding number of the mapz → det (A (z)), and the re-

∗An interactive display of the scaling/wavelet functions obtained by puttingρ = 0 in (1.2.5) and lettingθ vary over
the circle can be found in http://cm.bell-labs.com/who/wim/cascade/.
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Figure 1.6. Chaos. Wavelets aroundθ = ρ = π/2.L2-convergence of the cascade approximation
and the spectral condition (2.5.3) fails spectacularly at the central Haar function. See also Figure
1.1 for the same phenomenon.

sult says that two scaling/wavelet functionN -tuplesϕ,ψ1, . . . , ψN−1 with support in
[0, kN + 1] can be deformed continuously into each other through scaling/wavelet func-
tions with support in

[
0, N2k + 1

]
(or any longer interval) if and only if the two winding

numbers are equal. This divides the space into exactlyN (N − 1) k + 1 components.
In the examples illustrated in Figures 1.1–1.7 it follows from (1.2.5) that

det (A (z)) = −z2, (1.2.15)

and hence the winding-number invariant in Theorem 2.1.3 is2. The variety illustrated is
a two-dimensional subvariety ofMF (2) ↔ WF (5) ↔ SF (5); see (2.1.29)–(2.1.35).
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Figure 1.7. Wavelets around the ultrasmooth pointθ = cos−1 4

√
5
32 ≈ 0.28 π, ρ =

cos−1

√
5
4 −

√
5
32 ≈ 0.12 π. This is the only point, up to symmetry, where the correspond-

ing wavelet functionψ has two vanishing moments. See also [Tre01b, Figure 2], and the latter
half of the tutorial to Chapter 3.

This is indeed a subvariety since we restrict to real projectionsQθ in (1.2.7). The space
of one-dimensional projectionsM2 (C) is actually homeomorphic to the2-sphereS2

[BrRoI, Example 4.2.7], so the variety really has dimension4.
The continuity of the scaling/wavelet functions as a function of the parameters is in

the distribution sense, but generically, outside a subvariety of positive codimension in the
parameter space, the continuity is in theL2 (R) sense (see Theorem 2.5.8). The latter part
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of the monograph, Chapters 4 and 5, is mostly devoted to the study of the singular points
in the parameter space whereL2 (R)-continuity fails. These are the points where the
operatorRm0 in (1.19) has1 as a degenerate eigenvalue orRm0 has other eigenvalues
of absolute value1.

In (1.2.1)–(1.2.2) we identified a variety of wavelet filters corresponding to compactly
supported wavelets inL2 (R) as an infinite-dimensional semigroup of matrix functions.
Much of the theory also applies to theL2

(
Rd
)

situation. The variety is defined by in-
equalities, and the orthogonal wavelets correspond to the “boundary” in the sense that
the inequalities are identities. The space of biorthogonal wavelets, or equivalently, the
space of dual wavelet bases, then is the full variety. The full variety may be realized as
matrix functions defined on a torus and taking values in the invertibleN -by-N matri-
ces, whereN is the scaling of the wavelet at hand. In this representation, the orthogonal
wavelets correspond to the matrix functions taking values inUN (C).

1.3 Qubits: The oracle of Feynman and the algorithm of Shor

HOW TO GET STARTED: This section, which is somewhat independent from the
rest of the book, is meant as an introduction to some issues of quantum computing
in connection with wavelet analysis. The reader who gets stuck with the new ideas
may wish to review some basic concepts of quantum computing elsewhere. While
there is a wealth of more specialized references, H. Pollatsek [Pol01] has just of-
fered a fresh but gentle primer to key mathematical concepts which are used in
this section. Our presentation below is also addressed to the novice and it includes
much motivation. It is meant as an invitation to an exciting subject whose use in
wavelet analysis is so far in its infancy.

While the implementation of the wavelet computations is a vast subject, and we are only
able here to touch some high points, it has recently been recognized that computations
at the atomic level, i.e., one-atom-per-bit scale, are governed by different kinds of algo-
rithms than classical computations. Granted that physical quantum computers have not
yet been built, it is nonetheless understood at a mathematical level that prime factor-
ization can now be done in the quantum realm with polynomial algorithms, while this
was known not to be possible on classical computers; see Shor [Sho99]. (Analogously,
Grover’s theorem [Gro97] states that a quantum search amongn objects can be done in
a number of steps which goes like a constant times

√
n, a clear gain over the best known

classical bound, which is linear inn.) We note here, very sketchily, that the wavelet res-
olution algorithms mentioned in the tutorial to Chapter 1 share this same efficiency gain.
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|0〉

|1〉

Figure 1.8. Qubits. A two-electron level in an atom (the Rutherford–Bohr model; simplified!)
Each electron in the level can exist in either a spin down state|0〉 or a spin up state|1〉, thus
giving rise to the simplest known toy quantum computer, see [Sho00]. If the atom is placed in a
magnetic field pointing down,|0〉 is the ground state and|1〉 is the excited state for the internal
degrees of freedom of the electron.

The quantum versions of the wavelet resolution algorithms involve the factorization of a
unitary matrix built from a given wavelet filter; see (1.3.25) and Exercise 1–22. Readers
who wish to follow up on the subject may consult the references we provide below. In
addition there is a survey paper from 1998–99 [FiWi99] which is recommended reading.
The discussion here is limited to an application of the spin-vector formalism in Section
1.2, which will also be followed up in Chapter 2 below.

Let us first give an overview of the terminology: the dictionary is shown in Table
1. The details will be explained later in the section. The starting point is that wavelet
resolution algorithms can be made and implemented both on classical and on quantum
computers.

Now, returning to the description of filters in terms of matrix-valued functions from
the circleT into UN (C) (which we mentioned in Section 1.2, and will treat in more
detail in (2.1.11)–(2.1.28)), one may give factorizations of theUN (C)-matrix functions
which produce qubit algorithms, with the factors of theUN (C)-functions corresponding
to the spin vectors of the quantum algorithm.

The qubit algorithms, i.e., factorization into a string of elementary quantum gates, may
be realized as a factorization of a unitary matrixUA, (1.3.24), of size2n×2n. Varying the
spin vectors, one is then able to trace the corresponding wavelets and study theirL2 (R)-
properties. The qubit terminology refers to the bits of quantum computer algorithms,
in the sense of R. Feynman [Fey86], [Fey99], [Mil98] and P. Shor [Sho99], [Sho00],
[BDMT98]. Its use in wavelet analysis is discussed in [Jor01b], [Tre01b], and in much
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Table 1. Wavelet resolution algorithms

Classical Quantal
Words of
programs

logic gates: AND, OR, XOR,
. . .

qubit gates: one-qubit gates
and CNOT

Program acts on
register of

bits qubits

Input/output:
encoded configuration of bits in a reg-

ister of a Turing machine
configuration of qubits in a
quantum channel

decoded wavelet coefficients→ signal or image
Input in
wavelet resolu-
tion algorithms

A (qu)bit configuration resulting from encoding a given
functionf chosen from a given resolution subspace.

Output in
wavelet resolu-
tion algorithms

A decomposition of the functionf in terms of a finite
number of intermediate detail components, or equivalently a
wavelet decomposition; see the illustration (1.8) in the
tutorial of Chapter 1, and also Section 2.2 and Exercise
1–22 for the Haar and the Daubechies wavelets.

Names of
algorithms

pyramid algorithm, Exercise
1–12

UA, (1.3.24) and p. 36

Factorizations (1.2.5), (2.1.6) Exercise 1–22
Error correction x 
→ xxx and omit broken

strings
protect against decoherence,
(1.3.23) and Exercise 1–14

detail in [Kla99]. Quantum computing algorithms involve the factorization of unitary
matrices into products of special unitary matrices which are calledquantum gates. In
[Kla99] it is shown how the wavelet qubits yield quantum algorithms and the paper
[VoWe00] shows how the two-qubit configuration is special. The gate structure is much
easier. See for example (1.3.24) and Exercise 1–22.

The algorithm for reducing wavelet filters to quantum gates is based on two related
factorization theorems, one for wavelet filters (see [BrJo01a, Proposition 3.3] or (2.1.6)),
and a second one for quantum gates, which we now briefly sketch. In a classical com-
puter, information is represented by binary symbols0 and1 (bits), and the bits are ma-
nipulated using functions such as AND and NOT. By contrast, a quantum bit, or “qubit”,
is a microscopic system such as an electron with its spin, or a polarized photon. The
Boolean states are then qubit vectors inC2, |0〉 ↔ spin +1

2 , and |1〉 ↔ spin−1
2 (see

Figure 1.9). For a nice survey for mathematicians, see, e.g., [Man00].
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ϕ

θ |ψ〉

|0〉

|1〉

z

y

x

Figure 1.9. The Bloch ball of statesρ (x, y, z) = 1
2 (σ0 + xσx + yσy + zσz) whereσ0 = ( 1 0

0 1 ),
σx = ( 0 1

1 0 ), σy =
(

0 −i
i 0

)
, andσz =

(
1 0
0 −1

)
are the Pauli matrices. The stateρ (x, y, z) is

a positive trace-class operator andTrace (ρ (x, y, z)) = 1 if and only if (x, y, z) ∈ R3 and
x2 + y2 + z2 ≤ 1, and all such operators have this form (see [BrRoI, Example 4.2.7]). Illus-
tration: |ψ〉 = cos

(
θ
2

) |0〉 + eiϕ sin
(

θ
2

) |1〉, where|0〉 ∼ 1
2 (σ0 + σz) = ( 1 0

0 0 ) = |0〉 〈0| and
|1〉 ∼ 1

2 (σ0 − σz) = ( 0 0
0 1 ) = |1〉 〈1|. Linear combinations of the vectors|0〉 and |1〉 do not

correspond to the same linear combinations of the corresponding states. But these linear com-
binations, called superpositions, represent coherent states in the sense of quantum optics, see
[Omn99], and account for a speedup of quantum computing algorithms.

z

y

x
|0〉+|1〉√

2 |1〉

z

y

x

|0〉z

y

x

Figure 1.10. The quantum gate1√
2

(
1 1
1 −1

)
acting on|0〉+|1〉√

2
as a rotation followed by a reflection,

i.e., |0〉+|1〉√
2
→ |1〉 → |0〉. A coherent state turning into “classical” ones.
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However, according to the laws of quantum mechanics, the states can also exist in a
continuum of intermediate or mixed configurations, or superpositions

|ψ〉 = α |0〉+ β |1〉 , |α|2 + |β|2 = 1, (1.3.1)

which are calledcoherent states if αβ �= 0; for a concise account of the physics of
coherent states, see, e.g., [Omn99, Chapter 17, pp. 196, 227]. Note that the projection
Eψ = |ψ〉 〈ψ| has the matrix form(

|α|2 αβ̄

ᾱβ |β|2
)
. (1.3.2)

So it follows that the state|ψ〉 is coherent precisely when the two off-diagonal matrix
entries are nonvanishing. (See Exercise 1–31 for the role of the diagonal and the off-
diagonal entries of the matrix (1.3.2).) Generally, herequantum decoherence means the
collapse of some quantum superposition into a single definite state, which presumably
is a classical state (see below). For an electron in a magnetic field, or for a polarized
photon, it can be the ground state or the excited state. If a state|ψ〉 is a superposition of,
say,|0〉 and|1〉, then|ψ〉 acts as if it can exist simultaneously in these two states.

Quantum decoherence in a system of quantum gates decreases the information, and so
must be avoided. The word “coherence” refers to our understanding of quantum states as
waves, and hence we may have coherence of phases. This view is possible in any family
of nonorthogonal states. In contrast, decoherence results from the selection of a set of
special coordinates. States sent through a quantum channel suffer decoherence because
of noise in the environment.

A string of n qubits (or ann-qubit memory) may be represented as a unit vector
in C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸

n times

' C2n
, i.e., a unit vector‖v‖ = 1 in a 2n-dimensional complex

Hilbert space,v ∈ C2n
. A particular set of basis vectors inC2n

is the set of tensor
monomials of the special form|i1〉⊗|i2〉⊗· · ·⊗|in〉 for i1, i2, . . . , in ∈ {0, 1}, for which
the abbreviation|i1, i2, . . . , in〉 is commonplace. These particular tensor monomials and
their scalar multiples are said to represent theclassical states, while all other unit vectors
are said to representcoherent states.

For n = 2, there are some operations in quantum computing algorithms which do
not have classical counterparts, such as CONTROL-NOT (CNOT), NOR, NAND; see
[BDMT98, p. 48]. The tensors inC2 ⊗ · · · ⊗ C2 of unit norm are calledregisters; and
the unitaries on the individual tensor factors, i.e.,U2 (C), are called the single-qubit
(quantum) gates. (See Figures 1.9 and 1.10.) The operations, called gates, are the unitary
operators inC2 ⊗ · · · ⊗ C2︸ ︷︷ ︸

n times

' C2n
.

The important fact about the tensor operation is that it is multilinear, but not linear:
hence theno-cloning theorem of quantum computation, which will be explained in the
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paragraphs around (1.3.19)–(1.3.23) below. The simplest nonclassical gate is a quantum
version of what in the classical case is called an XOR gate; see [NiCh00, p. 179]. Label-
ing the basis vectors inC2 by the elements in the cyclic groupZ2 = Z�2Z = {0, 1},
and using addition inZ2, the CNOT gate may be written in the following form:

|0, 0〉 
−→ |0, 0〉 ,
|0, 1〉 
−→ |0, 1〉 ,
|1, 0〉 
−→ |1, 1〉 ,
|1, 1〉 
−→ |1, 0〉 ,

or as a matrix,


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.3.3)

relative to the basis|0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉. The square of this matrix is the identity
matrix, i.e.,(CNOT)2 = 1C 4 .

Specifically, on basis vectors, CNOT is

|a〉 ⊗ |b〉 
−→ |a〉 ⊗ |a + b〉 , (1.3.4)

or in abbreviated form,
|a, b〉 
−→ |a, a + b〉 , (1.3.5)

where addition inZ2 is used in the second tensor slot. Its operational form is

btarget

asource

a + bmod 2.

a

(1.3.6)

So the CNOT gate is not a single-qubit gate. If the highest significant bit (the control bit)
is 1, then the state of the lowest significant bit (the rightmost tensor slot) is flipped; hence
the name CNOT for this gate. The “target/source” terminology comes from the notion
that a “target” is something that you hit from a “source” of ammunition. The result of
hitting b, in this metaphor, is that the bit is flipped.

Compare the CNOT gate in (1.3.6) to the familiar exclusive “or” logic gate, called
XOR, and written as a diagram

b

a

a + bmod 2. (1.3.7)

See also Table 2 below. The main difference between the two is that CNOT is invertible,
while XOR is not. This means that information (or energy) is not lost in the running of
a quantum computer (—it doesn’t need to be plugged in!), while the classical computer
increases entropy. Information is lost in the logic gate (1.3.7) since the two input bits
cannot be recovered from the outputa + bmod 2.
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The diagrammatic notation (1.3.6) of the CNOT gate is usually abbreviated to

(1.3.8)

and the gate acts onC2 ⊗ C2 as a permutation of the four base states|i1i2〉, i1, i2 ∈
{0, 1}; see (1.3.3). So in physics terms, it is thought of as being realized on a two-
electron model, as sketched for example in Figure 1.8. The triple quantum gate diagram

(1.3.9)

can easily be checked to represent a composition of three gates with the composite dia-
gram resulting in thequbit swap gate

|a〉 ⊗ |b〉 
−→ |b〉 ⊗ |a〉 , (1.3.10)

compare (1.3.5), and it is denoted

b

a

a.

b

(1.3.11)

For more details, see Exercises 1–13 and 1–15.
An example of ann-qubit gate which is also a classicaln-bit gate is a permutationπ

in the form
|i1i2 · · · in〉 
→ |π1 (i1)π2 (i2) · · · πn (in)〉 , (1.3.12)

or written more fully,

|i1〉 ⊗ · · · ⊗ |in〉 
→ |π1 (i1)〉 ⊗ · · · ⊗ |πn (in)〉 . (1.3.13)

Using then simple geometry of complex unitary matrices, it can be shown that every
unitary operator onC2n

, then-register, can be realized in an explicit form by a compo-
sition of single-bit gates and the CNOT gate; i.e., as an operator product involving only
these basic operators onC2n

. This is the reason why our formula for the wavelet filters,
as polynomial functionsT → U2 (C), admits efficient quantum computer algorithms;
see [Kla99], [FiWi99], [Hol96], and [Jor01b]. Specifically, whilen2n operations would
be needed classically in the product representation, onlyn elementary operations are
needed on the quantum computer. The result on the universal quantum gates mentioned
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above is proved in detail in [BBC+95], i.e., mathematically, that all unitary operations on
n qubits can be expressed in an explicit form as compositions of elementary gates, i.e.,
as one-qubit gates, and the single two-qubit gate CNOT. (There are other multiple-qubit
gates which, when when taken together with certain one-qubit gates, form a complete
alphabet for all unitary gates on finite quantum registers. We say that such multiple-qubit
gates areuniversal, and the best known examples of universal gates are the CNOT and
the Toffoli gates; see Table 2.) It is further proved in [Kla99] that as a consequence the
complexity of the corresponding wavelet transform in the qubit algorithm isO(log2 L

)
whereL = 2n is the length of the input signal [Kla02]. This in turn is based on the
theorem of [BBC+95]. The crucial property of the wavelet filtersm0, m1, in the form
of a QMF system, is that, ifm0 (z) =

∑
k∈Zakz

k, m1 (z) =
∑

k∈Zbkz
k, with masking

coefficients(ak) and detail coefficients(bk), then, for any orthonormal basis{εk}k∈Z,
the transformation rules 

ξ2k =
∑
l∈Z

al−2kεl,

ξ2k+1 =
∑
l∈Z

bl−2kεl

(1.3.14)

get us a new orthonormal basis (ONB) for:2 (Z), hence a permutation of ONB’s, i.e.,
U : (εk) 
→ (ξk). If operatorsS0 andS1 onL2 (T) are defined by

(Sif) (z) = mi (z) f
(
z2
)
, f ∈ L2 (T) , z ∈ T, i = 0, 1, (1.3.15)

then the fact that (1.3.14) permutes ONB’s in:2 (Z) is equivalent to the usual conditions
for the QMF’s and they take the form of the following familiar operator relations:

S∗
i Sj = δi,jI,

∑
i

SiS
∗
i = I (1.3.16)

(the Cuntz relations [Cun77], see Exercise 1–11). Hence there is a single unitary op-
eratorU of L2 (T) onto itself which is induced by the basis change (1.3.14) such that
U commutes withz 
→ z2f (z). The Hilbert spaceL2 (T) is isomorphic to:2 (Z) via
the Fourier series representation, see (1.36)–(1.38), and the corresponding operatorÛ

on :2 (Z) commutes with the2-shift (xk) 
→ (xk−2). The classical code for the example
(1.2.5) in the previous section is

- - - -

- - - -

xodd

xeven

Uρ (z) Uθ (z) V (1.3.17)

and the quantum version is built by turning the unitary matrix factors into quantum
gates, as described below, and then using Shor’s theorem on the universality of the
CNOT gate. Keep in mind that in the single-qubit case, see Figure 1.8, according to



1.3 Qubits: The oracle of Feynman and the algorithm of Shor 33

the standard rules of quantum mechanics, a measurement of the system will show that
the system is in state|0〉 or in state|1〉. For the measurement, we are up against Heisen-
berg’s uncertainty principle. Wait, you say, what then about the state|ψ〉 = cosθ

2 |0〉 +
eiϕ sin θ

2 |1〉? When measured, it gives0 with probability cos2 θ
2 , and 1 with proba-

bility sin2 θ
2 , while the phaseeiϕ is immaterial. In information theory, as opposed to

quantum mechanics, it is customary to say that the entropyhθ of the state|ψθ〉 is
hθ = − (cos2

(
θ
2

)
log2 cos2

(
θ
2

)
+ sin2

(
θ
2

)
log2 sin2

(
θ
2

))
. The entropy looks as fol-

lows:

θ = 0 θ = π
2 θ = π

|ψθ〉 = |0〉 ∼ |0〉 〈0| |ψθ〉 = |0〉+|1〉√
2
∼ 1

2 (|0〉〈0|+|1〉〈1|) |ψθ〉 = |1〉 ∼ |1〉 〈1|

hθ
1 = log2 2

(1.3.18)

The entropyhθ refers to the loss of information when the state is subjected to measure-
ment or to noise in the channel. In (1.3.18),∼ refers to a measurement in the sense
of von Neumann; see [Omn99, p. 259]. So as the entropy decreases, coherent quantum
states turn to classical states. This is “classical” in the sense of “how we are used to bits
behaving in a computer, coming out reliably0 or 1”. Usually the term “coherent state”
is reserved for the states depicted in (1.3.18) for0 < θ < π, and so excluding the end-
points, but of course the two degenerate states|0〉 and|1〉 are both classical and quantum
states.

In quantum mechanics, as opposed to quantum information theory, the entropy of
a vector state is zero. More generally, consider the density matricesρp = p |0〉 〈0| +
(1− p) |1〉 〈1|, where|0〉 〈0| and |1〉 〈1| denote the projections of rank one ontoC |0〉
and ontoC |1〉, and0 ≤ p ≤ 1. The density matrices are interpreted probabilistically,
and the quantum-mechanical entropy of the stateTrace ( · ρ) is −Trace (ρ log ρ). The
extreme casesp = 0 and p = 1 are the points of decoherence (See Figure 1.9 and
(1.3.18)). (The term “coherence” is from quantum optics.)

Even though we can measure just the values0 or 1 when subjecting a coherent state
|ψ〉 = α |0〉 + β |1〉 to observation, there is still a continuum of these intermediate (co-
herent) superpositions. The added computational power in passing from “classical” to
“quantum” derives from this continuum of quantum states|ψ〉, as opposed to just the two
classical bits. But the coherent states are highly unstable, and this must be taken very se-
riously when one tries to build quantum algorithms. The quantum error-correcting codes
are there to protect coherence, preventing the coherent states from degenerating into de-
coherence; see [Omn99, p. 802]. Communication depends on a transmission with coher-
ence, for example interference of the quantum-mechanical phases, which is independent
of the distance a wave travels. This interference is recorded in the off-diagonal terms of
some density matrix. The decay of these terms is called decoherence; see [SaSa01].
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The fact which makes a (hypothetical) quantum computer more efficient than a clas-
sical one is that states can be prepared in configurationsa |0〉+ b |1〉 for a, b ∈ C which
are superpositions of the two qubits|0〉 and |1〉; the property is calledquantum par-
allelism, and of course it does not have a classical analogue. But this is also a fact
which makes the quantum computer more sensitive to errors; see [Got96], [MaSl77a],
[GrBe00], [CRSS98], [Ger00, p. 225]. And error correction by cloning (which is clas-
sical) is not possible in the quantum computer, precisely because of the nonlinearity of
the tensor monomials, as opposed to the linearity of superposition.

Classically, the amplifier operatorA, or the cloning assignment applied to a bitx, is
Ax = xx, orAx = xxx, x ∈ {0, 1}; see [PeWe72]. So if a test for possible errors yields
the outcome000, 010, and000, then the register010 is simply discarded. But imagine
the quantum version of the cloning operatorA, i.e.,A applied to qubits|ψ〉. It would
beA |ψ〉 = |ψ〉 ⊗ |ψ〉, say, while quantum parallelism and unitarity dictate the linearity
(up to phase):A (α |ψ1〉+ β |ψ2〉) = αA |ψ1〉+ βA |ψ2〉 for α, β ∈ C and|ψi〉 ∈ C2k

,
i = 1, 2. But this is false because of the cross terms of the type

αβ (|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉) (1.3.19)

resulting from the calculation on tensors inC2 ⊗ C2 = C4. This is the basis for the
“no-cloning theorem” for qubits.

The way around the no-cloning theorem which does produce quantum error correc-
tion is related again to theSi-systems of (1.3.15). Corresponding to the Haar (or rather
Hadamard) system, Shor suggested the two isometries

A± : C2 −→ C2 ⊗ C2 ⊗ C2 (1.3.20)

such that
A± : α |0〉+ β |1〉 −→ α |000〉 ± β |111〉 (1.3.21)

for α, β ∈ C. Alternatively, a single linear amplification operatorA defined by

|0〉 
−→ 1√
8

(|000〉 + |111〉) (|000〉+ |111〉) (|000〉 + |111〉) ,

|1〉 
−→ 1√
8

(|000〉 − |111〉) (|000〉 − |111〉) (|000〉 − |111〉) ,
(1.3.22)

yields a quantum error-correcting operation, in the sense that it preserves the coherent
states, and this is Shor’s famous nine-qubit correction code. The individual tensor fac-
tors, such as1√

2
(|000〉 + |111〉), are called “cat states” after Schr¨odinger’s renowned cat

[Omn99, p. 61]. They are some of the most unstable states formed out of several tensor
factors of qubits. On the other hand, the argument from (1.8) shows that, unstable or not,
they are an essential part of qubit wavelet algorithms.

More generally, letk ∈ N, k ≥ 3, and letC ⊂ C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
k times

=: Hk be a subspace,

and letP be the projection ontoC. ThenC is called acode if there is a finite set of
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operatorsEi : Hk →Hk·l and a matrix(ai,j) such that

PE∗
i EjP = ai,jP. (1.3.23)

Then the combined system is called aquantum error-correcting code. The idea is that
in the quantum realm, we selectsubspaces rather thanbits. This is how the coherence
is protected. Similarly the quantum algorithms must be written as factorization of uni-
tary operators, the factorizations taking the form of a sequence of quantum gates. For
quantum error correction, we get subspaces{EiC} from which we select one, sayE0C,
which does not have errors. While the subspacesEiC may not be orthogonal, there are
numbersai,j such that〈Eiu Ejv〉 = ai,j 〈u v〉 for all u, v ∈ C; see (1.3.23). The exam-
ple in (1.3.21) is called the three-bit flip code, but there are others that are nontrivial and
effective; see, for example, [CRSS98]. As in the classical case, the classical linear block
codes, a quantum error-correcting code encodes the state of each qubit onto a block of,
say,k qubits (a register, i.e., a vector inC2 ⊗ · · · ⊗ C2︸ ︷︷ ︸

k times

= C2k
). The encoded state is

called alogical state following von Neumann [vNeu56]; see Exercise 1–14. The code
is said to correctd errors if the logical state is recoverable, given that no more thand

errors occurred in thek-block. The added difficulty in passing from classical codes to
the quantum ones is that quantumcoherence must be protected, the coherence referring
to the continuumα |0〉 + β |1〉, |α|2 + |β|2 = 1, as opposed to the classical duality of
bits.

The simplest example of a quantum error-correcting code is in the casek = 3, where
we take the encoded subspaceC ⊂ C2⊗C2⊗C2 to be the two-dimensional linear span
of the two (logic) states|000〉 and|111〉. We then define four error-correcting operators
Ei as follows, whereσx = ( 0 1

1 0 ):

E0 : no error→ no qubit-flip → 1C2 ⊗ 1C 2 ⊗ 1C2 ,

E1 : error on first tensor slot→ flip first qubit → σx ⊗ 1C2 ⊗ 1C 2 ,

E2 : error on second tensor slot→ flip second qubit→ 1C 2 ⊗ σx ⊗ 1C 2 ,

E3 : error on third tensor slot→ flip third qubit → 1C2 ⊗ 1C2 ⊗ σx.

In this case, the four subspacesEiC ⊂ C8, i = 0, 1, 2, 3, are mutually orthogonal, so the
operator identity (1.3.23) is then clearly satisfied. The trouble with this error correction is
that it is really just “classical”, i.e., it only corrects (qu)bit-flips. For nontrivial quantum
codes, see for example Exercise 1–14.

Let m0, m1 be a dyadic wavelet filter, and letT # z 
→ A (z) ∈ U2 (C) be the
corresponding matrix function,Ai,j (z) = 1

2

∑
w2=z w

−jmi (w). If the low-pass filter
m0 (z) = a0 + a1z + · · · + a2n+1z

2n+1, then a choice form1 (z) =
∑2n+1

k=0 bkz
k is

bk = (−1)k ā2n+1−k. We then haveA (z) =
∑n

k=0 Akz
k whereAk =

(
a2k a2k+1

b2k b2k+1

)
,
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and the following2n+2 × 2n+2 scalar matrix can be checked to be unitary:

a1

b1
A1 A2 · · · An−1 An 0 · · · 0

a0

b0
0
0

A0 A1 · · · An−2 An−1 An 0 · · · 0
0
0

0
0

0 A0 · · · An−3 An−2 An−1 An 0 · · · 0
0
0

0
0

0
0

...
. . . . . .

...
0
0

0
0

a2n+1

b2n+1
0 · · · 0 A0 A1 A2 · · · An−1

a2n

b2n

a2n−1

b2n−1
An 0 · · · 0 A0 A1 · · · An−2

a2n−2

b2n−2

a2n−3

b2n−3
An−1 An 0 · · · 0 A0 · · · An−3

a2n−4

b2n−4

...
. . . . . .

...
a3

b3
A2 A3 · · · An 0 · · · 0 A0

a2

b2


Except for the scalar entries in the two extreme left and right columns, all the other
entries of the big combined matrixUA are taken from the cyclic arrangements of the
2× 2 matrices of coefficientsA0, A1, . . . , An in the expansion ofA (z). For the case of
n = 1 this amounts to the simple8× 8 wavelet matrix



a1

b1
A1 0 0

a0

b0
0
0

A0 A1 0
0
0

0
0

0 A0 A1
0
0

a3

b3
0 0 A0

a2

b2



A0

A1,

(1.3.24)

which is the one that produces the sequence of quantum gates in Exercise 1–22. The
quantum algorithm of a wavelet filter is thus represented by a2n+2 × 2n+2 unitary
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matrixUA acting on the quantum qubit registerC⊗ · · · ⊗C︸ ︷︷ ︸
n+2 times

= C2(n+2), i.e., it acts on

a configuration ofn + 2 qubits. The realization of a wavelet algorithm in the quantum
realm thus amounts to spelling out the steps in factoringUA into a product of qubit gates.
By Shor’s theorem, we know that this can be done, andUA may be built out of one-qubit
gates and CNOT gates following the ideas sketched above. The reader may find more
discussion of the matrixUA in [Fre00, Section 3]

The generalization of classical and quantum wavelet resolution algorithms fromN =
2 toN > 2 is immediate: Thenmi (z) =

∑
k∈Za

(i)
k zk,

(Sif) (z) = mi (z) f
(
zN
)
, i = 0, . . . , N − 1, (1.3.25)

and the transformation rules

ξNk+i =
∑
l∈Z

a
(i)
l−Nkεl, i = 0, 1, . . . , N − 1, (1.3.26)

permute the set of ONB’s in:2 (Z) and define a unitary commuting with theN -shift.
Hence, the standard formulas from [Wic93], [Kla99], and [FiWi99] for the quantum
computing algorithm, which are based on (1.3.14), naturally generalize to the caseN >

2 via (1.3.26). Instead ofk-registersC2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
k times

= C2k
overC2, we will now have

to work rather withCN ⊗ · · · ⊗ CN︸ ︷︷ ︸
k times

= CNk
.

The use of the relations (1.3.16) in engineering and operator algebra theory predates
their more recent use in wavelet theory and wavepacket analysis.

Remark 1.3.1. The simplest way of creating entanglement of states, for example two-
qubit states of the form1√

2
(|01〉 − |10〉), are used in electron models (spin1

2 particles),

see Figure 1.8. (A vector state in
⊗k

1 C2 for somek > 1 is said to beentangled if
it cannot be written as a tensor product of single-qubit states. Entangled states are es-
sential for error correction, and for teleportation, among other things.) Entanglement is
generally believed to be one of the essential quantum effects responsible for speedup,
i.e., converting slow classical gate models to polynomial quantum gate algorithms. See
[Omn99, p. 274]. For universal gates, such as the CNOT gate, we need at least two elec-
trons. But it was recently suggested [MeyD00], [Llo00] that quantum search might be
realized without entanglement. To do this [MeyD00] suggests an experiment with single
particles having exponentially many states, so not electrons. However, for wavelet mod-
els, this is not feasible. The spin is fixed by the scale numberN , and so ifN = 2, we
are stuck with spin12 , see Figure 1.8.
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—with apologies to Edvard Munch

Figure 1.11. Cascading refinements. For the link between spin configurations and scaling func-
tions, see the end of Section 1.4 and Chapter 2.

1.4 Chaos and cascade approximation

The dependence of theL2 (R) theory on the spin vectors exhibits chaos features, in the
sense that a small variation of the spin-vector configurations produces “large swings” in
the wavelet generators. We will apply a probabilistic approach, in Sections 2.5, 4.4, and
5.1, in trying to take an average of the unpredictable chaos in the cascades of wavelets.
Thesingular points on the manifoldWF (D) of (2.1.30) of wavelet filters to which we
refer are defined relative to the transfer or Ruelle operatorR = Rm0 defined in (1.19),
wherem0 is a point in the variety of filters. The low-pass filterm0 is said to be a singular
point if the multiplicity of the corresponding Perron–Frobenius eigenvalueλ = 1 is more
than one or ifRm0 has eigenvalues inT different from1. For the examples in Figures
1.1–1.7, this only happens at the pointsm0 corresponding to the stretched Haar wave-
lets, see Figures 1.1 and 1.6, or (1.2.11)–(1.2.12). Letχ be the indicator function (1.22)
above. The probabilistic view of the chaotic trajectoryT2 # (θ, ρ) 
→ ϕ(θ,ρ) ∈ L2 (R)
in Figures 1.1 and 1.6 above refers to the approach of determining the cascade approxi-
mationlimn→∞Mn

A(θ,ρ) (χ) = ϕ(θ,ρ) near one of the chaotic points(θ, ρ) =
(

π
2 ,

π
2

)
or

(0, 0) (or
(

π
2 ± π

4 ,
π
2

)
, not shown), not as a directL2 (R)-limit but rather as a suitable av-

erage. Note that theL2 (R)-limit in fact does not exist at the singular points themselves
(Theorem 2.5.1), and that the scaling functionϕ(θ,ρ), near the singular points, has the
least amount of smoothness, as a function,x 
→ ϕ(θ,ρ) (x). So the Cesaro averages

lim
n→∞

1
n

n∑
k=1

Mk
A(θ,ρ) (χ) (x) = ϕ(θ,ρ) (x) (1.4.1)
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may be used instead in a neighborhood inT2 of the singular points, and it is proved in
Corollary 4.5.6, Remark 2.5.5, and Lemma 2.5.7 that (1.4.1) in fact isL2 (R)-convergent,
also at the singular points.

As explained in (1.2.7), the two unit vectors(cos θ
sin θ ) and( cos ρ

sinρ ) correspond to unitary
matrix factors in the formula (1.2.5). A matrix function in turn produces masking coef-
ficients by Section 1.2 and therefore a scaling function for a wavelet. This explains how
a configuration of two spin points (i.e., a pair of points onS2) produces a scaling func-
tion as one of the four around the head in in Figure 1.11. More generally, unit vectors
( u

v ) ∈ C2, |u|2 + |v|2 = 1, define pure states on the2 × 2 complex matrices, and these
states in turn are indexed by points on the Bloch sphereS2 of Figure 1.9. The point onS2

corresponding tou |0〉+ v |1〉 can be checked to be(2 Re (ūv) , 2 Im (ūv) , |u|2 − |v|2).
So if u = cos θ, v = sin θ, then the corresponding point onS2 is (sin 2θ, 0, cos 2θ). For
more details, see Exercise 1–18.

1.5 Spectral bounds for the transfer and subdivision operators

In Sections 3.2 and 3.4 we study general spectral properties of operators of the form
(1.19), or rather more generally (3.2.1), i.e.,|m0 (z)|2 is replaced by a general Fourier
polynomialW (z). In this case there exists a finite-dimensional spaceKs of Fourier
polynomials such thatRm0 mapsKs into Ks; see (3.2.19). For spaces of very regular
functions onT, the spectrum ofRm0 then coincides with the spectrum ofRm0 |Ks ; see
(3.2.22) and Proposition 3.5.1. For spaces of less regular functions, likeC (T) orL2 (T),
the spectrum ofRm0 in addition contains a disc consisting of eigenvalues; see Theorem
3.2.6, Proposition 3.4.6, and Remark 3.4.7. Nevertheless, ifm0 is a Fourier polynomial,
the peripheral point spectrum ofRm0 on C (T) is equal to the peripheral spectrum of
Rm0 |Ks , and the corresponding points in the spectrum have all their eigenvectors inKs;
see Theorem 5.5.4. In the case ofL2 (T), none of the peripheral points in the spectrum
are eigenvalues; see Corollary 4.2.18. In the case ofL∞ (T), Rm0 may have periph-
eral eigenvectors which are not inKs, although they are analytic except for one jump
discontinuity; see Example 3.5.5.

In Section 4.3 and Chapter 5 we study more closely the eigenspace corresponding to
λ = 1 of the transfer operator. The focus is different from that of Section 3.2, which was
L2-theory. In Sections 4.3 and 5.2, we are concerned with the real-valued continuous
functions onT and their order structure. We show (Proposition 5.3.1) that the transfer
operator itself can be obtained from its eigenfunctions in the case that the peripheral
spectral properties are nongeneric. Before that, we give in Corollary 4.5.6 a measure of
the size of the peripheral spectrum.

LetR = RW be defined from a polynomial wavelet filterm0 andW = |m0|2. If

m0 (1) =
√
N and

1
N

∑
wN=z

|m0 (w)|2 ≤ 1, (1.5.1)
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then the eigenspaceker
(
1−R|C(T)

)
contains two distinguished functions which are

Fourier polynomials. They are studied in Theorems 4.3.1 and 5.1.1. Of course if

dim ker
(
1−R|C(T)

)
= 1, (1.5.2)

then there is just one functionf in C (T) satisfyingR (f) = f andf (1) = 1, so the two
functions coincide.

The two types of wavelet filters we consider in Section 4.3 are said to be oforthogonal
type if

1
N

∑
wN=z

|m0 (w)|2 = 1, (1.5.3)

or of biorthogonal type if
1
N

∑
wN=z

|m0 (w)|2 ≤ 1. (1.5.4)

The two cases (1.5.3) and (1.5.4) are tied directly to the spectral theory of the transfer
operatorR = RW through the following observations: LetR∗

W be the formal adjoint,

(R∗
W ξ) (z) = W (z) ξ

(
zN
)
, ξ ∈ L1 (T) . (1.5.5)

Then

• R∗
W is isometric in L1 (T) if and only if (1.5.3) holds, (1.5.6)

and

• R∗
W is contractive in L1 (T) if and only if (1.5.4) holds, whereL1 (T)

is defined from the Haar measure onT.
(1.5.7)

The operator in (1.5.5) is of independent interest in numerical analysis, where it is called
the subdivision operator S; see, e.g., [GMW94]. It is considered in a sequence space,
such as:p (Z), 1 ≤ p ≤ ∞, where the matrix representation is

(Sx)i =
∑
j∈Z

ci−Njxj (1.5.8)

for x = (xj) ∈ :p (Z), i, j ∈ Z, andW (z) =
∑

k∈Zckz
k. SettingN = 2, the subdivi-

sion scheme (1.5.8) takes the following form of double subband filtering:

(Sx)2i =
∑
j∈Z

c2jxi−j , (Sx)2i+1 =
∑
j∈Z

c2j+1xi−j, (1.5.9)

which is more familiar in the context of the theory of stationary subdivision, see, e.g.,
[deR56], [CDM91], i.e., each of the two expressions in (1.5.9) is a convolution, but
the first involves only the coefficients of even index, while the second is the analogous
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weighted average, but with only the weights of odd index. It is used, for example, in the
local cascade algorithm, see Figures 1.1–1.7.

The operatorS (= R∗
W ) in (1.5.8) is called the subdivision operator, or thewoodcutter

operator, because of its use in computer graphics. Iterations ofS will generate a shape
which (in the case of one real dimension) takes the form of the graph of a functionf on
R. If ξ ∈ :∞ (Z) is given, and if the differences

Dn (i) = f

(
i

2n

)
− (Snξ) (i) , i ∈ Z, (1.5.10)

are small, for example if
lim

n→∞ sup
i∈Z
|Dn (i)| = 0, (1.5.11)

then we say thatξ representscontrol points, or a control polygon, and the functionf is
the limit of thesubdivision scheme.

It follows that the subdivision operatorS on the sequence spaces, especially on:∞ (Z),
governspointwise approximation to refinable limit functions. But we will see in Theo-
rem 2.5.1 that the dual version ofS, i.e.,R = S∗ (= the transfer operator) governs the
correspondingmean approximation problem, i.e., approximation relative to theL2 (R)-
norm.

In Scholium 4.1.2, we will consider the eigenvalue problem

Sξ = λξ, λ ∈ C, (1.5.12)

andξ �= 0 in some suitably defined space of sequences. The formula (1.5.10) for the limit
of a given subdivision schemeS makes it clear that the case (1.5.12) must be excluded.
For if (1.5.12) holds, for someλ ∈ C, and some sequenceξ of control points, then there
is not a corresponding regular functionf on R with its values given on the finer grids
2−nZ, n = 1, 2, . . . , by

fξ

(
i2−n

) ≈ (Snξ) (i) = λnξ (i) , i ∈ Z. (1.5.13)

We will show in Example 4.1.3 that there are no such control pointsξ in :2 (Z) \ {0}.
Hence the stability of the algorithm!

We will analyze the duality betweenRW andR∗
W and their spectra in Sections 4.1

and 4.2.
SettingW = |m0|2, we note that orthogonal type (referring to orthogonal wavelets) is

(1.25) or (3.2.10), while biorthogonal type (referring to the wider class of biorthogonal
wavelets) is (1.29) or (3.4.3) in Proposition 3.4.1 or (3.4.25) in Theorem 3.4.4. In the
following, we shall refer to these two conditions in connection with a givenW which is
assumed only to satisfy (3.4.23), i.e.,W ∈ Lip1 (T), and (3.4.25), i.e.,W ≥ 0. Other
conditions will then be added, such as (3.2.10), or (3.4.25).

While the eigenspace{g ∈ C (T) | R (g) = g} is not an algebra, we show in Sections
5.2, 5.3, and 5.4 that it carries a product in which it induces a finite-dimensional abelian
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algebra, and we identify the positive multiplicative functionals on this system as the
normalized counting measures on a family of cycles onT. A cycle is a finite orbit onT
underz 
→ zN . In the orthogonal or biorthogonal cases (1.5.3) or (1.5.4), these cycles

are exactly the cycles contained in
{
z ∈ T

∣∣ |m0 (z)|2 = N
}

.

1.6 Connections to group theory

In this book, we stress the discrete wavelet transform. But the first line in the two tables
of Exercise 1–43 below is the continuous one. It is the only treatment we give to the
continuous wavelet transform, and the correspondingcoherent vector decompositions.
But, as is stressed in [Dau92], [Kai94], and [KaLe95], the continuous version came first.
A functionψ satisfying the resolution identity is called acoherent vector in mathematical
physics. The representation theory for the(ax + b)-group, i.e., the matrix groupG ={(

a b
0 1

) | a ∈ R+, b ∈ R
}

, serves as its underpinning. Then the table in Exercise 1–43
illustrates how the{ψj,k} wavelet system arises from a discretization of the following
unitary representation ofG:(

U� a b
0 1

�f
)

(x) = a−
1
2 f

(
x− b

a

)
(1.6.1)

acting onL2 (R). This unitary representation also explains the discretization step in
passing from the first line to the second in the table of Exercise 1–43. The functions
{ψj,k | j, k ∈ Z} which make up a wavelet system result from the choice of a suitable
coherent vectorψ ∈ L2 (R), and then setting

ψj,k (x) =
(
U� 2−j k·2−j

0 1

�ψ
)

(x) = 2
j
2ψ
(
2jx− k

)
. (1.6.2)

Even though this representation lies at the historical origin of the subject of wavelets
(see [DGM86]), the(ax + b)-group seems to be now largely forgotten in the next gen-
eration of the wavelet community. But [Dau92, Chapters 1–3] still serve as a beautiful
presentation of this (now much ignored) side of the subject. It also serves as a link to
mathematical physics and to classical analysis.

Since the representationU in (1.6.1) onL2 (R) leaves invariant the Hardy space

H+ =
{
f ∈ L2 (R) | supp (f̂) ⊂ [0,∞〉} , (1.6.3)

formula (1.6.2) suggests that it would be simpler to look for wavelets inH+. After all,
it is a smaller space, and it is natural to try to use the causality features ofH+ implied
by the support condition in (1.6.3). Moreover, in the world of the Fourier transform, the
two operations of the formulas (1.6.1) and (1.6.2) take the simpler forms

f̂ 
−→ a
1
2 e−ibtf̂ (at) and ψ̂ 
−→ 2

j
2 e−i2jktψ̂

(
2jt
)
. (1.6.4)
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So in the early nineties, this was an open problem in the theory, i.e., whether or not there
are wavelets in the Hardy space; but it received a beautiful answer in [Aus95]. Auscher
showed that there are no wavelet functionsψ in H+ which satisfy the following mild
regularity properties:

(R0) ψ̂ is continuous;

(Rε) for someε ∈ R+, ψ̂ (t) = O (|t|ε) andψ̂ (t) = O
(

(1 + |t|)−ε− 1
2

)
, t ∈ R.

Comparison of formulas (1.6.1) and (1.6.2) shows that the traditional discrete wave-
let transform may be viewed as the restriction to a subgroupH of a classical unitary
representation ofG. The unitary representations ofG are completely understood: the
set of irreducible unitary representations consists of two infinite-dimensional inequiva-
lent subrepresentations of the representation (1.6.1) onL2 (R), together with the one-
dimensional representations

(
a b
0 1

) → aik parameterized byk ∈ R. (The two subrepre-
sentations of (1.6.1) are obtained by restricting tof ∈ L2 (R) with supp f̂ ⊆ 〈−∞, 0]
andsupp f̂ ⊆ [0,∞〉, respectively.) (See Exercises 1–41 and 1–42.) However, the sub-
groupH of G has a rich variety of inequivalent infinite-dimensional representations that
do not arise as restrictions of (1.6.1), or of any representation ofG. The groupH con-
sidered in (1.6.2) is a semidirect product (as isG): it is of the form

HN =

{(
a b

0 1

) ∣∣∣∣ a = N j, b =
∑
i∈Z

niN
i, j ∈ Z, ni ∈ Z,

where the
∑

i

summation is finite

}
. (1.6.5)

(In the jargon of pure algebra, the nonabelian groupHN is the semidirect product of the
two abelian groupsZ andZ

[
1
N

]
, with a naturally defined action ofZ on Z

[
1
N

]
.)

The papers [DaLa98], [Jor01a], [BaMe99], [HLPS99], [LPT01], and [BreJo91] show
that it is possible to use these nonclassical representations ofH for the construction of
unexpected classes of wavelets, the wavelet sets being the most notable ones. Recall that
a subsetE ⊂ R of finite measure is awavelet set if ψ̂ = χE is such that, for some

N ∈ Z+, N ≥ 2, the functions
{
N

j
2ψ
(
N jx− k

) | j, k ∈ Z
}

form an orthonormal

basis forL2 (R). Until the work of Larson and others, see [DaLa98] and [HLPS99], it
was not even clear that wavelet setsE could exist in the caseN > 2. The paper [LPT01]
develops and extends the representation theory for the subgroupsHN independently of
the ambient groupG and shows that eachHN has continuous series of representations
which account for the wavelet sets. The role of the representations of the groupsHN and
their generalizations for the study of wavelets was first stressed in [BreJo91].

There is a different transform which is analogous to the wavelet transform of (1.6.1)–
(1.6.2), but yet different in a number of respects. It is the Gabor transform of Section
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1.8, and it has a history of its own; see the details below. Both are special cases of the
following construction: LetG be a nonabelian matrix group with centerC, and letU be
a unitary irreducible representation ofG on the Hilbert spaceL2 (R). Whenψ ∈ L2 (R)
is given, we may define a transform

(Tψf) (ξ) := 〈U (ξ)ψ f〉 , for f ∈ L2 (R) andξ ∈ G�C. (1.6.6)

It turns out that there are classes of matrix groups, such as theax + b group, or the
3-dimensional group of upper triangular matrices, which have transformsTψ admitting
effective discretizations. This means that it is possible to find a vectorψ ∈ L2 (R), and
a discrete subgroupΛ ⊂ G�C, such that the restriction toΛ of the transformTψ in
(1.6.6) is injective fromL2 (R) into functions onΛ.

There are many books on transform theory, and here we are only making the con-
nection to wavelet theory. The book [Per86] contains much more detail on the group-
theoretic approach to these continuous and discrete coherent vector transforms.

1.7 Wavelet packets

UNCERTAINTY. The practical gain in passing from wavelets to wavelet packets is
an improvement oflocalization, and this localization is useful for a variety of appli-
cations. One localization method is the algorithm of Coifman and Wickerhauser for
digitizing the fingerprint archive at the F.B.I. As follows from the brief summary
below, the wavelet packets will generally not spread through the entire universe; in
the case of one dimension, the algorithm allows an adjustment of the position and
the size of dyadic intervals which carry the essential portion of the signal, while at
the same time controlling the frequency localization. It is known [CoWi93] that the
algorithm is also successful in two or three dimensions. Both in modern wavelet
packet analysis and in localization problems in quantum mechanics, the obstacle is
a variant of the uncertainty relation. In Fourier analysis you have pairs of variables
which are in duality, for example positionx and momentump, or energy and time.
In Heisenberg’s formulation, the uncertainty relation reads∆x∆p ≥ �

2 where� is
Planck’s constant and where∆x and∆p denote the dispersion (uncertainty) in the
respective variables. However, as is well known, Fourier analysis allows a scale in
one of the two variables of the duality, and so you will frequently see the lower
bound in Heisenberg’s inequality in a rescaled version.

While Exercises 1–1 and 1–39 below show that Haar’s wavelet expansions allow intu-
itive and directly computable restrictions to finite intervals, this turns out not to be the
case for general wavelet expansions. This is related to the known fact ([Dau92, Chapter
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8]) that the Haar wavelet is the only wavelet with antisymmetry: the antisymmetry in
question is defined for a functionf onR by the conditionf (a− x) = −f (x) for some
a ∈ R. Let ψ be a compactly supported orthogonal dyadic wavelet inL2 (R). Then by
[Dau92, Theorem 8.1.4], ifψ has an antisymmetry axis, thenψ is the Haar function.

The Haar wavelet is supported in[0, 1], and if j ∈ Z+ andk ∈ Z, then the modified
functionx 
→ ψ

(
2jx− k

)
is supported in the smaller intervalk

2j ≤ x ≤ k+1
2j . When

j is fixed, these intervals are contained in[0, 1] for k ∈ {0, 1, . . . , 2j − 1
}

. This is not
the case for the other wavelet functions. For one thing, the non-Haar waveletsψ have
support intervals of length more than one, and this forces periodicity considerations; see
[CDV93]. For this reason, Coifman and Wickerhauser [CoWi93] invented the concept
of wavelet packets. They are built from functions with prescribed smoothness, and yet
they have localization properties that rival those of the (discontinuous) Haar wavelet.

There are powerful but nontrivial theorems on restriction algorithms for wavelets
ψj,k (x) = 2

j
2ψ
(
2jx− k

)
from L2 (R) to L2 (0, 1). We refer the reader to [CDV93]

and [MiXu94] for the details of this construction. The underlying idea of Exercises 1–1
and 1–39 dates back to Alfred Haar, but it has found a recent renaissance in the work
of Wickerhauser [Wic93] onwavelet packets. The idea there, which is also motivated by
the Walsh function algorithm, is to replace the refinement equation (1.21) by a related
recursive system as follows: Letm0 (z) =

∑
k akz

k, m1 (z) =
∑

k bkz
k, for example

bk = (−1)k ā1−k, k ∈ Z, be a given low-pass/high-pass system,N = 2. Then consider
the followingrefinement system onR:

W2n (x) =
√

2
∑
k∈Z

akWn (2x− k) , W2n+1 (x) =
√

2
∑
k∈Z

bkWn (2x− k) . (1.7.1)

Clearly the functionW0 can be identified with the traditional scaling functionϕ of
(1.21). A theorem of Coifman and Wickerhauser [CoWi93, Theorem 8.1] states that
if P is a partition of{0, 1, 2, . . . } into subsets of the form

Ik,n =
{

2kn, 2kn + 1, . . . , 2k (n + 1)− 1
}
,

then the function system{
2

k
2Wn

(
2kx− l

)
| Ik,n ∈ P, l ∈ Z

}
is an orthonormal basis forL2 (R). Although it is not spelled out in [CoWi93], this
construction of bases inL2 (R) divides itself into the two cases, the true orthonormal
basis (ONB), and the weaker property of forming a function system which is only a tight
frame. As in the wavelet case, to get theP-system to really be an ONB forL2 (R), we
must assume the transfer operatorR|m0|2 to havePerron–Frobenius spectrum onC (T).
This means that the intersection of the point spectrum ofR|m0|2 with T is the singleton
λ = 1, and thatdim ker((1−R|m0|2)|C(T)) = 1; see Table 3 in the next chapter.
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More generally, an orthonormal basis forL2 (R) selected from among the functions
2

k
2Wn

(
2kx− l

)
, n = 0, 1, . . . , k, l ∈ Z, is called awavelet packet basis, and the ver-

satility of these bases derives from the known adaptability of the construction, making
both the scale and the “window” choice adjust simultaneously to the synthesis problem
at hand, say recovering the fingerprint which corresponds to a digitized wavelet version
in the FBI database, or in 3D, reconstructing a sculpture from its wavelet packet coeffi-
cients. See [CoWi93] for further details. The construction of the wavelet packets starts
with theL2 (R)-cascade analysis of the solutions to the refinement system (1.7.1), and
it is shown in [Wic93] that the arguments for existence ofϕ andψ in the wavelet case
(see Sections 1.1–1.2 above) adapt to the existence problem for (1.7.1).

We noted in Exercise 1–43, to be followed up in Lemma 2.2.2 below, that theL2 (R)-
wavelet expansion may be based on the operator system (1.3.15), i.e., the system of
operatorsSi acting on the sequence space:2. These are the Cuntz relations [Cun77],
although they are not known under that name in the engineering literature. An exami-
nation of the papers [Wic93] and [CoWi93] shows that the wavelet packet algorithm is
in fact based on the same relations, i.e., the Cuntz relations. Perhaps surprisingly, this
turns out to be also the case for the recent algorithms on ridgelets and curvelets which
are used for ridges of singularities in Radon transform/wavelet analysis of problems in
Rd, d ≥ 2, and in neural network problems; see [AyBa01], [CaDo00], and [Can99].

1.8 The Gabor transform

Another useful expansion in signal theory is provided by Gabor analysis. This differs
from wavelet analysis in that scaling is replaced by multiplication byx → eiωx. Fix a
functiong ∈ L2 (R) with ‖g‖2 = 1, and, forω, t ∈ R, let gω,t (x) = eiωxg (x− t). The
windowed Fourier transform, or transform, T : L2 (R)→ L2

(
R2
)

is defined by

Tf (ω, t) =
〈
gω,t f

〉
=
∫
R

e−iωx g (x− t) f (x) dx (1.8.1)

for f ∈ L2 (R). Let Λ be a lattice inR2, i.e.,Λ is a discrete subgroup ofR2 of rank2,
so Λ = {nx + my | n,m ∈ Z} where{x, y} is a basis forR2. One may ask if every
function f is determined by the “discretized” windowed Fourier transform defined by
Λ, that is, iff is determined by the restriction ofTf to Λ. Equivalently, the question is
whether the linear span of

{
gω,t | (ω, t) ∈ Λ

}
is dense inL2 (R). It was stated without

proof by von Neumann that this is the case ifΛ = 2πZ ⊕ Z andg (x) = π−1/4e−x2/2

[vNeu68, p. 217]. It was proved independently by Perelomov [Per71] and Bargmann et
al. [BBGK71] that, for any latticeΛ in R2 and the above Gaussian functiong, the set{
gω,t | (ω, t) ∈ Λ

}
spansL2 (R) if and only if Vol

(
R2�Λ

) ≤ 2π, whereVol
(
R2�Λ

)
is the volume of the parallelogram{tx + sy | t, s ∈ [0, 1〉}. Much more generally, the
following result is true.
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Theorem 1.8.1. Let Λ be a lattice in R2. The following two conditions are equivalent:

There exists a function g ∈ L2 (R) such that the linear span of{
gω,t | (ω, t) ∈ Λ

}
is dense in L2 (R),

(1.8.2)

and

Vol
(
R2�Λ

) ≤ 2π. (1.8.3)

Moreover, there exists a function g ∈ L2 (R) such that
{
gω,t | (ω, t) ∈ Λ

}
is an or-

thonormal basis for L2 (R) if and only if Vol
(
R2�Λ

)
= 2π.

This theorem is an immediate consequence of Theorem 3.2 in [Rie81], and was proved
independently in [Bag90]. Both proofs use von Neumann algebra techniques, as does
also a recent proof by Bekka [Bek01]. The latter proof is interesting in that it gives
an interpretation of the constantVol

(
R2�Λ

)
/2π as a von Neumann dimension. The

proofs are thus outside the scope of this book. For more information on Gabor analysis,
see [Dau92, Chapter 2], [FeSt98], [Gro01], [MeyY00], and [Per86].

While there are similarities between wavelet bases and Gabor bases inL2 (R), there
are also differences; a notable difference has to do with the respective localization prop-
erties, which are typically better for wavelets, as stressed for example in [Dau92, Theo-
rem 4.1.1] or [HeWe96, Theorem 2.1].

As we note in Exercises 1–38 and 1–45, the wavelets and the Gabor bases have in
common that they may both be obtained from the discretization of unitary representa-
tions of matrix groupsG acting on the Hilbert spaceL2 (R). In the case of the wavelets,
the group consists of the2 × 2 matrices

(
et b
0 1

)
, t, b ∈ R, while for the Gabor bases, the

group is the three-dimensional groupGH of matrices
(

1 a c
0 1 b
0 0 1

)
. This latter group is the

Heisenberg group, and it has a one-dimensional centerC. Dividing out withC, the two
variablesa, b remain, i.e.,G�C ∼= R2. From there, the construction of a singly gen-
erated basis, in each case, results from a selection of a functionψ in L2 (R), a unitary
representationU of one of the groupsG such that the respective basis functions have
the formUλψ with λ varying in a discrete subgroup (as in Section 1.6), or in a lattice
Λ ⊂ R2 as described above for the Gabor case. The reader may check that there is an
irreducible representationU of GH onL2 (R) such that(

U� 1 t 0
0 1 ω
0 0 1

�g
)

(x) = gω,t (x) = eiωxg (x− t) (1.8.4)

yields the function system in (1.8.1).

Exercises

1–1. (Haar 1909.) Letψ be the Haar function of (1.2), i.e.,ψ := χ[0, 1
2〉−χ[ 1

2
,1〉, and set

ψj,k (x) := 2
j
2ψ
(
2jx− k

)
as usual, but instead of having the variablesx ∈ R, j, k ∈ Z
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1–46. For a dyadic wavelet functionψ on R, we define adimension function

Dψ (t) :=
∞∑

j=1

∑
k∈Z

∣∣∣ψ̂ (2j (t + 2πk)
)∣∣∣2 .

Let
E = [−2π, π〉 ∪ [π, 2π〉 ,

and

F =
[
−4π − 4π

7
,−4π

〉
∪
[
−π,−4π

7

〉
∪
[

4π
7
, π

〉
∪
[
4π, 4π +

4π
7

〉
.

(a) Show that bothE andF are wavelet sets, i.e., that bothψE = χ̌E andψF = χ̌F

are dyadic wavelet functions.

(b) Show that
DψE

(t) ≡ 1, t ∈ R.

(c) Show that

DψF
(t) ≡ 2, t ∈

[−2π
7

,
2π
7

〉
.

(d) Show that the wavelet functionψE has a scaling functionϕE and find the refine-
ment equation forϕE . FindϕE .

(e) Show that the wavelet functionψF doesnot have a scaling function. (See more on
this in Section 2.3.)

Terminology

• mathematics: “the study of absolutely necessary truths.” —David Deutsch,The
Fabric of Reality [Deu97]

• multiresolution: —real world: a set of band-pass-filtered component images, as-
sembled into a mosaic of resolution bands, each resolution tied to a finer one and
a coarser one.

—mathematics: used in wavelet analysis and fractal analysis, multiresolutions are
systems of closed subspaces in a Hilbert space, such asL2 (R), with the subspaces
nested, each subspace representing a resolution, and the relative complement sub-
spaces representing the detail which is added in getting to the next finer resolution
subspace.

• matrix function: a function from the circle, or the one-torus, taking values in a
group ofN -by-N complex matrices.
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• wavelet: a functionψ, or a finite system of functions{ψi}, such that for some
scale numberN and a lattice of translation points onR, sayZ, a basis forL2 (R)
can be built consisting of the functionsN

j
2ψi

(
N jx− k

)
, j, k ∈ Z.

Then dulcet music swelled
Concordant with the life-strings of the soul;
It throbbed in sweet and languid beatings there,
Catching new life from transitory death;
Like the vague sighings of a wind at even
That wakes the wavelets of the slumbering sea. . .

—Shelley,Queen Mab

• subband filter: —engineering: signals are viewed as functions of time and fre-
quency, the frequency function resulting from a transform of the time function; the
frequency variable is broken up into bands, and up-sampling and down-sampling
are combined with a filtering of the frequencies in making the connection from
one band to the next.

—wavelets: scaling is used in passing from one resolutionV to the next; if a
scaleN is used fromV to the next finer resolution, then scaling by1

N takesV
to a coarser resolutionV1 represented by a subspace ofV , but there is a set of
functions which serve as multipliers when relatingV to V1, and they are called
subband filters.

• cascades: —real world: a system of successive refinements which pass from a
scale to a finer one, and so on; used for example in graphics algorithms: starting
with control points, a refinement matrix and masking coefficients are used in a cas-
cade algorithm yielding a cascade of masking points and a cascade approximation
to a picture.

—wavelets: in one dimension the scaling is by a number and a fixed simple func-

tion, for example of the form
0 1

is chosen as the initial step for the cascades;
when the masking coefficients are chosen the cascade approximation leads to a
scaling function.

• scaling function: a function, or a distribution,ϕ, defined on the real lineR which
has the property that, for some integerN > 1, the coarser versionϕ

(
x
N

)
is in the

closure (relative to some metric) of the linear span of the set of translated functions
. . . , ϕ (x + 1), ϕ (x), ϕ (x− 1), ϕ (x− 2) , . . . .

• logic gates: —in computation the classical logic gates are realized as computers,
for example as electronic switching circuits with two-level voltages, say high and
low. Several gates from Table 2 have two input voltages and one output, each one
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allowing switching between high and low: The output of the AND gate is high if
and only if both inputs are high. The XOR gate has high output if and only if one
of the inputs, but not more than one, is high.

• qubits: —in physics and in computation: qubits are the quantum analogue of the
classical bits0 and1 which are the letters of classical computers, the qubits are
formed of two-level quantum systems, electrons in a magnetic field or polarized
photons, and they are represented in Dirac’s formalism|0〉 and|1〉; quantum theory
allows superpositions, so states|ψ〉 = a |0〉 + b |0〉, a, b ∈ C, |a|2 + |b|2 = 1, are
also admitted, and computation in the quantum realm allows a continuum of states,
as opposed to just the two classical bits.

—mathematics: a chosen and distinguished basis for the two-dimensional Hilbert
spaceC2 consisting of orthogonal unit vectors, denoted|0〉, |1〉.

• universality: —classical computing: the property of a set of logic gates that they
suffice for the implementation of every program; or of a single gate that, taken
together with the NOT gate, it suffices for the implementation of every program.

—quantum computing: the property of a setS of basic quantum gates that every
(invertible) gate can be written as a sequence of steps using only gates fromS.
UsuallyS may be chosen to consist of one-qubit gates and a distinguished tensor
gatet. An example of a choice fort is CNOT. An alternative universal one is the
Toffoli gate.

—mathematics: the property of a setS of basic unitary matrices that for everyn
and everyu ∈ U2n (C), there is a factorizationu = s1s2 · · · sk, si ∈ S, with
the understanding that the factorssi are inserted in a chosen tensor configuration
of the quantum registerC2 ⊗ · · · ⊗ C2︸ ︷︷ ︸

n times

. Note that the factorssi, the numberk,

and the configuration of thesi’s all depend onn and the gateu ∈ U2n (C) to be
studied. The quantum wavelet algorithm (1.3.24) is an example of such a matrix
u. It may also take the form given in (1E.17) of Exercise 1–22.

• chaos: a small variation or disturbance in the initial states or input of some sys-
tem giving rise to a disproportionate, or exponentially growing, deviation in the
resulting output trajectory, or output data. The term is used more generally, denot-
ing rather drastic forms of instability; and it is measured by the use of statistical
devices, or averaging methods.

• GLN (C): thegeneral linear group of all complexN ×N invertible matrices.

• UN (C): = {A ∈ GLN (C) | AA∗ = 1CN } whereA∗ denotes the adjoint matrix,
i.e.,(A∗)i,j = Āj,i.
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• transfer operator (transition operator): —in probability: An operator which
transforms signalss from inputsin to outputsout. The signals are represented as
functions on some setE. In the simplest case, the operator is linear and given in
terms of conditional probabilitiesp (x, y). The numberp (x, y) may represent the
probability of a transition fromy to x wherex andy are points in the setE. Then

sout (x) =
∑
y∈E

p (x, y) sin (y) .

—in computation: Let X andY be functions on a setE, both taking values in
{0, 1}. Let Y be the initial state of the bit, andX the final state of the bit. If the
process is governed by a probability distributionP , then the transition probabil-
ities p (x, y) := P ({X = x | Y = y}) are conditional probabilities: i.e.,p (x, y)
is the probability of a final bit valuex given an initial valuey, and we have

P ({X = x}) =
∑
y∈E

p (x, y)P ({Y = y}) .

—in wavelet theory: Let N ∈ Z+, and letW be a positive function onT =
{z ∈ C | |z| = 1}, for exampleW = |m0|2 wherem0 is some low-pass wavelet
filter with N bands. (Positivity is only in the senseW ≥ 0, nonnegative, and the
functionW may vanish on a subset ofT.) Then define a functionp on T × T as
follows:

p (z,w) =

{ (
1
N

)
W (w) if wN = z,

0 for all other values ofw.

We arrive at the transfer operatorRW which is studied in detail in Chapter 4 below,
i.e., the operator transforming functions onT as follows:

sout (z) = (RW sin) (z) =
1
N

∑
wN=z

W (w) sin (w) .

• coherence: —in mathematics and physics: The vectorsψi of (1.1.7) that make up
a tight frame, one which is not an orthonormal basis, are said to be subjected to
coherence. So coherent vector systems in Hilbert space are viewed as bases which
generalize the more standard concept of orthonormal bases from harmonic anal-
ysis. A striking feature of the wavelets with compact support, which are based
on scaling, is that the varieties of the two kinds of bases can be well understood
geometrically. For example, we show in Chapter 2 that the collapse of the wavelet
orthogonality relations, degenerating into coherent vectors, happens on a subva-
riety of a lower dimension.
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Decoherence
direction of
light beams Coherence

direction of
light beams

Figure 1.12. Polarized photons visualized as light beams.

More generally, coherent vectors in mathematical physics often arise with a con-
tinuous index, as we noted in Exercise 1–43 above, even if the Hilbert space is
separable, i.e., has a countable orthonormal basis. This is illustrated by the vec-
tor system{ψr,s} in the first line of the tables in Exercise 1–43, which should be
thought of as a continuous analogue of (1.1.7), i.e., the version where the sum in
(1.1.7) gets replaced with an integral

C−1
ψ

∫∫
R2

dr ds

r2
|〈ψr,s f〉|2 = ‖f‖2 .

For more details, see also [Dau92, Section 3.3] and [Kai94, Chapter 3], and Exer-
cise 1–26.

In quantum mechanics, one talks, for example, about coherent states in connec-
tion with wavefunctions of the harmonic oscillator. Combinations of stationary
wavefunctions from different energy eigenvalues vary periodically in time, and
the question is which of the continuously varying wavefunctions one may use to
expand an unknown function in without encountering overcompleteness of the
basis. The methods of “coherent states” are methods for using these kinds of
functions (which fit some problems elegantly) while avoiding the difficulties of
overcompleteness. The term “coherent” applies when you succeed in avoiding
those difficulties by some means or other. Of course, for students who have just
learned about the classic complete orthonormal basis of stationary eigenfunctions,
“coherent state” methods at first may seem like a daring relaxation of the rules of
orthogonality, so that the term seems to stand for total freedom!

• decoherence: —in quantum computing channels: the collapse of a pure state
|ψ〉 = α |0〉 + β |1〉, αβ �= 0, i.e., one with quantum parallelism, into one of the
two states|0〉 or |1〉, where these resulting two states could represent a horizontal
or a vertical polarization of a photon; see Figure 1.12.
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Table 2. Logic gates

COMPARISONS: The classical NOT is analogous to the quantum X, and the classical
XOR is somewhat analogous to the quantum CNOT, while the other pairs of gates are
less analogous. The quantum gate Z maps|0〉 into itself and|1〉 into− |1〉, and− |1〉 de-
fines exactly the same quantum state as|1〉, so Z does nothing to the classical states, but
it affects the coherent states. Thus Z is a quantum gate without a classical counterpart.
A gate isreversible if its input can be restored from its output, otherwiseirreversible.

classical gates quantum gates
and Venn diagrams (all reversible by virtue of

(irreversible except the first one, NOT) their representation as unitaries)

NOT
(r)

:
a ā

:= a + 1
mod 2

bit-flip

X
(r)

: σx =

(
0 1
1 0

)
X

qubit-flip

Z
(r)

: σz =

(
1 0
0 −1

)
Z

phase-reversal
AND

(ir)
(u)

:

b

a

a ∧ b
:= ab

mod 2

OR
(ir)
(u)

:

b

a

a ∨ b
:= a + b + ab

mod 2

Toffoli
(r)
(u)

:

c

b

a

ab + c

mod 2

b

a

XOR
(ir)
(nu)

:

b

a

a ∨̇ b
:= a + b

mod 2

CNOT
(r)
(u)

:

b

a

a + b
mod 2

see (1.3.3 )

a

a, b, · · · ∈ Z2 = {0, 1}; a+b andab are respectively addition and multiplicationmod 2;
(r) = reversible; (ir)= irreversible; (u)= universal; (nu)= not universal


