1
Introduction

Prerequisites

See our suggestions in the Preface and in the following tutorial. What if, you say,
| don’t have the prerequisites for reading the prerequisites? Start the book anyway!
You will pick them up along the way.

Overture: Why wavelets?

The first wavelet was discovered by Alfred Haar long ago, but its use was limited
since it was based on step-functions, and the step-functions jump from one step to
the next. The implementation of Haar’s wavelet in the approximation problem for
continuous functions was therefore rather bad, and for differentiable functions it is
atrocious, and so Haar’s method was forgotten for many years. And yet it had in it
the one idea which proved so powerful in the recent rebirth (since the 1980’s) of
wavelet analysis: the idea ofraultiresolution. You see it in its simplest form by
noticing that a box functiom® of (1.1) may be scaled down by a half such that two
copiesB’ andB” of the smaller box then fit precisely insid& See (1.1).
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This process may be continued if you scale by powerg of both directions,

i.e., by 2* for integralk, —co < k < oo. So for everyk ¢ Z, there is a finer
resolution, and if you take an up- and a shifted mirror image down-version of the
dyadic scaling as in (1.2), and allow all linear combinations, you will notice that
arbitrary functionsf on the line—occ < z < oo, with reasonable integrability
properties, admit a representation

f(z)= ch,nw (Qkx - ’I’L) ) (1.3)

k,n

where the summation is over all pairs of integérs € Z, with k representing
scaling andr translation. The very simple idea of turning this construction into
a multiresolution (“multi” for the variety of scales in (1.3)) leads not only to an
algorithm for the analysis/synthesis problem,

f (J)) — Ck,n, (14)

in (1.3), but also to a construction of the single functignshich solve the problem

in (1.3), and which can be chosen differentiable, and yet with support containedin a
fixed finite interval. These two features, the algorithm and the finite support (called
compact support), are crucial for computations: Computers do algorithms, but they
do not do infinite intervals well. Computers do summations and algebra well, but
they do not do integrals and differential equations, unless the calculus problems are
discretized and turned into algorithms.

The prerequisites for our present book include some familiarity with function
spaces and with rudimentary ideas from harmonic analysis. And, of course, if you
have had experience with Hilbert space, or integration theory, then this is a help;
but you will be able to pick up what you need along the way. You will notice
that the multiresolution analysis viewpoint is dominant, which increases the role of
algorithms; for example, the so-called pyramid algorithm for analyzing signals, or
shapes, using wavelets, is an outgrowth of multiresolutions.

One way to quickly brush up on basic ideas that you will meet along the way
through the chapters of our book is to consult one or both of the two books [Hub98]
and [KaLe95]. The first is a wonderful summary of the fundamental ideas behind
the wave of wavelet analysis which began in the mid-1980’s, and it is written with
a minimal use of mathematical formulas and a maximal use of good writing. You
will also learn of the history, and you will meet some of the researchers who gave
the early push to the subject. The second book [KaLe95] has somewhat of the same
flavor, but it is written for mathematicians. It has formulas, and in addition a lot of
excellent writing. Like [Hub98], it stresses the intuitive ideas behind the formulas.
Actually, it is two books: the first one (primarily by Kahane) is classical Fourier
analysis, and the second one (primarily by P.-G. LeaRiBusset) is the wave-
let book. It will help you, among other things, to get a better feel for the French
connection, the Belgian connection, and the diverse and early impulses from appli-
cations in the subject. Enjoy!

We mention two fast and friendly guides through the basic ideas of harmonic
analysis terminating in multiresolution analysis: Chapter 11 in [McWe99], and
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Chapter 15 in [DaDo02]. Then there are two popular articles inNbitces of
the American Mathematical Society [Bri95, Wal97] which serve as entries to the
subject. Both are written for students and the general (mathematical) public. C.M.
Brislawn explains in [Bri95] how the idea of the two-channel multirate filter bank
and the wavelet packets have now turned into a commercial algorithm which is
used by the F.B.I. in digitizing, compressing, and storing fingerprints. The sec-
ondNotices article, by J.S. Walker, introduces in [Wal97] several discrete wavelet
algorithms to the public, and compares the classical Fourier approach to the analy-
sis/synthesis problem with the one based on wavelets and multirate analysis. Both
Noticesarticles include lots of examples and motivation which are ideally appropri-
ate for the viewpoint in our book: the Daubechies method, the vanishing moments,
the multiresolutions and their more recent variations and generalizations.
Returning to (1.1) and (1.2) (see also (1.13)), we see that the scaling fugaction
itself may be expanded in the wavelet basis which is defined ffpamd we arrive
at the infinite series

o)=Y 27" (27%a) (1.5)
k=1

which is pointwise convergent far € R. (It is a special case of the expansion
(1.3) whenf = ¢.) In view of the picture ¢-) below, (1.5) gives an alternative
meaning to the traditional concept oft@escoping infinite sum. If, for example,

0 < z < 1, then the representation (1.5) yield$z) = 1 = 3 + (%)2 +---, while
forl <a<2¢(@)=0=-1+(3)"+(4)°+- . More generally, ifa € N,
and2"~! < z < 27, then

<P(x)—0——<%>n+]§l<%>k.

So the functiony is itself in the spac®, C L? (R), andy represents thanitial
resolution. The tail terms in (1.5) corresponding to

Z 27k (Q_ka:) = 2%(,0 (2%) (1.6)

k>n

represent theoarser resolution. The finite sum

Z 27Fy (27Fz)
k=1

represents theissing detail of ¢ as a “bump signal”. While the sum on the left-
hand side in (1.6) ignfinite, i.e., the summation indexis in the range: < k < oo,

the expressio@ "y (27 "z) on the right-hand side is merely a coarser scaled ver-
sion of the original functiorp from the subspac¥ c L? (R) which specifies the
initial resolution. Infinite sums aranalysis problems while a scale operation is a
single simplealgorithmic step. And so we have encountered a first (easy) instance
of the magic of a resolution algorithm; i.e., an instance of a transcendental step (the
analysis problem) which is converted into a programmable operation, here the op-
eration of scaling. (Other more powerful uses of the scaling operation may be found
in the recent book [Mey98, especially Ch. 5] by Yves Meyer and [HwMa94].)
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The sketch below allows you to visualize more clearly this resolution versus
detail concept which is so central to the wavelet algorithms, also for general wave-
lets which otherwise may be computationally more difficult than the Haar wavelet.

gl o(x)
A=
o ‘ 16w(16) €>
“ 1 x
Tp(2) s¥(%)
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3¥(5)
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The wavelet decomposition of Haar’s bump functipm (1.1) and (1.5)

Using the sketch we see for example that the simple step function

f (@) = ap(2) + by (x = 1) = axgo ) (2) +bxp 9 (2) (1.7)

0 1 2

has the wavelet decomposition into a sum @barser resolution and aninterme-
diate detail as follows:

a—b (x a+b sz
— Z = R. 1.
f@)==3 w(2)+ 2 s"(2)’ ve (1.8)
intermediate detail coarser version

Thus the details are measured as differences. This is a general feature that is valid
for other functions and other wavelet resolutions. See, for instance, Example 2.5.3,
Lemma 2.2.2, and Exercise 1-12.

Combining (1.5) and (1.8), we note that the complete orthogonal wavelet ex-
pansion for the functiorf in (1.7) is

@) =220 (2) + ) iik o (). 19)

While this observation is immediate, it highlights a different feature of the wavelet
expansion which makes it far superior to the classical Fourier series: It is strikingly
effective in its analysis of point singularities, of which (1.7) is a natural case in
point. A glance at (1.9) reveals that for all € Z_, the number of wavelet co-
efficients exceedind; is of the ordetlog n, and this count is thus asymptotically
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< n for largen. This turns out to be valid generally for scale-based wavelets. The
corresponding count of the number of Fourier coefficients is typically at least of
the ordem.

In summary, point singularities are localized in the world of wavelets, while
they are not for the typical classical orthogonal expansions. The effect of the point
singularity is encoded in a small number of big wavelet coefficients, and the rest
can be ignored. The recognition that wavelets analyze effectively functions which
are smooth away from isolated singularities has made them popular in applications
such as image coding and data compression.

An added significance of (1.8): It serves to illustrate the use of a quantum
computing algorithm for the implementation of multiresolution analysis for Haar’s
wavelet. In the realm of qubits (denotgd and|1)), we work with quantum states
|0), 1), |+), and|—), where|£) = % (]0) £11)). So the assignmert — |0),
o(r—1) — |1), %gp (2) — [+), and V%w (%) — |-), turns (1.8) into the
beginning of a quantum computing algorithm. Have a look at Exercise 1-19. The
two quantum-mechanical states) = % (|0) £ |1)) are written in the lingo of
Dirac, i.e., as ket vectors, and they are taken up in much more detail in Section 1.3
below. We note here that they are basic to quantum information theory, where they
are calleccoherent states. It is a basic fact that coherent states are one of the sources
of the speedup of quantum computer programs over classical ones; the other source
of speedup is callequantum entanglement. Both are discussed in Section 1.3.

With the work of P. Shor and others, it has been demonstrated that exponential
speedup of algorithms can be realized in the quantum realm, i.e., when registers of
gubits are used in place of the classical bits, and when quantum gates, in the form of
unitary matrices acting on tensor slots, take the role of the classical logic gates. Uni-
tary matrix factorizations are then used in the algorithms. If the quantum algorithms
are shorter than the best available (analogous) classical ones, there is of course
a gain. But the dictates of quantum theory introduce new and serious sources of
“error” called decoherence, i.e., when some qubits that are part of the program
degenerate and behave classically. Clifford analysis is used in error correction.
Wavelet algorithms split functions in a fixed resolution subspace into components,
a coarser one, and detail parts. This can be turned into a quantum algorithm, and
the factorization problem for the resulting unitary matrix can be implemented ef-
fectively, as we show in Section 1.3 and a number of the exercises in this chapter.

VAN AN
\

Wavelets really have an early start in modern mathematical history, going back almost a
hundred years, with a delayed reaction. In fact, the current attention they are receiving in
mathematics and its applications dates only from the mid-eighties, where Daubechies’s
discovery of the wavelets that have both compact support and a degree of smoothness
regularity stands out. Others had a hand in it as well; see [Dau92]. One reason for a
delay in the discovery of the “good” wavelets, long after the Haar one in [Haal0], is
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that the variety from which they are selected is a large one, with most of the territory
parameterizing rather raggdd (R)-wavelets. Here we take the view that the variety is
defined from the masking coefficients, or equivalently, the quadrature mirror filters of
electrical engineering. These filters in turn have a history of their own going back before
the eighties, in signal processing, and independently in operator algebra theory. One
aim of this book is to outline the algebraic variety of points which label the wavelets,
identify structural features of this variety, such as its connected components, and indicate
spectral-theoretic selection criteria which help us to pick out the regular wavelets from
the vast landscape of the more ragged or fractal-looking ones.

A second aim is to show that the space of scaling/wavelet functions with a fixed com-
pact support obtained by multiresolution analysis of sddldnas a finite number of
connected components which can be computed by using the winding number of the de-
terminant of the continuous function frofhinto GL (V) defining the scaling/wavelet
functions. Herdl denotes the torus, viewed alternately{ass C | |z| = 1} orR 27Z;
andGL (N) is the general linear group. In order to analyze the connected components
of wavelets in stronger topologies we have to use spectral properties of the associated
transfer operator (see (1.19) below), and we show that operators of this type, as operators
on L? (T), have the open unit disc in their point spectra, although it is well known that
the restrictions of these operator to the spaces

Ey = {anemt Z |:1:n|2 e2elnl < oo} (1.10)

neZl

for o > 0 are of trace class.

We also study the spectrum of the transfer operators in other function spadgs on
and establish similar properties. Chapters 4 and 5 are devoted to a detailed study of pe-
ripheral spectral properties of the transfer operator in nongeneric cases, in the setting of
biorthogonal wavelet bases. (Nongeneric means that the eigerivalemurs with mul-
tiplicity greater thanl for the transfer operator, in the setting of Proposition 4.3.1, or
that there are other eigenvalues of absolute valydt is demonstrated that the space
of fixed points of the transfer operat& as an operator o€ (T) has the structure of a
finite-dimensional commutativ€*-algebra in a product different from the usual point-
wise product of functions g’ (T). Thus theR-invariant positive functionals onC (T)
with w (1) = 1 form a finite-dimensional simplex [Alf71], and the extremal points in this
simplex are certain measures on cyclesTounder the map — ¥ which are charac-
terized. These cycles are important in wavelet theory because of their role in the study
of frame properties and of the orthogonality relations which go into the construction of
multiresolutions.

Before introducing systematically the conceptnafltiresolution analysis in Section
2.2, we sketch it briefly for the simple example in (1.2), i.e., for the Haar wavelet. Since
the Haar wavelet is so simple and transparent, it can well be understood without first in-
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troducing explicitly the multiresolution; our viewpoint is instead to use Haar’s intuitive
and easy construction for explaining the multiresolutions. The point is that the general
mechanics of multiresolution analysis may then be used much more widely for the pur-
pose of generating a variety of wavelets with general properties from a preassigned list
of specifications. The Haar wavelet itself may in fact not have all the properties that are
needed in a particular application.

Consider first the subspatg of L? (R) which is the closed linear span of the func-
tions {¢ (z — k) | k € Z} wherey is the unit bump function of (1.1). TheW is the
space of all step functions ii? (R) with jump points, or knots, at the integral points on
R.LetU: f(z) — %f (%) be the unitary operator of (R) which scales functions
by the factor2. ThenU (Vy) (C V) is a more coarse version of the resolutign It
consists of the more special step functiong4rfR) with knots only or2Z, i.e., only on
the even integers; and similarly;~! (1) is the larger resolution subspace consisting of
all functions inL? (R) which are step functions with knots on the finer ggm Since
the constant (nonzero) functions are nof#(R), it is then clear that

N\ U7 (Vo) = {0} (1.11)
JEL

and
\/ U7 (Vo) = L* (R), (1.12)
JEL

where the symbol\ applied to some closed subspacedAr{R) refers to intersection,
while \/ refers to the closed linear span of the spaces, in the present case

Jui)

7<0

with the overbar denoting closure ii# (R). More generally, we say that a closed sub-
space), in L? (R) which satisfied/ (V,) € V, and (1.11)—(1.12) is eesolution. The
vectors in

VooUOWo)={feVo|{f|lg)=0forallgeU (W)}

then represent thaetail which must be added to thmarser resolution U ()§) in order
to recover the original ong.

The geometry of the situation is again illustrated nicely by Haar's example. To see
this, return to the functiong and of the sketches (1.1)—(1.2). It is immediate that

o(5)=¢@+e@-1, ¥(3)=v@-v@-1. @13

It follows that the second functiot is the zig-zag function of (1.2), that is in the
detail space D := U~! (V) © Wy, and finally that the translate) (z — &)}, form
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an orthonormal basis for D. The last assertion means that the translated functions are
mutually orthogonal, that they havé (R)-norm equal tal, and that their closed linear
span isD. Introducing

mo (t) := my (e_it) = % (1+ e_it) , (1.14)
called the low-pass filter, and
my (t) :=my (e_it) = % (1- e_it) , (1.15)

called the high-pass filter, and applying the Fourier transform to (1.13), we get the equiv-
alent relations

V20 (2t) =mo ()@ (1), V20 (20) =m1 () (1) (1.16)
But a direct computation also yields
o (2t) = e*itg = e sinc(t) =1 —it — 2—;)2 + - (1.17)
and
Y (2t) = ie " tan <%> sinc (t) = ie_it@ = % + g + - (1.18)

(where we have indicated the start of the power series); and we get, from (1.16), as a
bonus, an independent verification of the classical infinite product formula

sine (£) = ]E[lcos (;—k> .

In this book we will also consider scaling by a genekak {2,3,4,... } in addition
to scaling by2 as above. We will consider @ansfer operator R constructed from a
functionmy (z) which is a polynomial or a Lipschitz function efe T = R "27Z,

By (£)(2) = Runof (2) = = 3 [mo (w) 2 f (w). (1.19)

N
weT

’LUN:Z

It is defined on suitable functiong on T. The spectral theory aof,,, depends on the
space of functiong’ which is chosen (see Sections 3.2 and 3.4). For example, if this
space is the set of Fourier polynomials in(see Definition 3.2.1)R,,, has a finite
spectrum, and it keeps the same finite spectrum if it is extended to Hilbert spaces of
functions which are analytic in an open annulus contairiihgsee Proposition 3.5.1

or [Dau95]. However, we will see in Section 3.2 thatfif,, is extended tal? (T),
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the eigenvalue spectrum @,,, contains an open disc around the origin. We will call
the spectrum of the restriction di,,, to the two former spaces the Perron—Frobenius
spectrum. The spectrum &i,,, is of interest in multiresolution wavelet analysis for the
following reason: if

mo (z) = Z anz" (1.20)

is the Fourier decomposition of the low-pass filtey, then thescaling function associ-
ated tomy is a function or distributiorp on R satisfying the identity

e (x) = \/NZancp (Nz—n), (1.21)
neZl
which is called thescaling identity. In general, a solutiory of this equation may just be
a distribution, andp may even be a function which is not locally integrable. (We will
see an example of this in Exercise 1-7, and, in the context of a slightly different scaling
identity, in (3.5.30)—(3.5.32).) Solutions of (1.21) can sometimes be found by iterating
the right-hand side in (1.21), starting at

1, 0<z <1,

X (z) = 0. zeR\[0.1), (1.22)
by using thecascade iteration
My — VN Y ant) (Nz —n). (1.23)

If mg is a polynomial satisfying (1.25) and (1.26) below, thg®j| = 1 on *° (T), and

the cascade iteration converges/in(R) if and only if the peripheral spectrum={ the
intersection of the spectrum with the unit cir@g of R as an operator off (T) consists

of 1 alone, and the eigenvalueis nondegenerate; see Section 2.5 for this and more
general results. (It may happen that even though the eigenvakiaondegenerate for
R|c(t), itis degenerate foR|;- ! See Example 3.5.5.)

A second significance of the eigenspaee (1 — R,,,) for the transfer operator of
(1.19) is that it predicts orthogonality of tt¥translates for a scaling functian i.e., a
solution to (1.21): Suppose < I? (R) satisfies (1.21), and set= (¢n)pez, Where
Cn = metp(x —n) dx are the correlation coefficients. R,,, is viewed as an
oo x oo matrix relative to the Fourier basis"),, ., then it can be easily checked that
R,c = c. Hence, ifc is in a spac& of sequences containing the seque(gs)
and ifker (1 — Ry, lc) = C (o) then it follows that the set of translates

nez’
nez’

{o(@—n)}ez (1.24)

is an orthogonal family of functions if? (R). Even if theZ-translates in (1.24) are not
an orthogonal set of functions, an identification of spa&esnd the structure of the cor-
responding eigenspacesr (1 — R, |c), predicta priori the possible orthogonality re-
lations for theZ-translates of scaling functions Hence these-eigenspaces are studied
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in detail in Chapters 4 and 5 below. See also the study guide in Section 1.5. We do a sim-
ilar analysis of the other eigenspacesiyf, in Chapter 3 below. In Section 3.3 the set-

ting is specialized to a particular two-parameter family of compactly supported wavelets
onR, and we indicate, by comparing the spectrunfpf, with the graph of the corre-
sponding scaling functiop,,,, that the shape af,,,, and therefore of the wavelet,,,
depends on the spectrum&f,, computed on a certain finite-dimensional space. Specif-
ically, if (6, p) are the two parameters, we study the eigenvabéfe@ of Rﬁggf’), and the

respective graphs af — ¢£,26p) (z) onRR. The results are summarized in Figure 3.2.

Definitions. A function, or a distributiony satisfying (1.21) is said to befinable, the
equation (1.21) is called thefinement equation, or also, as noted above, the “scaling
identity”, and is called the scaling function. The coefficientsof (1.21) are called
the masking coefficients (see Definition 3.2.1).

We will mainly concentrate on the case when the{ggt} is finite. But in general,

a functiony € L? (R) is said to be refinable with scale numhsrif o (z/N) is in
the L?-closed linear span of the translatgs(z — k) },., C L? (R); see, e.g., [HSS96,
SSZ99, Stzh98, Stzh01].

Since there are refinement operations which are more general than scaling (see for
example [DLLPO1]), there are variations of (1.21) which are correspondingly more gen-
eral, with regard to both the refinement steps that are used and the dimension of the
spaces. The term “scaling identity” is usually, but not always, reserved for (1.21), while
more general refinements lead to “refinement equations”. However, (1.21) often goes un-
der both names. The vector versions of the identities get the prefix “multi-”, for example
multiscaling andmultiwavelet; see Section 2.6.

If mq satisfies a condition for obtaining orthogonal wavelets,

> |mo (w)* = N, (1.25)

wN=z
together with the normalization
mo (1) = VN, (1.26)

then (1.21) has a solutiop in L2 (R) which can be obtained by taking the inverse
Fourier transform of the product expansion

> o —k
o) =TI <%> . (1.27)

k=1

(Here and later we use the convention thahifz) is a function ofz € T, thenm (t) =
m (e~").) That (1.27) gives a solutiop of (1.21) follows from the relation

¢ (t) = \/iﬁmo <%> @ (%) , (1.28)
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which is equivalent to (1.21). Note that in this case the constant funtisan eigenvec-

tor for R,,, with eigenvaluel. We mentioned after (1.23) (see also [BrJo99b, Theorem
2.5]) that if all other eigenvalues in the Perron—Frobenius spectrum have absolute value
strictly less tharl, then the iteration converges i (R) towards a scaling functiop

with [|¢||, = 1. If N = 2, the spectral condition on the transfer operator has been used
to show existence of unconditional biorthogonal wavelet bases of compactly supported
wavelets under weaker conditions o than (1.25) and (1.26) above, as was done in
[CORy95, Theorem 4.2]. Instead of (1.25)—(1.26), one then assumes that there exists
another trigonometric polynomiahy such that (whemv = 2)

mo (w) mo (w) +mo (w+ ) mo (w+m) =2 (1.29)

and
mo (0) = 1o (0) = V2. (1.30)

If then R,,,, and R, are the associated transfer operators, an@ndm, are Fourier
polynomials of ordeiD, then the dual filters,, andmg generate unconditional biorthog-
onal wavelet bases ih? (R) if and only if the spectral radii of the restrictions &f,,
and Ry, to the(4D + 1)-dimensional Hilbert space

2D
Zk}w = } (1.31)

are both strictly less thah

We mentioned that there is a direct connection betwegr= > a, 2™ and the scal-
ing function ¢ on R given in (1.20)—(1.21) and (1.27). There is a similar correspon-
dence between the high-pass filteisand the wavelet generators € L? (R). In the
biorthogonal case, there is a second systém« 1; and the two systems

{N%w (ij—k)} and {Néﬂi, (Nj’x—k’)},
i e {1,2,...,N -1}, j.§' kK € Z, (1.32)

then form a dual wavelet basis, or dual wavelet framelfo(ﬂR) in the sense of [Dau92,
Chapter 5]. We will consider this biorthogonal case in more detail in Section 6.4.

The idea of constructing maximally smooth wavelets when some side conditions are
specified has been central to much of the activity in wavelet analysis and its applications
since the mid-1980’s. In addition to [Dau92], the survey article [Str93] is enjoyable
reading as a backdrop to our book. See also the latter half of the tutorial to Chapter 3.
The paper [LaHe96] treats the issue in a more specialized setting and is focussed on the
moment method. Some of the early applications to data compression and image coding
are done very nicely in [HSS+95], [SHS+99], and [HSW95]. An interesting, related but
different, algebraic and geometric approach to the problem is offered in [PeWi99].
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TheFourier transform and theFourier series. Let us record at the outset the following
conventions pertaining to Fourier transforms and Fourier serigsisifa function ornR,
then itsFourier transformis

foy = [ e @) o (1.33)
and theinverse Fourier transform is
1 N
f(x)= o /Remf (t) dt, (1.34)

soPlancherel’s formula becomes

[u@ra=g [

If fis afunction on the circl& = R 277, its Fourier coefficients are

1 [ _
Cn = 5o » e " f(x) dox = /Tz"f (2) du(z), (1.36)

f(t)‘z dt. (1.35)

wherey is normalized Haar measure on the circle, so
flz)= cheikm = Z ez, (1.37)
keZ keZ

and Plancherel’s formula becomes

Slenl = 5 | 1t @ de= [ 17 G (1.38)

[llustration. Consider now the families of functions from (1.32) which go into the con-
struction of wavelets through the looking glass of the Fourier transform (1.33). Each of
the doubly indexed function systems (1.32) then takes the form
1 iNI-kt) (nTd
{N2 eIV k) (Nt }j,kez' (1.39)
This makes it clear, for example, that all function systems. . , 1 in L? (R) which

generate a wavelet basis, even of the general form (1.32), have the support of the trans-
forms); confined to certain prescribed subset®ohs noted in Section 1.6 below.

1.1 Subband filters and sieves

AROUND 1986, aradically new method for performing discrete wavelet analysis
and synthesis was born, known msltiresolution analysis. This method is com-
pletely recursive and therefore ideal for computations. One begins with a version
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=1 S}HEZ of the signalsampled at regular time interval\t = 7 > 0. f°
is split into a “blurred” versiory! at the coarser scalst = 27 and “detail”d! at
scaleAt = 7. This process is repeated, giving a sequefitef?, f2,... of more
and more blurred versions together with the detallsd?, 43, . . . removed at every
scale At = 27 in f™ andd™~'). —Gerald KaiserA Friendly Guide to Wavel ets
[Kai94], Chapter 7 summary

VAN V/\\/\

One of Seéphane Mallat’s early contributions [Mal89] was to show thmattiresolution
analysis in the context of wavelets could be viewed as (just) another form of what is
called thepyramid algorithm in computer graphics, thereby making the connection be-
tween subband filtering in signal processing, and the theory of subdivision algorithms
in computer imaging and data compression (see Exercise 1-12). This was one of the
happy marriages of separate fields of science which had not been previously thought to
be related, and it was brought about by the focus on wavelet ideas. More such connec-
tions and marriages of ideas are outlined in Mallat's lovely book [Mal99], which even
contains much more than a review of multiresolution analysis and its applications: it
treats, for exampleyavelet packets andlocal cosine bases which are different but yet
share a theoretical foundation with the wavelets. Both are put in a form which brings
the geometry of Hilbert space into focus. And then there is the French view of history,
starting with theFourier Kingdom, and followed by théiscrete Revolution of 1989.

In electrical engineering [Vai93], [VNDS89], [DjVa94], the functions, ..., my_1
on T go under the name atibband filters, the subbands are defined relative to the clas-
sical Fourier duality of time and frequency, and thiads themselves are the subbands
of values of the frequency variable. They are used both in classical time series, or time
signals, and also in digital signals of optical communications engineering. The estimates
of the form (1.5.4) from wavelet theory motivate the term “filter” in the name: if

m(&) =) ane™, (1.1.1)

then the subband filtering in one of subbands is an action on time signais), .,
which has the following form, transforming a signainto a new oney:

X +—y = F,x, (1.1.2)
where
Yk = Z ANk—nTn- (1.1.3)
nel

We then say thatn is alow-pass filter (the lowest frequency band) if, for some small
the values ofm (&)| are concentrated on a frequency band of the ferm< £ < e. This
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condition will be refined in the sequel. See for example (1.5.1) where all the weight is
placed on the frequengy= 0, and as a consequenge= 0 at the remainingV — 1 band
points. A variant of the filters also arises in number theory, but then under the name of
sieves [Ten95, p. 62]. For example, we say thatin (1.1.1) is darge sieve if, for every

k € N and every € R, the function

mpk(§) = Y @™, (ER, (1.1.4)

p<n<p+k

satisfies the following analogue of the estimate (1.5.4):

ST impr )P < (k+070=1) Y anl? (1.1.5)
Y p<n<p+k
for all p € Z, and all finite sets¢;) of sampled frequencies for which
& =& =06 forallg,j, j+#j. (1.1.6)

The points{¢;} are calledsample points. An important special case of (1.1.6) which
will be used in the study of wavelets constitutes the special finite arithmeti{éts
defined as follows: FoivV € N and¢ € R, the setsSy¢ have the formSy . :=

{¢+ 7% | 0<j < N}.Inthis case§ = 27, buté € R is a free variable.

While the engineering applications of sampling methods, scaling identities, and mul-
tiresolutions are very impressive and covered widely in the literature, see, e.g., [Vai93],
[Wic93], the applications to physics are equally impressive, see, e.g., [vdB99].

When working with functions, or more generally, vectors in some Hilbert space, say
H, it will be useful for us, on occasion, to adopt a view from quantum mechanics: for
example, a vector) € ‘H which is normalized byj|y|* = (¢ |¢) = 1 represents a
guantum-mechanical state. In Dirac’s bra-ket terminology, it is denetedrheprojec-
tion £, onto the one-dimensional subsp&cg is denotedE,, = |¢) (1|. A bonus of
Dirac’s notation is that many statements made with bras and kets become, so to speak,
true by virtue of being grammatically correct (and meaningful). It also emphasizes the
probabilistic contents of the Hilbert-space formalism: for instancéy} is a fixed
orthonormal basis fot, then a given stat@)) produces a probability distribution by
virtue of Bessel's identity

1= ¢ = Z (i | )] (1.1.7)

In wavelet theory, it turns out that the identity (1.1.7) is also useful for vector systems
{%; } which are not necessarily orthonormal bases; they are dajleioframes.

Wavelets in one dimension live in the Hilbert spaBe(R) of all square-integrable
functions on the line-co < x < oo. The traditional approach is to specifysealing
number N € Z,, N > 2, and a lattice of translatior, calledsample points, but there
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are interesting variations of this setup, including higher dimensions, when the Hilbert
space isL* (R?), d = 2,3,.... Staying withd = 1, and N fixed, we will take the
viewpoint of what is calledesolutions, but here understood in a broad sense of closed
subspaces: A closed linear subspate- I? (R) is said to be anV-resolution if it is
invariant under the unitary operator

U=Uy: fr— N3f (%) : (1.1.8)

i.e., if U mapsy into a proper subspace of itself. The subsprdg said to beranslation
invariant if
fev < f(-—-keV forall k € Z. (1.1.9)

If there is a functiony such thaty =V, is the closed linear span of
{o(-—k)|keZ}, (1.1.10)

then clearlyV is translation invariant. The translation-invariant resolution subspeces

are actively studied and reasonably well understood. i§ of the form);, in (1.1.10),

then we say that itisingly generated, and thaty is a scaling function of scal®'. But the

case whe is not singly generated is also interesting, and these resolution subspaces are
frequently calledyeneralized multiresolution subspaces. There is much current and very
active research on them; see, for example, [BaLa99], [LPTO01], [BaMe99], [HLPS99],
[HSSO01], [SSZ99], and [Jor0la]. The case whis not singly generated as a resolution
subspace of scaly > 2, i.e., whenV is not of the form (1.1.10), occurs in the study of
wavelet sets. Wavelet sets are measurable subgets R of finite measure such that the

doubly indexed famil;{N%@z)E (NVz — k:)} - defined from the function
J,Kk€E

Vg (2) = Xg (2) ! /E e dt (1.1.11)

T or

forms an orthonormal basis fd? (R). It follows from (1.39) thatZ C R is a wavelet
set for scaleV if and only if the four conditions (a)—(d) hold:

@ Ujez NIE = R, except for a set iR of measure zero, where
NJE :={NJz |z € E};

(b) meas (NENN*E) =01if j # kinZ;
(€) Ugez (£ +27k) = R, except for a set iR of measure zero; and
(d) meas ((E + 27k) N (E +27n)) =0if k # nin Z.

If, for example,N = 2, then the subset &, E := [-27, —7) U [r, 27), is a wavelet
set. (For others, see Exercise 1-46.) In the list (a)—(d), the first two properties state that
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E tilesR under a multiplicative action & onR (dilations in both small and large scale),
while the last two properties refer taiéing in the additive sense. The modification and
generalization of the properties to higher dimensiéns 1 are clear: theV is an integral

d x d matrix such that its eigenvaluessatisfy |\| > 1. It is known that wavelet sets
exist also in higher dimensions; see the references mentioned above.

However, in this book we will primarily be concerned with the resolution subspaces
which are singly generated. They are relatively better known, some would say com-
pletely understood. Yet we will encounter a number of natural questions which have
only incomplete answers as of the present.

We now turn to a group-theoretic formulation of multiresolution analysis, which will
be needed in Chapter 2 for charting the connected components of wavelet systems.

1.2 Matrix functions and multiresolutions

The two groups of matrix function§' (T, Uy (C)) andC (T, GLy (C)), i.e., the con-
tinuous functions from the torus into the respective groups, enter wavelet analysis via
the associated wavelet filtesy; ) '

In Sections 2.1 and 6.3, we give the details of the multiple correspondence between:

(i) matrix functions,A: T — GLy (C),

(i) high- and low-pass wavelet filters;, m;, i,i' = 0,1,..., N — 1, and

(iii) wavelet generators);, ¥y, 4,4’ = 1,..., N — 1, together with scaling functions
@5 P
In particular,
1 ,
Aij(2) = m; (w) w™, z€eT, (1.2.1)
wN=z2
A7, == 7 (w) w’ T 1.2.2
( )ZJ_N m](w)w7 S . ()

The dependence of the? (R)-functions in (iii) on the group element from (i) gives

rise to homotopy properties, and the results in Sections 4.3, 5.4, 6.2, and 6.3 are building
up to that, while the final results are stated in Section 2.1. The standard orthogonal wave-
lets represent the special case when= m;, or equivalently,A (z) = ((A (z))*)*l,

z € T. Hence, the matrix functions are unitary in this case.

The scaling/wavelet functions, ¢, . .., ¥ x_1 with support on a fixed compact in-
terval, say[0,kN + 1], & = 0,1,..., can be parameterized with a finite number of
parameters since the unitary-valued functior> A (z) in (1.2.1) then is a polynomial
in z of degree at most (N — 1). It is well-known folklore from computer-generated
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pictures that the shape of the scaling/wavelet functions depends continuously on these
parameters; see Figures 1.1-1.7 and [TreO1b].

The scaling functionp € L? (R) of (1.21) is illustrated in Figures 1.1-1.7, in the case
N = 2, and for orthogonaZ-translates, i.e., the case (1.25). These pictures illustrate the
dependence ap on the masking coefficien{s, ) in the case of [Tre01b]:

ap= (o —m —n2+n3+n4)/4, a1 = (no+m —n2+n3—n)/4,
az = (no — 13 — 1) /2, az = (10 — 13+ n4)/2, (1.2.3)
ag = (mo+m +m2+n3+m)/d, as= (o —m +n2+n3—m)/4,
where
no=1/V2, m = (cos20 + cos2p)/V2, ns = (sin26 + sin 2p) /2,
n3 = cos(20 — 2p) /2, N4 = sin(20 — 2p) /2.

These formulas arise from an independent pair of rotations by afgledp of two “spin
vectors”, i.e., by taking the matrix functiod in (1.2.1) unitary,T > z — 4 ,(2) €
U, (C), and setting

(1.2.4)

A(2) = V(Q5 +2Q0)(Qy +2Q,) = VUy(2)U,(2) (1.2.5)
with
1 1 1
V= ﬁ < 1 1 ) , (1.2.6)
Qp = cos? 6 cosfsinf | 1 10 cos 20  sin 20
=\ cosfsing®  sin?6 T2 0 1 + sin2f — cos 26 ’
1.2.7)

and the orthogonal complement to the one-dimensional proje€iipn

Qy = Qo (r/2)- (1.2.8)

With the coefficientsy, a1, as, as, a4, as given by (1.2.3), the algorithmic approach to
graphing the solutior to the scaling identity (1.21) is as follows (see [JorO1b], [Tre01b]
for details): the relation (1.21) faV = 2 is interpreted as giving the values of the left-
handy by an operation performed on those of theon the right, and a binary digit
inversion transforms this into the form

1
fri1 <95 + W) = Afy (2), (1.2.9)

where A is the2 x 3 matrix A; ; = v/2a44;_»; constructed from the coefficients in
(1.21), and; andf]’. are the vector functions

p(r—3) e L
fj (z) = | ¢ (x - }) o i) = (“0 (w (xfj)> : (1.2.10)
¢ ()
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Figure 1.1. Chaos. Wavelets arouhe: p = 0. L2-convergence of cascade approximation fails

at the central Haar point, where the spectral condition (2.5.3) fails. At this poifittreontinuity

of the map from the parameter space into the scaling functions fails, although continuity holds
in the distribution topology. See also Figure 1.6. The scaling functions in this figure as well
as in Figures 1.2-1.7 are actually 8th-order cascade approximants to the real scaling functions
(see Section 2.5, in particular Theorem 2.5.1). In particular, the central Haar point here is really
the graph of a function which i at % of the points in[1, 4] and0 at all remaining points. See
Example 2.5.6 for the coarser approximants. The layered structure of the graphs above and below
the Haar point disappears under further iterations of the cascade, and is replaced by a completely
chaotic picture; see [BrJo99b, Figures 6-10].

Iterations of this operation give values of an approximatiog ton successively finer
dyadic grids in the variable.
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Figure 1.2. Wavelets arourd= 0, p = 7/2. One-dimensional subvariety of Haar wavelets; see
also Figure 1.5.

Figures 1.2, 1.3, 1.4, and 1.5 include one of the orthogonal Haar scaling fungtions
i.e., oy = x; wherel is a unit interval of the form/ = [k, k + 1], while Figures 1.1
and 1.6 each have one of the nonorthogonal Haar wavelets

1

CH = gXJ/, J/ = [1,4] (Figure 11) (1211)
or 1
Cyr = EXJN, J// = [0, 5] (Figure 16) (1212)

It is in neighborhoods (relative # p) of the nonorthogonal scaling functions where the
cascade approximation (which is the one used in the sampling of scaling functions shown
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Figure 1.3. Absence of chaos. Wavelets aroénd 7/4, p = 0. Both an isolated point and a
one-dimensional subvariety of Haar wavelets.

in Figures 1.1-1.7) is especially “fractal-looking”. It is also for the nonorthogonal Haar
wavelets that ai? (R)-approximation in the form of a Cesaro summation (see Remark
2.5.5) is required. IfN = 2, andp € N is odd, thenm, (z) = % (1 + 2P) satisfies

my (2) = mq (2P), and so the scaling functiong andy, may both be determined from
(1.27), and the formulan, (e) = m; (e?!) yields ¢, (t) = 1 (pt) where

1. Introduction
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Figure 1.4. Wavelets arourfd= p = /4. An isolated Haar wavelet.

andyy () = X[0,1) (z). It follows that

1 >~ ~ itx
op (z) = %/ @1 (pt) e dt (1.2.14)

—c0
11 [ e 1 [z\ 1
= 70060@) v dt = i <;> = X0 (x),

and Hcpp||L2(R) = ﬁ. Otherwise we show in Theorem 2.5.1 that the cascades (1.23)

converge as sequences. Since this convergence fi$(iR), there are problems with
computer graphics in the case of discontinuous scaling functions ¢ , (x) even
if they have compact support; see for example Figures 1.1 and 1.6 for illustrations of
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Figure 1.5. Wavelets arourd= 7/2, p = 0. One-dimensional subvariety of Haar wavelets.

this point. These pictures are generated by a mathematics program and the use of the
subdivision algorithm (1.5.9). For the interpretation and limitations of the subdivision
algorithm, the reader is referred to the tutorial in Sectiorn 3.3.

In Section 2.1 we make a more rigorous study of the continuous dependence of the
scaling/wavelet functions on the parameters, and the main result in Theorem 2.1.3 gives
a parameterization of the connected components in the scaling/wavelet function space.
The parameter used is the winding number of the map- det (A (z)), and the re-

*An interactive display of the scalingAvelet functions obtained by putting= 0 in (1.2.5) and letting vary over
the circle can be found in http://cm.bell-labs.com/who/wim/cascade/.
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Figure 1.6. Chaos. Wavelets arouhe: p = 7 /2. L2-convergence of the cascade approximation
and the spectral condition (2.5.3) fails spectacularly at the central Haar function. See also Figure
1.1 for the same phenomenon.

sult says that two scaling/wavelet functiovi-tuplesy, 91, ..., 1¥_1 With support in
[0, kN + 1] can be deformed continuously into each other through scaling/wavelet func-
tions with support ir{o, N2k + 1] (or any longer interval) if and only if the two winding
numbers are equal. This divides the space into exa¢tfy — 1) k£ + 1 components.

In the examples illustrated in Figures 1.1-1.7 it follows from (1.2.5) that

det (A (2)) = —22, (1.2.15)

and hence the winding-number invariant in Theorem 2.123 e variety illustrated is
a two-dimensional subvariety ofiF (2) < WF (5) « SF (5); see (2.1.29)—(2.1.35).
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T

Figure 1.7. Wavelets around the ultrasmooth pdint= cos™' {/35 ~ 0287, p =

cos™! \/% — ,/% ~ 0.12x. This is the only point, up to symmetry, where the correspond-

ing wavelet function) has two vanishing moments. See also [Tre01b, Figure 2], and the latter
half of the tutorial to Chapter 3.

This is indeed a subvariety since we restrict to real projecti@nis (1.2.7). The space
of one-dimensional projectionds (C) is actually homeomorphic to th-spheres?
[BrRol, Example 4.2.7], so the variety really has dimension

The continuity of the scaling/wavelet functions as a function of the parameters is in
the distribution sense, but generically, outside a subvariety of positive codimension in the
parameter space, the continuity is in ifgR) sense (see Theorem 2.5.8). The latter part
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of the monograph, Chapters 4 and 5, is mostly devoted to the study of the singular points
in the parameter space whefé (R)-continuity fails. These are the points where the
operatorR,,, in (1.19) hasl as a degenerate eigenvaluer, has other eigenvalues

of absolute valué.

In (1.2.1)—(1.2.2) we identified a variety of wavelet filters corresponding to compactly
supported wavelets if? (R) as an infinite-dimensional semigroup of matrix functions.
Much of the theory also applies to tH8 (R¢) situation. The variety is defined by in-
equalities, and the orthogonal wavelets correspond to the “boundary” in the sense that
the inequalities are identities. The space of biorthogonal wavelets, or equivalently, the
space of dual wavelet bases, then is the full variety. The full variety may be realized as
matrix functions defined on a torus and taking values in the inverfibley-N matri-
ces, wheréV is the scaling of the wavelet at hand. In this representation, the orthogonal
wavelets correspond to the matrix functions taking valuds\irfC).

1.3 Qubits: The oracle of Feynman and the algorithm of Shor

How TO GET STARTED This section, which is somewhat independent from the
rest of the book, is meant as an introduction to some issues of quantum computing
in connection with wavelet analysis. The reader who gets stuck with the new ideas
may wish to review some basic concepts of quantum computing elsewhere. While
there is a wealth of more specialized references, H. Pollatsek [Pol01] has just of-
fered a fresh but gentle primer to key mathematical concepts which are used in
this section. Our presentation below is also addressed to the novice and it includes
much motivation. It is meant as an invitation to an exciting subject whose use in
wavelet analysis is so far in its infancy.

VAN V/\\/\

While the implementation of the wavelet computations is a vast subject, and we are only
able here to touch some high points, it has recently been recognized that computations
at the atomic level, i.e., one-atom-per-bit scale, are governed by different kinds of algo-
rithms than classical computations. Granted that physical quantum computers have not
yet been built, it is nonetheless understood at a mathematical level that prime factor-
ization can now be done in the quantum realm with polynomial algorithms, while this
was known not to be possible on classical computers; see Shor [Sho99]. (Analogously,
Grover’s theorem [Gro97] states that a quantum search amafjects can be done in

a number of steps which goes like a constant tigiesa clear gain over the best known

classical bound, which is linear in) We note here, very sketchily, that the wavelet res-
olution algorithms mentioned in the tutorial to Chapter 1 share this same efficiency gain.
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Figure 1.8. Qubits. A two-electron level in an atom (the Rutherford—Bohr model; simplified!)
Each electron in the level can exist in either a spin down dtater a spin up statél), thus
giving rise to the simplest known toy quantum computer, see [Sho00]. If the atom is placed in a
magnetic field pointing down() is the ground state and) is the excited state for the internal
degrees of freedom of the electron.

The quantum versions of the wavelet resolution algorithms involve the factorization of a
unitary matrix built from a given wavelet filter; see (1.3.25) and Exercise 1-22. Readers
who wish to follow up on the subject may consult the references we provide below. In
addition there is a survey paper from 1998-99 [FiWi99] which is recommended reading.
The discussion here is limited to an application of the spin-vector formalism in Section
1.2, which will also be followed up in Chapter 2 below.

Let us first give an overview of the terminology: the dictionary is shown in Table
1. The details will be explained later in the section. The starting point is that wavelet
resolution algorithms can be made and implemented both on classical and on quantum
computers.

Now, returning to the description of filters in terms of matrix-valued functions from
the circleT into Uy (C) (which we mentioned in Section 1.2, and will treat in more
detail in (2.1.11)—(2.1.28)), one may give factorizations ofltheC)-matrix functions
which produce qubit algorithms, with the factors of fhie (C)-functions corresponding
to the spin vectors of the quantum algorithm.

The qubit algorithms, i.e., factorization into a string of elementary quantum gates, may
be realized as a factorization of a unitary matrix (1.3.24), of siz&" x 2". Varying the
spin vectors, one is then able to trace the corresponding wavelets and study tReir
properties. The qubit terminology refers to the bits of quantum computer algorithms,
in the sense of R. Feynman [Fey86], [Fey99], [Mil98] and P. Shor [Sho99], [Sho00],
[BDMT98]. Its use in wavelet analysis is discussed in [JorO1b], [Tre01b], and in much
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Table 1. Wavelet resolution algorithms

Classical Quantal
Words of logic gates: AND, OR, XOR| qubit gates: one-qubit gates
programs - and CNOT
Program acts on| bits gubits
register of
Input/output:
encoded configuration of bits in a reg- configuration of qubits in a
ister of a Turing machine | quantum channel
decoded wavelet coefficients— signal or image
Input in A (qu)bit configuration resulting from encoding a given

wavelet resolu- | function f chosen from a given resolution subspace.
tion algorithms
Outputin A decomposition of the functioyfi in terms of a finite

wavelet resolu- | number of intermediate detail components, or equivalently a
tion algorithms | wavelet decomposition; see the illustration (1.8) in the
tutorial of Chapter 1, and also Section 2.2 and Exercise
1-22 for the Haar and the Daubechies wavelets.

Names of pyramid algorithm, Exercise Uy, (1.3.24) and p. 36

algorithms 1-12

Factorizations (2.2.5), (2.1.6) Exercise 1-22

Error correction | x — zxa and omit broken | protect against decoherence,
strings (1.3.23) and Exercise 1-14

detail in [Kla99]. Quantum computing algorithms involve the factorization of unitary
matrices into products of special unitary matrices which are cajlertum gates. In
[KIa99] it is shown how the wavelet qubits yield quantum algorithms and the paper
[VoWe00] shows how the two-qubit configuration is special. The gate structure is much
easier. See for example (1.3.24) and Exercise 1-22.

The algorithm for reducing wavelet filters to quantum gates is based on two related
factorization theorems, one for wavelet filters (see [BrJoO1la, Proposition 3.3] or (2.1.6)),
and a second one for quantum gates, which we now briefly sketch. In a classical com-
puter, information is represented by binary symlbbnd1 (bits), and the bits are ma-
nipulated using functions such as AND and NOT. By contrast, a quantum bit, or “qubit”,
is a microscopic system such as an electron with its spin, or a polarized photon. The
Boolean states are then qubit vectorsth |0) < spin+3, and|1) < spin —3 (see
Figure 1.9). For a nice survey for mathematicians, see, e.g., [Man00].
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Figure 1.9. The Bloch ball of stateg(z, y, 2) = 3 (00 + 20, + yo, + 20.) whereo = (§ 9),

or = (98), 0y = (?77), ando. = (§ %) are the Pauli matrices. The statéz, y, z) is

a positive trace-class operator afichce (p (z,y,2)) = 1 if and only if (z,y,2) € R?® and

22 + 32 + 22 < 1, and all such operators have this form (see [BrRol, Example 4.2.7]). lllus-
tration: [1)) = cos (£) |0) + e*? sin (£) |1), where|0) ~ % (o0 +0.) = (43) = |0) (0] and

1) ~ 1 (o0 —02) = (§9) = [1) (1]. Linear combinations of the vectofs) and|1) do not
correspond to the same linear combinations of the corresponding states. But these linear com-
binations, called superpositions, represent coherent states in the sense of quantum optics, see

[Omn99], and account for a speedup of quantum computing algorithms.

10)

Figure 1.10. The quantum ga% (1) acting on% as a rotation followed by a reflection,

ie. % — [1) = |0). A coherent state turning into “classical” ones.
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However, according to the laws of quantum mechanics, the states can also exist in a
continuum of intermediate or mixed configurations, or superpositions

W) =al0)+B[1),  |o)*+ |87 =1, (1.3.1)

which are calledcoherent states if a8 # 0; for a concise account of the physics of
coherent states, see, e.g., [Omn99, Chapter 17, pp. 196, 227]. Note that the projection

Ey, = |¢) (4| has the matrix form
5 -
(‘gﬂﬁ %@) . (1.3.2)

So it follows that the stat@)) is coherent precisely when the two off-diagonal matrix
entries are nonvanishing. (See Exercise 1-31 for the role of the diagonal and the off-
diagonal entries of the matrix (1.3.2).) Generally, hguantum decoherence means the
collapse of some quantum superposition into a single definite state, which presumably
is a classical state (see below). For an electron in a magnetic field, or for a polarized
photon, it can be the ground state or the excited state. If a|gtaie a superposition of,
say,|0) and|1), then|y) acts as if it can exist simultaneously in these two states.

Quantum decoherence in a system of quantum gates decreases the information, and so
must be avoided. The word “coherence” refers to our understanding of quantum states as
waves, and hence we may have coherence of phases. This view is possible in any family
of nonorthogonal states. In contrast, decoherence results from the selection of a set of
special coordinates. States sent through a quantum channel suffer decoherence because
of noise in the environment.

A string of n qubits (or ann-qubit memory) may be represented as a unit vector

inC?’®---®C% ~ C?, i.e., a unit vectori|v|| = 1 in a 2*-dimensional complex
n times
Hilbert spacepy € C?". A particular set of basis vectors iif" is the set of tensor
monomials of the special forfgy ) ® |i2) ®- - - ®|iy) fOr iy, ia, ..., iy € {0, 1}, for which
the abbreviationyi, is, . . ., i,,) iSs commonplace. These particular tensor monomials and

their scalar multiples are said to representdiassical states, while all other unit vectors
are said to represenbherent states.

Forn = 2, there are some operations in quantum computing algorithms which do
not have classical counterparts, such as CONTROL-NOT (CNOT), NOR, NAND; see
[BDMT98, p. 48]. The tensors ifi? @ --- @ C? of unit norm are calledegisters; and
the unitaries on the individual tensor factors, i16,(C), are called the single-qubit
(quantum) gates. (See Figures 1.9 and 1.10.) The operations, called gates, are the unitary
operators i @ --- ® C* ~ C?".

n times
The important fact about the tensor operation is that it is multilinear, but not linear:

hence theno-cloning theorem of quantum computation, which will be explained in the
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paragraphs around (1.3.19)—(1.3.23) below. The simplest nonclassical gate is a quantum
version of what in the classical case is called an XOR gate; see [NiCh0O, p. 179]. Label-
ing the basis vectors ii? by the elements in the cyclic grou = Z,27Z = {0, 1},

and using addition iZ,, the CNOT gate may be written in the following form:

0,0) —10,0),
0,1) —10,1),, .
or as a matrix, (1.3.3)
1,0) — [1,1),
[1,1) — 1,0,
)

relative to the basm 0), 10,1), |1,0), |1,1). The square of this matrix is the identity
matrix, i.e.,(CNOT)? = 1u.
Specifically, on basis vectors, CNOT is

la) ® |b) — |a) ® |a +b), (1.3.4)

or in abbreviated form,
la,b) — |a,a +b) , (1.3.5)

where addition irZ, is used in the second tensor slot. Its operational form is

source a a

(1.3.6)

target b C) a + bmod 2.

So the CNOT gate is not a single-qubit gate. If the highest significant bit (the control bit)
is 1, then the state of the lowest significant bit (the rightmost tensor slot) is flipped; hence
the name CNOT for this gate. The “target/source” terminology comes from the notion
that a “target” is something that you hit from a “source” of ammunition. The result of
hitting b, in this metaphor, is that the bit is flipped.

Compare the CNOT gate in (1.3.6) to the familiar exclusive “or” logic gate, called
XOR, and written as a diagram

a + bmod 2. (1.3.7)

See also Table 2 below. The main difference between the two is that CNOT is invertible,
while XOR is not. This means that information (or energy) is not lost in the running of
a quantum computer (—it doesn’t need to be plugged in!), while the classical computer
increases entropy. Information is lost in the logic gate (1.3.7) since the two input bits
cannot be recovered from the output b mod 2.
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The diagrammatic notation (1.3.6) of the CNOT gate is usually abbreviated to

AN (1.3.8)

Y

and the gate acts ofi® ® C? as a permutation of the four base staligs), iy,i> €
{0,1}; see (1.3.3). So in physics terms, it is thought of as being realized on a two-
electron model, as sketched for example in Figure 1.8. The triple quantum gate diagram

N
\V

(1.3.9)

N N
U N

can easily be checked to represent a composition of three gates with the composite dia-
gram resulting in theubit swap gate

@) @ [b) —— |b) @ |a), (1.3.10)

compare (1.3.5), and it is denoted

a b
(1.3.112)

For more details, see Exercises 1-13 and 1-15.
An example of am-qubit gate which is also a classicalbit gate is a permutation
in the form
‘il’ig tee Zn> — ‘7T1 (21) 9 (’Lg) T (’Ln)> s (1.3.12)

or written more fully,
li1) ® -+ ® |in) |71 (11)) ® - -+ @ |my (in)) - (1.3.13)

Using then simple geometry of complex unitary matrices, it can be shown that every
unitary operator oi£2", then-register, can be realized in an explicit form by a compo-
sition of single-bit gates and the CNOT gate; i.e., as an operator product involving only
these basic operators @R". This is the reason why our formula for the wavelet filters,
as polynomial function§ — U, (C), admits efficient quantum computer algorithms;
see [Kla99], [FiWi99], [Hol96], and [Jor01b]. Specifically, whit&* operations would
be needed classically in the product representation, ord§ementary operations are
needed on the quantum computer. The result on the universal quantum gates mentioned
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above is proved in detail in [BBC+95], i.e., mathematically, that all unitary operations on
n qubits can be expressed in an explicit form as compositions of elementary gates, i.e.,
as one-qubit gates, and the single two-qubit gate CNOT. (There are other multiple-qubit
gates which, when when taken together with certain one-qubit gates, form a complete
alphabet for all unitary gates on finite quantum registers. We say that such multiple-qubit
gates arauniversal, and the best known examples of universal gates are the CNOT and
the Toffoli gates; see Table 2.) It is further proved in [KIa99] that as a consequence the
complexity of the corresponding wavelet transform in the qubit algoritha’:m(lxgg2 L)
where L = 2" is the length of the input signal [Kla02]. This in turn is based on the
theorem of [BBC+95]. The crucial property of the wavelet filtetg m., in the form
of a QMF system, is that, ifi (2) = e arz®, m1 (2) = 3,y biz", with masking
coefficients(a;,) and detail coefficientgb, ), then, for any orthonormal bas{sy };...,
the transformation rules

ok = Y ar-kel,

lEZ

Eoka1 = Y bi_okEl

leZ

(1.3.14)

get us a new orthonormal basis (ONB) #81(Z), hence a permutation of ONB’s, i.e.,
U: (ex) — (&). If operatorsS, and.S; on L? (T) are defined by

(Sif) (z) =m;(2) f (22) , feL?*(T), zeT, i=0,1, (1.3.15)

then the fact that (1.3.14) permutes ONB'94r{Z) is equivalent to the usual conditions
for the QMF’s and they take the form of the following familiar operator relations:

SiSy =61, ) _SiSi=1I (1.3.16)

(the Cuntz relations [Cun77], see Exercise 1-11). Hence there is a single unitary op-
eratorU of L? (T) onto itself which is induced by the basis change (1.3.14) such that
U commutes withz — 22f (). The Hilbert spacd.? (T) is isomorphic to/? (Z) via

the Fourier series representation, see (1.36)—(1.38), and the corresponding dperator
on ¢? (Z) commutes with th@-shift (z;,) — (zx_2). The classical code for the example
(1.2.5) in the previous section is

Leven
—

U, () Up (2) 1% (1.3.17)

—_
Lodd

and the quantum version is built by turning the unitary matrix factors into quantum
gates, as described below, and then using Shor’'s theorem on the universality of the
CNOT gate. Keep in mind that in the single-qubit case, see Figure 1.8, according to
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the standard rules of quantum mechanics, a measurement of the system will show that
the system is in stat®) or in state|1). For the measurement, we are up against Heisen-
berg’s uncertainty principle. Wait, you say, what then about the gtate- cos% |0) +

e'?sin g [1)? When measured, it give® with probability cos’ 4, and 1 with proba-

bility sin? g while the phase’¥ is immaterial. In information theory, as opposed to
guantum mechanics, it is customary to say that the entigpyf the state|iyy) is

hg = — (C082 (g) log, cos? (g) + sin? (g) log, sin? (g)) The entropy looks as fol-
lows:
1 =logy2 he
(1.3.18)
=0, 0=75 O=m
[8) = 10) ~ [0) (O] ) = % ~ L (10 01+ (11 [v9) = [1) ~ [1) (1]

The entropyhy refers to the loss of information when the state is subjected to measure-
ment or to noise in the channel. In (1.3.18),refers to a measurement in the sense
of von Neumann; see [Omn99, p. 259]. So as the entropy decreases, coherent quantum
states turn to classical states. This is “classical” in the sense of “how we are used to bits
behaving in a computer, coming out reliafflyor 1”. Usually the term “coherent state”
is reserved for the states depicted in (1.3.18)0fer § < w, and so excluding the end-
points, but of course the two degenerate stiteand|1) are both classical and quantum
states.

In quantum mechanics, as opposed to quantum information theory, the entropy of
a vector state is zero. More generally, consider the density mafgicesp |0) (0] +
(1 —p)|1) (1], where|0) (0| and |1) (1| denote the projections of rank one orffd0)
and ontoC |1), and0 < p < 1. The density matrices are interpreted probabilistically,
and the quantum-mechanical entropy of the sttee (- p) is — Trace (plog p). The
extreme casep = 0 andp = 1 are the points of decoherence (See Figure 1.9 and
(1.3.18)). (The term “coherence” is from quantum optics.)

Even though we can measure just the vallies 1 when subjecting a coherent state
|Y) = «|0) + B 1) to observation, there is still a continuum of these intermediate (co-
herent) superpositions. The added computational power in passing from “classical”’ to
“quantum” derives from this continuum of quantum stdtgs as opposed to just the two
classical bits. But the coherent states are highly unstable, and this must be taken very se-
riously when one tries to build quantum algorithms. The quantum error-correcting codes
are there to protect coherence, preventing the coherent states from degenerating into de-
coherence; see [Omn99, p. 802]. Communication depends on a transmission with coher-
ence, for example interference of the quantum-mechanical phases, which is independent
of the distance a wave travels. This interference is recorded in the off-diagonal terms of
some density matrix. The decay of these terms is called decoherence; see [SaSa0l].
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The fact which makes a (hypothetical) quantum computer more efficient than a clas-
sical one is that states can be prepared in configurati¢bis+ b |1) for a,b € C which
are superpositions of the two qubi®) and|1); the property is calledjuantum par-
allelism, and of course it does not have a classical analogue. But this is also a fact
which makes the quantum computer more sensitive to errors; see [Got96], [MaSI77a],
[GrBe00], [CRSS98], [Ger00, p. 225]. And error correction by cloning (which is clas-
sical) is not possible in the quantum computer, precisely because of the nonlinearity of
the tensor monomials, as opposed to the linearity of superposition.

Classically, the amplifier operatot, or the cloning assignment applied to a bjtis
Az = zz,0or Az = zax, z € {0, 1}; see [PeWe72]. So if a test for possible errors yields
the outcome&00, 010, and000, then the registed10 is simply discarded. But imagine
the quantum version of the cloning operatbri.e., A applied to qubitdy)). It would
be A |v)) = [¢) @ |¢), say, while quantum parallelism and unitarity dictate the linearity
(up to phase)A (a[1) + B [12)) = a A [ih) + BA i) for a, B € C and|y;) € C*",
1 = 1,2. But this is false because of the cross terms of the type

af(]0) @ 1) + |1) ® (0)) (1.3.19)

resulting from the calculation on tensors@ ® C?> = C*. This is the basis for the
“no-cloning theorem” for qubits.

The way around the no-cloning theorem which does produce quantum error correc-
tion is related again to th§;-systems of (1.3.15). Corresponding to the Haar (or rather
Hadamard) system, Shor suggested the two isometries

A C2 - C?eC?eC? (1.3.20)

such that
Ay al0) + (1) — «|000) + 5 ]111) (1.3.22)

for a, 6 € C. Alternatively, a single linear amplification operatérdefined by

1
10) — == (1000} +[111)) (j000) + [111)) (/000) + [111)),

| (1.3.22)
1) +— = (1000) = [111)) (J000) — |111)) (000 — |111)),

yields a quantum error-correcting operation, in the sense that it preserves the coherent
states, and this is Shor’s famous nine-qubit correction code. The individual tensor fac-
tors, such as\% (]000) + |111)), are called “cat states” after Sdlinger’s renowned cat
[OmMNn99, p. 61]. They are some of the most unstable states formed out of several tensor
factors of qubits. On the other hand, the argument from (1.8) shows that, unstable or not,
they are an essential part of qubit wavelet algorithms.

More generally, lek: € N, k > 3, and letC ¢ C? ® --- ® C? =: H,, be a subspace,

k times
and let P be the projection ont@. Then( is called acode if there is a finite set of
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operatorst; : H;, — Hy.; and a matriXa; ;) such that

Then the combined system is calledj@ntum error-correcting code. The idea is that

in the quantum realm, we selesibspaces rather tharbits. This is how the coherence

is protected. Similarly the quantum algorithms must be written as factorization of uni-
tary operators, the factorizations taking the form of a sequence of quantum gates. For
qguantum error correction, we get subspafEg’ } from which we select one, sa¥C,

which does not have errors. While the subspaE€smay not be orthogonal, there are
numbersy; ; such that E;u | Ejv) = a; j (u|v) forallu, v € C; see (1.3.23). The exam-

ple in (1.3.21) is called the three-bit flip code, but there are others that are nontrivial and
effective; see, for example, [CRSS98]. As in the classical case, the classical linear block
codes, a quantum error-correcting code encodes the state of each qubit onto a block of,
say, k qubits (a register, i.e., a vector i @ --- ® C2 = Czk). The encoded state is

k times
called alogical state following von Neumann [vNeu56]; see Exercise 1-14. The code

is said to correct! errors if the logical state is recoverable, given that no more than
errors occurred in thé-block. The added difficulty in passing from classical codes to
the quantum ones is that quantaoherence must be protected, the coherence referring
to the continuumx |0) + 3[1), | 4+ |8]* = 1, as opposed to the classical duality of
bits.

The simplest example of a quantum error-correcting code is in thekcasg, where
we take the encoded subspate C? ® C? ® C? to be the two-dimensional linear span
of the two (logic) stateg)00) and|111). We then define four error-correcting operators
E; as follows, wherer, = (9 }):

Ey: noerror — no qubit-flip — 1z @ 12 @ 12,

E;: error on first tensor slot— flip first qubit — 0, ® 12 ® 12,

E5: error on second tensor slet> flip second qubit— 12 ® 0, ® 12,
FE3: error on third tensor slot— flip third qubit — 12 ® 12 ® 0.

In this case, the four subspacBg c C?,i = 0,1, 2, 3, are mutually orthogonal, so the
operator identity (1.3.23) is then clearly satisfied. The trouble with this error correction is
that it is really just “classical’, i.e., it only corrects (qu)bit-flips. For nontrivial quantum
codes, see for example Exercise 1-14.

Let mg, m; be a dyadic wavelet filter, and 18t 5 z — A(z) € Uy (C) be the

corresponding matrix function4; ; (z) = 23" o, w™im; (w). If the low-pass filter

2
mo (2) = ap + a1z + -+ + ag, 11221, then a choice fom, (z) = Y™t b2 is

b = (—1)F @9, 1_s. We then haved (z) = 37 A2* whered,, = | 92F 9241
bok  bok+1
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and the following2"*2 x 27+2 scalar matrix can be checked to be unitary:

S R Av il A, |0 0 40
b1 bO
Ol |4 Anos | Aoy | An | 0 O
O 0 |4, Apos | Ans | Aoy | An | 0 o | °
0 0
0 0
0 0
0 0
0 0
Zjn+11 0 Ay | A1 | Ay Ap_q Zjn
n-+ n
22"*1 A, |0 0 | Ay | Ay A, s 22"*2
2n—1 2n—2
L Ay | A 0 | Ag |- | Aug |2
b2n73 b2n74
WG Ay | A A, 0] 4, |
b3 b2

Except for the scalar entries in the two extreme left and right columns, all the other
entries of the big combined matri¥, are taken from the cyclic arrangements of the

2 x 2 matrices of coefficientgly, A1, ..
n = 1 this amounts to the simpke x 8 wavelet matrix

Zi Alolo Zs
8 Aol A ] 0 8
8 0 | Ao | A 8
Zj 0] 0 |A Zi

., A, in the expansion ofl (z). For the case of

(1.3.24)

which is the one that produces the sequence of quantum gates in Exercise 1-22. The
quantum algorithm of a wavelet filter is thus represented & x 272 unitary
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matrix U4 acting on the quantum qubit registers - -- @ C = C2("+2) j.e., it acts on
N —

n+2 times
a configuration of: + 2 qubits. The realization of a wavelet algorithm in the quantum

realm thus amounts to spelling out the steps in factobingto a product of qubit gates.
By Shor’s theorem, we know that this can be done, @adnay be built out of one-qubit
gates and CNOT gates following the ideas sketched above. The reader may find more
discussion of the matrik/, in [Fre00, Section 3]

The generalization of classical and quantum wavelet resolution algorithmsNrem
2to N > 2 is immediate: Themn; (z) = 3y al” 2,

(Sif) () =m;i(2) f (zY), i=0,...,N—1, (1.3.25)
and the transformation rules

Enkri= Y a e, i=0,1,.. N1, (1.3.26)
lEZ

permute the set of ONB’s i (Z) and define a unitary commuting with thé-shift.
Hence, the standard formulas from [Wic93], [Kla99], and [FiWi99] for the quantum
computing algorithm, which are based on (1.3.14), naturally generalize to thé'case

2 via (1.3.26). Instead of-registersC?> @ - - - @ C2 = C2* overC2, we will now have

k times
to work rather withC @ - .- @ CN = CN*,
N—

k times
The use of the relations (1.3.16) in engineering and operator algebra theory predates
their more recent use in wavelet theory and wavepacket analysis.

Remark 1.3.1. The simplest way of creating entanglement of states, for example two-
qubit states of the form\% (|01) — [10)), are used in electron models (sgiparticles),

see Figure 1.8. (A vector state @'f C? for somek > 1 is said to beentangled if

it cannot be written as a tensor product of single-qubit states. Entangled states are es-
sential for error correction, and for teleportation, among other things.) Entanglement is
generally believed to be one of the essential quantum effects responsible for speedup,
i.e., converting slow classical gate models to polynomial quantum gate algorithms. See
[OmMN99, p. 274]. For universal gates, such as the CNOT gate, we need at least two elec-
trons. But it was recently suggested [MeyDO0O], [LI000] that quantum search might be
realized without entanglement. To do this [MeyDO0O0] suggests an experiment with single
particles having exponentially many states, so not electrons. However, for wavelet mod-
els, this is not feasible. The spin is fixed by the scale nuneand so if N = 2, we

are stuck with spir}, see Figure 1.8.
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—with apologies to Edvard Munch

Figure 1.11. Cascading refinements. For the link between spin configurations and scaling func-
tions, see the end of Section 1.4 and Chapter 2.

1.4 Chaos and cascade approximation

The dependence of the? (R) theory on the spin vectors exhibits chaos features, in the
sense that a small variation of the spin-vector configurations produces “large swings” in
the wavelet generators. We will apply a probabilistic approach, in Sections 2.5, 4.4, and
5.1, in trying to take an average of the unpredictable chaos in the cascades of wavelets.
Thesingular points on the manifoldWF (D) of (2.1.30) of wavelet filters to which we

refer are defined relative to the transfer or Ruelle oper&tet R, defined in (1.19),
wheremy is a point in the variety of filters. The low-pass filteg is said to be a singular

point if the multiplicity of the corresponding Perron—Frobenius eigenvalael is more

than one or ifR,,, has eigenvalues ifi different from1. For the examples in Figures
1.1-1.7, this only happens at the points corresponding to the stretched Haar wave-
lets, see Figures 1.1 and 1.6, or (1.2.11)—(1.2.12) xLle the indicator function (1.22)
above. The probabilistic view of the chaotic traject@®y> (6, p) — ¢®?) e L? (R)

in Figures 1.1 and 1.6 above refers to the approach of determining the cascade approxi-
mationlim,, ... M7, (x) = ©'**) near one of the chaotic point8, p) = (3, %) or

(0,0) (or (5 + %, %), not shown), not as a dire¢f (R)-limit but rather as a suitable av-
erage. Note that the? (R)-limit in fact does not exist at the singular points themselves
(Theorem 2.5.1), and that the scaling functigft®), near the singular points, has the
least amount of smoothness, as a function; go(e”’) (z). So the Cesaro averages

LG
lim =% M, (1) (2) = o (2) (1.4.1)
k=1
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may be used instead in a neighborhoodrfrof the singular points, and it is proved in
Corollary 4.5.6, Remark 2.5.5, and Lemma 2.5.7 that (1.4.1) in fdét(R)-convergent,
also at the singular points.

As explained in (1.2.7), the two unit vectofg:§) and( gy ) correspond to unitary
matrix factors in the formula (1.2.5). A matrix function in turn produces masking coef-
ficients by Section 1.2 and therefore a scaling function for a wavelet. This explains how
a configuration of two spin points (i.e., a pair of points $ produces a scaling func-
tion as one of the four around the head in in Figure 1.11. More generally, unit vectors
(%) € C%, |ul* 4 |v|* = 1, define pure states on thex 2 complex matrices, and these
states in turn are indexed by points on the Bloch splea# Figure 1.9. The point 082
corresponding ta |0) + v |1) can be checked to K& Re (uv) , 21m (awv) , |uf — [v]?).

So ifu = cos #, v = sin 6, then the corresponding point 68 is (sin 26, 0, cos 26). For
more details, see Exercise 1-18.

1.5 Spectral bounds for the transfer and subdivision operators

In Sections 3.2 and 3.4 we study general spectral properties of operators of the form
(1.19), or rather more generally (3.2.1), i.eny (z)]2 is replaced by a general Fourier
polynomial W (z). In this case there exists a finite-dimensional spkcef Fourier
polynomials such thaf?,,, mapskC, into Ks; see (3.2.19). For spaces of very regular
functions onT, the spectrum ofz,,, then coincides with the spectrum &%, |«.; see
(3.2.22) and Proposition 3.5.1. For spaces of less regular functions; (K¢ or 17 (T),
the spectrum ofz,,,, in addition contains a disc consisting of eigenvalues; see Theorem
3.2.6, Proposition 3.4.6, and Remark 3.4.7. Nevertheless, i$ a Fourier polynomial,
the peripheral point spectrum @{,,, on C (T) is equal to the peripheral spectrum of
R, k., and the corresponding points in the spectrum have all their eigenvectrs in
see Theorem 5.5.4. In the casel8f(T), none of the peripheral points in the spectrum
are eigenvalues; see Corollary 4.2.18. In the cas&ofT), R,,, may have periph-
eral eigenvectors which are not i@, although they are analytic except for one jump
discontinuity; see Example 3.5.5.

In Section 4.3 and Chapter 5 we study more closely the eigenspace corresponding to
A = 1 of the transfer operator. The focus is different from that of Section 3.2, which was
L2-theory. In Sections 4.3 and 5.2, we are concerned with the real-valued continuous
functions onT and their order structure. We show (Proposition 5.3.1) that the transfer
operator itself can be obtained from its eigenfunctions in the case that the peripheral
spectral properties are nongeneric. Before that, we give in Corollary 4.5.6 a measure of
the size of the peripheral spectrum.

Let R = Ry be defined from a polynomial wavelet filtery andW = |mg|°. If

mo (1) = VN and % S Jmo (w)? <1, (1.5.1)

wN=z
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then the eigenspadecr (1 — R|(ry) contains two distinguished functions which are
Fourier polynomials. They are studied in Theorems 4.3.1 and 5.1.1. Of course if

dim ker (1 — R‘C(T)) =1, (1.5.2)

then there is just one functighin C (T) satisfyingR (f) = f andf (1) = 1, so the two
functions coincide.
The two types of wavelet filters we consider in Section 4.3 are said todr¢tmigonal

type if

1
~ Z Imo (w)]? = 1, (1.5.3)
wN=z
or of biorthogonal type if
1
¥ 2 o)’ <1 (1.5.4)
wN=z

The two cases (1.5.3) and (1.5.4) are tied directly to the spectral theory of the transfer
operatorR = Ry through the following observations: L&¥;, be the formal adjoint,

(Ri€) (2) =W (2)€(2N), €€ L' (T). (1.5.5)
Then
e R}, isisometricin L' (T) if and only if (1.5.3) holds, (1.5.6)
and

e R}, iscontractive in L' (T) if and only if (1.5.4) holds, wheré! (T) (1.5.7)
is defined from the Haar measure ©n

The operator in (1.5.5) is of independent interest in numerical analysis, where it is called
the subdivision operator S; see, e.g., [GMW94]. It is considered in a sequence space,
such ag? (Z), 1 < p < oo, where the matrix representation is

(Sz); =) cinjz; (1.5.8)
JEL

forz = (z;) € 7 (Z),i,j € Z, andW (z) = X", o, cxz". SettingV = 2, the subdivi-
sion scheme (1.5.8) takes the following form of double subband filtering:

(Sx)m = ZCiji_j, (S:L‘)QZ-Jrl = 202j+1$i_]‘7 (159)
JEZL JEZL

which is more familiar in the context of the theory of stationary subdivision, see, e.g.,
[deR56], [CDM91], i.e., each of the two expressions in (1.5.9) is a convolution, but
the first involves only the coefficients of even index, while the second is the analogous
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weighted average, but with only the weights of odd index. It is used, for example, in the
local cascade algorithm, see Figures 1.1-1.7.

The operatolS (= Ryy,) in (1.5.8) is called the subdivision operator, or ti@odcutter
operator, because of its use in computer graphics. IterationS will generate a shape
which (in the case of one real dimension) takes the form of the graph of a furytian
R. If £ € £2°(Z) is given, and if the differences

1

D, (i) = f (2—n> —(S™) (i), i€z, (1.5.10)

are small, for example if
lim sup |D,, (7)] =0, (1.5.11)

N0 e
then we say that representgontrol points, or a control polygon, and the functighis
the limit of thesubdivision scheme.

It follows that the subdivision operatéfon the sequence spaces, especiall§of¥.),
governspointwise approximation to refinable limit functions. But we will see in Theo-
rem 2.5.1 that the dual version 6f i.e., R = S* (= the transfer operator) governs the
correspondingnean approximation problem, i.e., approximation relative to ti&(RR)-
norm.

In Scholium 4.1.2, we will consider the eigenvalue problem

SE=), MeC, (1.5.12)

and¢ # 0 in some suitably defined space of sequences. The formula (1.5.10) for the limit
of a given subdivision schem® makes it clear that the case (1.5.12) must be excluded.
For if (1.5.12) holds, for somg € C, and some sequenéef control points, then there

is not a corresponding regular functighon R with its values given on the finer grids
2~"Z,n=1,2,...,by

fe (i27™) = (S™€) (i) = "¢ (i), i€ (1.5.13)

We will show in Example 4.1.3 that there are no such control pdinits? (Z) \ {0}.
Hence the stability of the algorithm!

We will analyze the duality betweeRy, and Rj;, and their spectra in Sections 4.1
and 4.2.

Settingl = ]mO\Q, we note that orthogonal type (referring to orthogonal wavelets) is
(2.25) or (3.2.10), while biorthogonal type (referring to the wider class of biorthogonal
wavelets) is (1.29) or (3.4.3) in Proposition 3.4.1 or (3.4.25) in Theorem 3.4.4. In the
following, we shall refer to these two conditions in connection with a giémvhich is
assumed only to satisfy (3.4.23), i.&\; € Lip; (T), and (3.4.25), i.el¥’ > 0. Other
conditions will then be added, such as (3.2.10), or (3.4.25).

While the eigenspacgy € C (T) | R (g) = g} is not an algebra, we show in Sections
5.2,5.3, and 5.4 that it carries a product in which it induces a finite-dimensional abelian
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algebra, and we identify the positive multiplicative functionals on this system as the
normalized counting measures on a family of cyclesTor cycle is a finite orbit oril
underz — 2. In the orthogonal or biorthogonal cases (1.5.3) or (1.5.4), these cycles
are exactly the cycles contained{ila eT||mo (2)? = N}.

1.6 Connections to group theory

In this book, we stress the discrete wavelet transform. But the first line in the two tables
of Exercise 1-43 below is the continuous one. It is the only treatment we give to the
continuous wavelet transform, and the correspondaiiterent vector decompositions.

But, as is stressed in [Dau92], [Kai94], and [KaLe95], the continuous version came first.
A function ) satisfying the resolution identity is calleataherent vector in mathematical
physics. The representation theory for fla&: + b)-group, i.e., the matrix groupy =
{(&%)|a€Ry, be R}, serves as its underpinning. Then the table in Exercise 1-43
illustrates how the{v; .} wavelet system arises from a discretization of the following
unitary representation af:

1 z—0b
U r)=a 2 16.1
() =4 (557) @6
acting onL? (R). This unitary representation also explains the discretization step in
passing from the first line to the second in the table of Exercise 1-43. The functions

{4 | 3,k € Z} which make up a wavelet system result from the choice of a suitable
coherent vector) € L? (R), and then setting

Yk (z) = (U(on k.zlj)1b> (x) = 2%1b (ij — k). (1.6.2)

Even though this representation lies at the historical origin of the subject of wavelets
(see [DGM8E]), thgax + b)-group seems to be now largely forgotten in the next gen-
eration of the wavelet community. But [Dau92, Chapters 1-3] still serve as a beautiful
presentation of this (now much ignored) side of the subject. It also serves as a link to
mathematical physics and to classical analysis.

Since the representatidn in (1.6.1) onZ? (R) leaves invariant the Hardy space

Hi = {f € L*(R)|supp(f) C [0,00)}, (1.6.3)

formula (1.6.2) suggests that it would be simpler to look for wavele®q,inAfter all,

it is a smaller space, and it is natural to try to use the causality featurds whplied

by the support condition in (1.6.3). Moreover, in the world of the Fourier transform, the
two operations of the formulas (1.6.1) and (1.6.2) take the simpler forms

fr— a%e_ibtf(at) and ) — Q%e_mk% (2jt) . (1.6.4)
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So in the early nineties, this was an open problem in the theory, i.e., whether or not there
are wavelets in the Hardy space; but it received a beautiful answer in [Aus95]. Auscher
showed that there are no wavelet functiahsn H,; which satisfy the following mild
regularity properties:

(Ro) 1 is continuous;

(R.) forsomes € Ry, ¢ (t) = O ([tf) andd (t) = O ((1 + ]t\)_a_%)  teR.

Comparison of formulas (1.6.1) and (1.6.2) shows that the traditional discrete wave-
let transform may be viewed as the restriction to a subgrupf a classical unitary
representation ofy. The unitary representations 6f are completely understood: the
set of irreducible unitary representations consists of two infinite-dimensional inequiva-
lent subrepresentations of the representation (1.6.1?¢R), together with the one-
dimensional representatiolig ) — a’* parameterized by € R. (The two subrepre-
sentations of (1.6.1) are obtained by restricting‘te I? (R) with supp fc (—00,0]
andsupp f C [0, 00), respectively.) (See Exercises 1-41 and 1-42.) However, the sub-
group H of G has a rich variety of inequivalent infinite-dimensional representations that
do not arise as restrictions of (1.6.1), or of any representatiai. dthe groupH con-
sidered in (1.6.2) is a semidirect product (a&/isit is of the form

={(a )

(In the jargon of pure algebra, the nonabelian gréfipis the semidirect product of the
two abelian group& andZ [+], with a naturally defined action & onZ [+].)

The papers [DaLa98], [JorOla], [BaMe99], [HLPS99], [LPTO1], and [BreJo91] show
that it is possible to use these nonclassical representatioAsfof the construction of
unexpected classes of wavelets, the wavelet sets being the most notable ones. Recall that
a subset? C R of finite measure is avavelet set if i) = X Is such that, for some

N € Z,, N > 2, the functions{N%w (Niz — k) | j,k € Z} form an orthonormal

basis forL? (R). Until the work of Larson and others, see [DaLa98] and [HLPS99], it
was not even clear that wavelet sétgould exist in the cas®” > 2. The paper [LPTO01]
develops and extends the representation theory for the subgiaupslependently of
the ambient groug~ and shows that eacHy has continuous series of representations
which account for the wavelet sets. The role of the representations of the dilgugrsd
their generalizations for the study of wavelets was first stressed in [BreJo91].

There is a different transform which is analogous to the wavelet transform of (1.6.1)—
(1.6.2), but yet different in a number of respects. It is the Gabor transform of Section

a= N7, b:ZniNi, JE€Z, n; €Z,
€L

where the ~ summation is finit% . (1.6.5)

7
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1.8, and it has a history of its own; see the details below. Both are special cases of the
following construction: Letz be a nonabelian matrix group with centérand letU be

a unitary irreducible representation@fon the Hilbert spacé? (R). Wheny € L? (R)

is given, we may define a transform

(Tyf) (&) = (U (©)¥[f),  for feL?(R) and¢ e G/ C. (1.6.6)

It turns out that there are classes of matrix groups, such asathe b group, or the
3-dimensional group of upper triangular matrices, which have transf@gnasimitting
effective discretizations. This means that it is possible to find a vecterl? (R), and
a discrete subgroup C G,7C, such that the restriction td of the transformy, in
(1.6.6) is injective fromZ? (R) into functions onA.

There are many books on transform theory, and here we are only making the con-
nection to wavelet theory. The book [Per86] contains much more detail on the group-
theoretic approach to these continuous and discrete coherent vector transforms.

1.7 Wavelet packets

UNCERTAINTY. The practical gain in passing from wavelets to wavelet packets is
an improvement dfocalization, and this localization is useful for a variety of appli-
cations. One localization method is the algorithm of Coifman and Wickerhauser for
digitizing the fingerprint archive at the F.B.l. As follows from the brief summary
below, the wavelet packets will generally not spread through the entire universe; in
the case of one dimension, the algorithm allows an adjustment of the position and
the size of dyadic intervals which carry the essential portion of the signal, while at
the same time controlling the frequency localization. It is known [CoWi93] that the
algorithm is also successful in two or three dimensions. Both in modern wavelet
packet analysis and in localization problems in quantum mechanics, the obstacle is
a variant of the uncertainty relation. In Fourier analysis you have pairs of variables
which are in duality, for example positianand momentunp, or energy and time.

In Heisenberg’s formulation, the uncertainty relation reAds\p > g whereh is
Planck’s constant and wherer andAp denote the dispersion (uncertainty) in the
respective variables. However, as is well known, Fourier analysis allows a scale in
one of the two variables of the duality, and so you will frequently see the lower
bound in Heisenberg’s inequality in a rescaled version.

VAN V/\\/\
While Exercises 1-1 and 1-39 below show that Haar’s wavelet expansions allow intu-

itive and directly computable restrictions to finite intervals, this turns out not to be the
case for general wavelet expansions. This is related to the known fact ([Dau92, Chapter
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8]) that the Haar wavelet is the only wavelet with antisymmetry: the antisymmetry in
question is defined for a functiohon R by the conditionf (a — =) = — f (x) for some
a € R. Letty be a compactly supported orthogonal dyadic waveld?ifR). Then by
[Dau92, Theorem 8.1.4], ib has an antisymmetry axis, thenis the Haar function.
The Haar wavelet is supported i 1], and if j € Z, andk € Z, then the modified
functionz — ¢ (2/z — k) is supported in the smaller intervgl < x < %t When
j is fixed, these intervals are containednl] for k € {0, 1,...,20 — 1}. This is not
the case for the other wavelet functions. For one thing, the non-Haar wayeletse
support intervals of length more than one, and this forces periodicity considerations; see
[CDV93]. For this reason, Coifman and Wickerhauser [CoWi93] invented the concept
of wavelet packets. They are built from functions with prescribed smoothness, and yet
they have localization properties that rival those of the (discontinuous) Haar wavelet.
There are powerful but nontrivial theorems on restriction algorithms for wavelets
bix () = 224 (2z — k) from L2 (R) to L?(0,1). We refer the reader to [CDV93]
and [MiXu94] for the details of this construction. The underlying idea of Exercises 1-1
and 1-39 dates back to Alfred Haar, but it has found a recent renaissance in the work
of Wickerhauser [Wic93] omvavelet packets. The idea there, which is also motivated by
the Walsh function algorithm, is to replace the refinement equation (1.21) by a related
recursive system as follows: Lety (z) = >, ax2”®, m1 (2) = 3, bi2", for example
b, = (—1)k a1_k, k € Z, be a given low-pass/high-pass systeé¥n= 2. Then consider
the following refinement system onR:

Wan (2) = V2> apWy (20— k), Wonyr (x) = V2D bW, (22 — k). (1.7.1)
keZ keZ

Clearly the functionl¥, can be identified with the traditional scaling functignof
(1.21). A theorem of Coifman and Wickerhauser [CoWi93, Theorem 8.1] states that
if P is a partition of{0,1,2,... } into subsets of the form

Lpn = {an,an—i—l,...,Qk(n—l—l) — 1},
then the function system
{Q%Wn (2% _ l) | Iin€P, I € Z}

is an orthonormal basis fak? (R). Although it is not spelled out in [CoWi93], this
construction of bases if? (R) divides itself into the two cases, the true orthonormal
basis (ONB), and the weaker property of forming a function system which is only a tight
frame. As in the wavelet case, to get tResystem to really be an ONB fdi? (R), we

must assume the transfer operafby, - to havePerron—Frobenius spectrumon C' (T).

This means that the intersection of the point spectrurﬁgaz with T is the singleton

A =1, and thatdim ker((1 — R‘m0|2)|C(T)) = 1; see Table 3 in the next chapter.
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More generally, an orthonormal basis bt (R) selected from among the functions
25 W, 2%z —1),n = 0,1,...,k, | € Z, is called awavelet packet basis, and the ver-
satility of these bases derives from the known adaptability of the construction, making
both the scale and the “window” choice adjust simultaneously to the synthesis problem
at hand, say recovering the fingerprint which corresponds to a digitized wavelet version
in the FBI database, or in 3D, reconstructing a sculpture from its wavelet packet coeffi-
cients. See [CoWi93] for further details. The construction of the wavelet packets starts
with the L? (R)-cascade analysis of the solutions to the refinement system (1.7.1), and
it is shown in [Wic93] that the arguments for existencesadind+ in the wavelet case
(see Sections 1.1-1.2 above) adapt to the existence problem for (1.7.1).

We noted in Exercise 1-43, to be followed up in Lemma 2.2.2 below, thaPtfi)-
wavelet expansion may be based on the operator system (1.3.15), i.e., the system of
operatorsS; acting on the sequence spae These are the Cuntz relations [Cun77],
although they are not known under that name in the engineering literature. An exami-
nation of the papers [Wic93] and [CoWi93] shows that the wavelet packet algorithm is
in fact based on the same relations, i.e., the Cuntz relations. Perhaps surprisingly, this
turns out to be also the case for the recent algorithms on ridgelets and curvelets which
are used for ridges of singularities in Radon transform/wavelet analysis of problems in
R?, d > 2, and in neural network problems; see [AyBa01], [CaD0o00], and [Can99].

1.8 The Gabor transform

Another useful expansion in signal theory is provided by Gabor analysis. This differs
from wavelet analysis in that scaling is replaced by multiplicationzby> é~*. Fix a
functiong € L? (R) with ||g||, = 1, and, forw, t € R, let ¢! (z) = e“%g (x — t). The
windowed Fourier transform, or transform, 7': I? (R) — L? (R?) is defined by

f)= /Rewxg(x —t) f (x) dx (1.8.1)

Tf (wvt) = <gw’t

for f € L? (R). Let A be a lattice inR?, i.e., A is a discrete subgroup & of rank2,

SOA = {nz +my | n,m € Z} where{z, y} is a basis foilR?. One may ask if every
function f is determined by the “discretized” windowed Fourier transform defined by
A, that is, if f is determined by the restriction @ff to A. Equivalently, the question is
whether the linear span ¢f“* | (w,t) € A} is dense inL? (R). It was stated without
proof by von Neumann that this is the casé\if= 27Z @& Z andg (z) = 7 1/4¢=%"/2
[vNeu68, p. 217]. It was proved independently by Perelomov [Per71] and Bargmann et
al. [BBGK71] that, for any lattice\ in R? and the above Gaussian functignthe set
{g“"] (w,t) € A} spansL? (R) if and only if Vol (R? /A) < 2, whereVol (R? /A)

is the volume of the parallelograftz + sy | t, s € [0,1)}. Much more generally, the
following result is true.
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Theorem 1.8.1. Let A be alattice in R?. The following two conditions are equivalent:

There exists a function g € L? (R) such that the linear span of (1.8.2)
{g° | (w,t) € A} isdensein L2 (R),

and
Vol (R2/A) < 2r. 1.8.3)

Moreover, there exists a function g € L? (R) such that {¢“* | (w,t) € A} isan or-
thonormal basis for L? (R) if and only if Vol (R? /A) = 2.

This theorem is an immediate consequence of Theorem 3.2 in [Rie81], and was proved
independently in [Bag90]. Both proofs use von Neumann algebra techniques, as does
also a recent proof by Bekka [Bek01]. The latter proof is interesting in that it gives
an interpretation of the constaibl (R? /A) /27 as a von Neumann dimension. The
proofs are thus outside the scope of this book. For more information on Gabor analysis,
see [Dau92, Chapter 2], [FeSt98], [Gro01], [MeyY00], and [Per86].

While there are similarities between wavelet bases and Gabor bag&gRn, there
are also differences; a notable difference has to do with the respective localization prop-
erties, which are typically better for wavelets, as stressed for example in [Dau92, Theo-
rem 4.1.1] or [HeWe96, Theorem 2.1].

As we note in Exercises 1-38 and 1-45, the wavelets and the Gabor bases have in
common that they may both be obtained from the discretization of unitary representa-
tions of matrix group%~ acting on the Hilbert spackE’ (R). In the case of the wavelets,
the group consists of thex 2 matrices(%t 117) t,b € R, while for the Gabor bases, the
group is the three-dimensional grodfy; of matrices(é g ?) This latter group is the

Heisenberg group, and it has a one-dimensional centerDividing out with C, the two
variablesa, b remain, i.e.,G /C = R?. From there, the construction of a singly gen-
erated basis, in each case, results from a selection of a fungtion’? (R), a unitary
representatio/ of one of the groupss such that the respective basis functions have
the form Uyt with X\ varying in a discrete subgroup (as in Section 1.6), or in a lattice

A c R? as described above for the Gabor case. The reader may check that there is an
irreducible representatioti of Gy on L? (R) such that

(U 110 g) (z) = g (z) = e“"g (x — t) (1.8.4)
(35%)

yields the function system in (1.8.1).

Exercises

1-1. (Haar 1909.) Let ) be the Haar function of (1.2), i.e), := X[o 1 —X[; 1y and set
¥k (z) := 239 (272 — k) as usual, but instead of having the variabies R, j k€T
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1-46. For a dyadic wavelet functio® on R, we define alimension function

Dy(t)=%"% (¢ (27 (t + 27k))

j=1kez

:

Let
E =[-2m,7)U|[m 27),
and
4

T 41 41 4
F=|-47r - —, —4 -, —— — 47,4 — ).
[ 7 w0 7r>U[7r, 7>U|:7,7T>U|:7T,7T+7>

(a) Show that botlE’ and F' are wavelet sets, i.e., that batlhy = xg andyr = xp
are dyadic wavelet functions.

(b) Show that
Dy, (t) =1, teR.

(c) Show that
=27 2w

(d) Show that the wavelet functiaf; has a scaling functiopg and find the refine-
ment equation fopg. Find pg.

(e) Show that the wavelet functiafr doesnot have a scaling function. (See more on
this in Section 2.3.)

Terminology

e mathematics. “the study of absolutely necessary truths.” —David DeutSdig
Fabric of Reality [Deu97]

e multiresolution: —real world: a set of band-pass-filtered component images, as-
sembled into a mosaic of resolution bands, each resolution tied to a finer one and
a coarser one.

—mathematics. used in wavelet analysis and fractal analysis, multiresolutions are
systems of closed subspaces in a Hilbert space, sueh(&y, with the subspaces
nested, each subspace representing a resolution, and the relative complement sub-
spaces representing the detail which is added in getting to the next finer resolution
subspace.

e matrix function: a function from the circle, or the one-torus, taking values in a
group of N-by-N complex matrices.
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e wavelet: a functioni), or a finite system of function$y;}, such that for some
scale numbefV and a lattice of translation points & sayZ, a basis for? (R)
can be built consisting of the functiodé ; (N7z — k), j,k € Z.

Then dulcet music swelled

Concordant with the life-strings of the soul;

It throbbed in sweet and languid beatings there,

Catching new life from transitory death;

Like the vague sighings of a wind at even

That wakes the wavel ets of the slumbering sea. . .
—Shelley,Queen Mab

e subband filter: —engineering: signals are viewed as functions of time and fre-
guency, the frequency function resulting from a transform of the time function; the
frequency variable is broken up into bands, and up-sampling and down-sampling
are combined with a filtering of the frequencies in making the connection from
one band to the next.

—wavelets. scaling is used in passing from one resolutignto the next; if a
scaleV is used fromV to the next finer resolution, then scaling kytakesv
to a coarser resolutiof; represented by a subspacel6f but there is a set of
functions which serve as multipliers when relatitigto 4, and they are called
subband filters.

e cascades. —real world: a system of successive refinements which pass from a
scale to a finer one, and so on; used for example in graphics algorithms: starting
with control points, a refinement matrix and masking coefficients are used in a cas-
cade algorithm yielding a cascade of masking points and a cascade approximation
to a picture.

—wavelets: in one dimension the scaling is by a number and a fixed simple func-

tion, for example of the formﬂ is chosen as the initial step for the cascades;
when the masking coefficients are chosen the cascade approximation leads to a
scaling function.

e scaling function: a function, or a distributionyp, defined on the real linR which
has the property that, for some integér> 1, the coarser versiop(%) is in the
closure (relative to some metric) of the linear span of the set of translated functions

e+, @), pz—1),0(x—2),....

e logic gates: —in computation the classical logic gates are realized as computers,
for example as electronic switching circuits with two-level voltages, say high and
low. Several gates from Table 2 have two input voltages and one output, each one
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allowing switching between high and low: The output of the AND gate is high if
and only if both inputs are high. The XOR gate has high output if and only if one
of the inputs, but not more than one, is high.

gubits: —in physics and in computation: qubits are the quantum analogue of the
classical bitd) and1 which are the letters of classical computers, the qubits are
formed of two-level quantum systems, electrons in a magnetic field or polarized
photons, and they are represented in Dirac’s formalisrand|1); quantum theory
allows superpositions, so state§ = a |0) + b0, a,b € C, |af* + |b]> = 1, are

also admitted, and computation in the quantum realm allows a continuum of states,
as opposed to just the two classical bits.

—mathematics. a chosen and distinguished basis for the two-dimensional Hilbert
spaceC? consisting of orthogonal unit vectors, denoteg |1).

universality: —classical computing: the property of a set of logic gates that they
suffice for the implementation of every program; or of a single gate that, taken
together with the NOT gate, it suffices for the implementation of every program.

—quantum computing: the property of a se$' of basic quantum gates that every
(invertible) gate can be written as a sequence of steps using only gatesfrom
Usually S may be chosen to consist of one-qubit gates and a distinguished tensor
gatet. An example of a choice faris CNOT. An alternative universal one is the
Toffoli gate.

—mathematics: the property of a se$ of basic unitary matrices that for eveny
and everyu € Usn (C), there is a factorizatiom = sys9--- sk, s; € S, with

the understanding that the facteysare inserted in a chosen tensor configuration
of the quantum registe(E2 ® --- ® C2. Note that the factors;, the numberk,

n times
and the configuration of thg’s all depend om and the gate. € Us» (C) to be

studied. The quantum wavelet algorithm (1.3.24) is an example of such a matrix
u. It may also take the form given in (1E.17) of Exercise 1-22.

chaos. a small variation or disturbance in the initial states or input of some sys-
tem giving rise to a disproportionate, or exponentially growing, deviation in the
resulting output trajectory, or output data. The term is used more generally, denot-
ing rather drastic forms of instability; and it is measured by the use of statistical
devices, or averaging methods.

GLy (C): thegeneral linear group of all complexN x N invertible matrices.

Un (C): ={A € GLy (C) | AA* = 1¢~ } whereA* denotes the adjoint matrix,
i.e., (A% A

ij Aj,i-
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e transfer operator (transition operator). —in probability: An operator which

transforms signals from input s;;,, to outputs.,;. The signals are represented as
functions on some sdf. In the simplest case, the operator is linear and given in
terms of conditional probabilities (x, y). The numbep (z, y) may represent the
probability of a transition fromy to  wherex andy are points in the sef. Then

Sout (x) = Z p (xv y) Sin (y)

yeL

—in computation: Let X andY be functions on a sel, both taking values in
{0,1}. LetY be the initial state of the bit, and the final state of the bit. If the
process is governed by a probability distributi®hthen the transition probabil-
itiesp (z,y) := P({X =2 | Y = y}) are conditional probabilities: i.ep,(z,y)

is the probability of a final bit value given an initial valugy, and we have

PU{X =2} =) pyP{Y =y}).

yeL

—in wavelet theory: Let N € Z,, and letWW be a positive function ol =
{z € C||z| = 1}, for examplelW = |mg|* wherem, is some low-pass wavelet
filter with V bands. (Positivity is only in the sen$8 > 0, nonnegative, and the
function W may vanish on a subset @f) Then define a functiop on T x T as
follows:

0 for all other values ofv.

p () = { (£) W (w) if w =z,

We arrive at the transfer operatBy;, which is studied in detail in Chapter 4 below,
i.e., the operator transforming functions ‘dras follows:

Sout () = (Riwsin) (2) = = 3 W (w) sim (10)

coherence: —in mathematics and physics: The vectorsy; of (1.1.7) that make up

a tight frame, one which is not an orthonormal basis, are said to be subjected to
coherence. So coherent vector systems in Hilbert space are viewed as bases which
generalize the more standard concept of orthonormal bases from harmonic anal-
ysis. A striking feature of the wavelets with compact support, which are based
on scaling, is that the varieties of the two kinds of bases can be well understood
geometrically. For example, we show in Chapter 2 that the collapse of the wavelet
orthogonality relations, degenerating into coherent vectors, happens on a subva-
riety of a lower dimension.
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direction of direction of
Decoherence light beams Coherence light beams

Figure 1.12. Polarized photons visualized as light beams.

More generally, coherent vectors in mathematical physics often arise with a con-
tinuous index, as we noted in Exercise 1-43 above, even if the Hilbert space is
separable, i.e., has a countable orthonormal basis. This is illustrated by the vec-
tor system{«,. ;} in the first line of the tables in Exercise 1-43, which should be
thought of as a continuous analogue of (1.1.7), i.e., the version where the sum in
(1.1.7) gets replaced with an integral

drd
et [ S e 202 = 11
R2

For more details, see also [Dau92, Section 3.3] and [Kai94, Chapter 3], and Exer-
cise 1-26.

In quantum mechanics, one talks, for example, about coherent states in connec-
tion with wavefunctions of the harmonic oscillator. Combinations of stationary
wavefunctions from different energy eigenvalues vary periodically in time, and
the question is which of the continuously varying wavefunctions one may use to
expand an unknown function in without encountering overcompleteness of the
basis. The methods of “coherent states” are methods for using these kinds of
functions (which fit some problems elegantly) while avoiding the difficulties of
overcompleteness. The term “coherent” applies when you succeed in avoiding
those difficulties by some means or other. Of course, for students who have just
learned about the classic complete orthonormal basis of stationary eigenfunctions,
“coherent state” methods at first may seem like a daring relaxation of the rules of
orthogonality, so that the term seems to stand for total freedom!

decoherence: —in quantum computing channels: the collapse of a pure state
|Y) = a|0) + 51), af # 0, i.e., one with quantum parallelism, into one of the
two stateg0) or |1), where these resulting two states could represent a horizontal
or a vertical polarization of a photon; see Figure 1.12.
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Table 2. Logic gates

COMPARISONS The classical NOT is analogous to the quantum X, and the classical
XOR is somewhat analogous to the quantum CNOT, while the other pairs of gates are
less analogous. The quantum gate Z m@p#to itself and|1) into — |1), and— |1) de-
fines exactly the same quantum statélasso Z does nothing to the classical states, but
it affects the coherent states. Thus Z is a quantum gate without a classical counterpart.
A gate isreversible if its input can be restored from its output, otherwisversible.
classical gates guantum gates
and Venn diagrams (all reversible by virtue of
(irreversible except the first one, NOT)) their representation as unitaries)

0 1
NOT: X: 0z =
0 _ o 7 <1 0) )
a a qubit-flip
=a+1

bit-flip

mod 2
1 0
Z: 0, =
0 ? <O —1) z
phase-reversal

AND:
(ir)
(u)

S

alb
= ab
mod 2

OR: a Toffoli : a a
(ir) n
(u) aVb (u)
b =a+b+ab b b
mod 2
o |
c N\ ab+ ¢
mod 2
XOR: a CNOT: a a
(ir) . n
(nu) aVb (u)
=a+b N
b od 9 b O a+b
o mod 2

@ see (1.3.3)

a,b,--- € Zy ={0,1}; a+bandab are respectively addition and multiplicatiamd 2;
(r) = reversible; (ir)= irreversible; (u)= universal; (nu)= not universal




