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Abstract. As a result recent interdisciplinary work, the processing of signals
(audio, still-images, etc), a number of powerful matrix operations have led to
advances both in engineering applications, and in mathematics. Much of it is
motivated by ideas from wavelet algorithms. The applications are convincing
measured against other processing tools already available, for example better
compression (details below). We develop a versatile theory of factorization for
matrix functions. By a matrix valued function we mean a function of one or
more complex variables taking values in the group GL(n, C) of invertible n by
n matrices. Starting with this generality, there is a variety of special cases,
also of interest, for example, one variable, or restriction to the case n = 2;
or consideration of subgroups of GL(n, C); or SL(n, C), i.e., specializing to
the case of determinant equal to one. We will prove a number of factoriza-
tion theorems and sketch their application to signal (image processing) in the
framework of multiple frequency bands.
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1. Introduction

Starting with the early work on wavelets(the 1980ties), there is now an impor-
tant body of theory at the crossroads of a number of mathematical areas (harmonic
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Work supported in part by the U.S. National Science Foundation.

1



analysis and function theory) on the one side, and theoretical signal processing on
the other. An especially convincing instance of this was the recent use of wavelet
algorithms by the JPEG group. (The term ”JPEG” is an acronym for the Joint
Photographic Experts Group which created the standard.) The achieved compres-
sion resulting from these techniques is used, for example in a variety of image file
formats. JPEG/Exif is the most common of them, used in digital cameras and
other image devices. Moreover, these mathematical tools are now part of common
formats for storing and transmitting photographic images on the web.

The marriage of the two subjects came from the early realization that filters
generating the most successful wavelet bases could be obtained from an adaptation
of more classical sub-band filtering operations used in signal-processing; with the
notions of down-sampling and up-sampling being intrinsic to numerical wavelet
algorithms used in for example compression of signals, and more generally of images.
For a lucid account, see e.g., [Law99].

A common feature for the more traditional processing tools is the division into
sub-bands, but in modern applications such a sub-division is more subtle. Here
we develop and refine a procedure which uses factorization of families of matrix-
valued function. These operations are done on the frequency-side; but it is fairly
easy, at the end, to convert back to the time-signal itself. Here we use the concept
“time-signal” widely allowing for systems of numbers indexed by pixels, such as
grey-scale numbers for still-images; or, for color, more complicated configuration of
pixel matrices.

To be successful, a signal processing must allow a practical procedure for breaking
down an overall processing into the smallest ingredients. The role of factorization of
matrix functions is precisely to accomplish this: In the case of two frequency bands,
2 by 2 matrix functions suffice, and in this case, the corresponding factorization (see
e.g., Sweldens et al, [Swe96, Swe98] and [CC08]). In this case, the factorization goes
by the name “lifting” and the product is a (perhaps) long string of upper and lower
triangular matrices, alternation between upper and lower. But each of these basic
factors will then just encode a function of the frequency variable, corresponding to
a filtering step in the overall process.

Below we demonstrate how this is done in the case of a processing involving
multiple bands, as well as the features dictated by modern applications.

2. Matrix Valued Functions

Matrix valued functions of one or more complex variable, taking values in the
group SL(2,C), have a number of uses in both pure and applied mathematics. Here
we will focus on a framework in the signal processing literature called “the lifting
scheme,” or “lifting algorithms.” A main result there (suitable restrictions) is the
assertion that, in the case of polynomial entries, these matrix functions factor into
finite products of alternating upper and lower diagonal matrix functions.

Even though pioneering ideas are from engineering, we hope to show that they
are of interest in pure mathematics as well, especially in operator theory.

The result is of special practical significance in building filters with the use of two
frequency bands with a recursive input-output model; using as input filtered signals
from the low band, and producing an additive perturbation to the high frequency
channel. This is continued recursively, with reversal of the role of high and low in
each step. For some of the literature, we refer to [SBT03, CC08, HCXH08] and

2



many papers in the engineering literature. Since ealry pioneering ideas by Wim
Sweldens, e.g., [SR91] , the subject has since branched off in a variety of directions
both applied and pure; see [DS98] and the papers cited there.

One of our motivations here is the desire to extend and refine this method to the
case of multiple bands. In the simplest case, by this we mean that signals are viewed
as time function (discrete time) and each time-function generating a frequency
response function (generating function) of a complex variable. In applications it is
possible to encode time-signals or their generating functions as vectors in a Hilbert
space H. And to do this in such a way that a finite selection of frequency bands
will then correspond to a system of closed subspaces in H. A direct generalization
of the case n = 2 to n > 2 is not feasible. We note that the factorization conclusion
for n = 2 into alternating products of upper and lower, does not carry over to
n > 2; but, motivated by applications, we outline a version that does.

A new element in our approach is the use of some operator theory initiated into
the study of sub-band filtering in [BJ02a]; see also [BJ02b, JS09, Son06].

While the notion of upper/lower factorization is both versatile, and old, dating
back to Gauss, it has a variety of modern incarnations, many of which are motivated
by computation. On the pure side, we list the Iwasawa decomposition for semisimple
Lie groups [Iwa49], and on the applied side, the matrix formulation of the algorithm
of Gram and Schmidt for creating orthogonal vectors in complex Hilbert space
[Akh65].

In the signal processing, the context is different: Here we deal with infinite-
dimensional groups of matrix functions; functions taking values in one of the finite-
dimensional Lie groups, different groups for different purposes.

Of the many presentations in the literature dealing with signal processing ap-
plications, the following papers are especially relevant to our present approach:
[Law04, Law02, Law00, Law99, BR91, BRa, BRb] . Equally important are the
papers [DS98, Swe98, Swe96]; as well as their presentation in the book [JlCH01] .

3. Systems of Filters

In this section we present the mathematics of some key concepts from signal pro-
cessing. In their mathematical form, these ideas are timeless, and pretty versatile;
thus applying equally well to signals of a more basic nature, as well as to signal
processing in wireless communication. With suitable adaptation, these in fact are
tools for image processing as well.

The purpose of our presentation here is to set up the problems for the framework
of matrix analysis. By this we mean the study of functions in one or several complex
variables, but taking values in a particular Lie group of invertible matrices, for
example the general linear group GLN , the group UN of unitary N by N matrices,
or one of the symplectic groups, etc. The choice of group in our analysis depends
on the problem at hand. While the Lie groups G in the above list are finite-
dimensional, the moment we pass to the group of functions taking values in G, this
will be an infinite-dimensional group.

Setting.

• C : the complex plane
• D := {z ∈ C; |z| < 1}
• ∂D := T = {z ∈ C; |z| = 1} = {eiθ; θ ∈ R, or R/2πZ}
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• Let Ω ⊂ C be an open subset such that T ⊂ Ω. Algebras of functions and
Fourier representation:

(3.1) f(z) =
∑

k

akz
k =

∑

k

ake
i2πkθ .

If g(z) =
∑

k bkz
k, we shall impose conditions at k → ∞ such that

f(z)g(z) =
∑

n

cnz
n, where

(3.2) cn =
∑

k

akbn−k

can be justified.

3.1. Operations on Time-Signals.

Filtering If (bm)m∈Z is a time-signal, we say that (3.2) is a filter acting on (bm).

Below we will be using the notations ↑ and ↓ to denote operators, i.e.,
transformations acting on spaces of signals.

Upsampling ↑ Fix N ∈ Z+, N > 1. Consider a time-signal (bk) and a frequency response
function g(z) =

∑

k bkz
k.

Action on the signal: (bk) 7→ (cn) where

(3.3) cn =

{

bk if N |n, i.e., ∃k such that n = N · k.

0 if N ∤ n.

Action on the functions:

(3.4) g(z) 7→ h(z), where h(z) = g(zN).

Downsampling ↓ Fix N ∈ Z+, N > 1. Consider a time-signal (bk) and a frequency response
function g(z) =

∑

k bkz
k.

Action on Signal: (bk) 7→ (cn) where
(3.5)
cn = bnN for all n ∈ Z (i.e., discarting input bk when k is not divisible by N .)

Action on functions: g(z) 7→ h(z), where

(3.6) h(z) =
1

N

∑

w∈T, wN=z

g(w), average over N th roots.
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Frequency bands: We say that a partition of −π ≤ θ < π into N sub-intervals.

2πk

N
−
π

N
≤ θ <

2πk

N
+
π

N
is a sub-band partition with k = 0 corresponding to the lowest band, and
k =

[

N
2

]

the highest band.

Definition 3.1. Let N ∈ Z+ be given, and set ζN := ei 2π
N = the principal N th

root of 1. Set

(3.7) (ANg)(z) :=
1

N

N−1
∑

k=0

g(ζk
Nz)

Note the summation in (3.7) is over the cyclic group ZN = Z/NZ(= {0, 1, · · · , N−
1}).

Lemma 3.2.

(3.8) AN =↑↓ (downsampling followed by upsampling),

i.e., composition of operators.

Proof.

(ANg)(z) = (↓ g)(zN)

=
1

N

∑

w∈T, wN=zN

g(w)

=
1

N

∑

k∈ZN

g(ζk
Nz), summation over the cyclic group of order N ,

which is the formula in (3.7). �

Corollary 3.3. The action on AN on time-signal (bk) is as follows

(AN b)k =

{

bk if N |k,

0 if N ∤ k.

Definition 3.4. Let N ∈ Z+ be given; the two systems of functions

F = (fk)k∈ZN
and G = (gk)k∈ZN

is said to be a perfect reconstruction filter iff

(3.9)
∑

k∈ZN

Mgk
ANMfk

= I (see Fig. 1)

where the operator I on the RHS in (3.9) is the identity operator.

In the engineering lingo, e.g. (3.9) is expressed as follows:
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Figure 1. Perfect reconstruction in a subband filtering as used in
signal and image processing.

Definition 3.5. For such function f(z) =
∑

n∈Z
anz

n, set

(3.10) f∗(z) =
∑

n∈Z

a−nz
n.

4. Groups of Matrix Functions

The groups of functions taking values in a particular Lie group G (see section 2
for details) act naturally on vector valued functions. This action is simply pointwise:
If G is a group of N by N complex matrices, the action will then be on functions
mapping into CN , i.e., complex N -space. This is important as the mathematics of
filters in signal processing takes place on CN -valued functions. The way this is done
is outlined below; keeping in mind our framework of factorization for a particular
(infinite-dimensional) group of functions taking values in some Lie group G.

Definition 4.1. A system F = (fk)k∈ZN
is said to be an orthogonal filter (with N

bands) iff (3.9) holds with gk = f∗
k .

Proposition 4.2. A system F = (fk)k∈ZN
is an orthogonal filter with N bands iff

the N ×N matrix

(4.1) UF (z) := (fj(ζ
k
Nz))(j,k)∈ZN×ZN

is unitary for all z ∈ T(= ∂D)).

Proof. An application of the previous lemma. �

Definition 4.3. An N ×N matrix-valued function U is said to be unitary iff U(z)
is a unitary matrix for all z ∈ T.

Let the set of all orthogonal N−filters be denoted OFN , and the set, all unitary
matrix functions UMN .

Definition 4.4. Let U be an N ×N matrix-function, and let F = (fk)k∈ZN
be a

function system. Set

(4.2) G(z) := U(zN)F (z),

or equivalently

(4.3) gk(z) =
∑

j∈ZN

Uk,j(z
N )fj(z).
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Lemma 4.5. With the action (4.2), the group UMF acts transitively on OFN .

Proof. If F ∈ OFN , and U ∈ UMF , then the action (4.2) is easily seen to make
G(z) = U(zN )F (z) an orthogonal filter.

Let F and G be in OFN , and set

(4.4) Uj,k(z) =
1

N

∑

w∈T, wN=z

gk(w)fj(w).

An inspection shows that U = (Uj,k) is in UMF , and that (4.3) is satisfied. �

Corollary 4.6. Let N ∈ Z+ be given. Set

(4.5) b(z) =















1
z
z2

...
zN−1















; then

OFN = UMF b

=: {U(zN)b(z);U ∈ UMF }.

Definition 4.7. Let N ∈ Z+ be given, and let 〈·, ·〉N be the usual inner product
in CN , i.e.,

(4.6) 〈v, w〉N :=
∑

k

vkwk.

If F and G are CN−valued matrix, functions, set

(4.7) ≪ F,G≫N (z) =
1

N

∑

w∈T, wN=z

〈F (w), G(w)〉N =↓ 〈F,G〉N (z)

Lemma 4.8. Let N ∈ Z+ be fixed; and let A and B be matrix functions. Then

(4.8) ≪ Ab,Bb≫N= trace(A∗(z)B(z)),

where b is given by (4.5).

Proof.

≪ Ab,Bb≫N =
1

N

∑

wN=z

∑

j

∑

k

∑

l

Aj,k(z)wkBj,l(z)w
l

=
∑

j

∑

k

∑

l

Aj,k(z)Bj,l(z)
1

N

∑

wN=z

wkwl

=
∑

j

∑

k

∑

l

Aj,k(z)Bj,l(z)δk,l

=
∑

j

∑

k

Aj,k(z)Bj,l(z)

= trace(A(z)∗B(z)),

which is the desired conclusion. �
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Definition 4.9. Let H = L2(T) be the Hilbert space given by

(4.9)
1

2π

∫ π

−π

|ϕ(eiθ)|2dθ =
∑

n∈Z

|bn|
2

where ϕ(eiθ) =
∑

n∈Z
bne

inθ is the Fourier representation.

Let F = (fj)j∈ZN
be a function system on set

(4.10) (Sjϕ)(z) = fj(z)ϕ(zN ).

Lemma 4.10. Let N ∈ Z+ be given, and let F = (fj)j∈Z+
be a function system.

Then F ∈ OFN if and only if the operators Sj in (4.10) satisfy

S∗
j Sk = δj,kI

∑

j∈ZN

SjS
∗
j = I

where I denotes the identity operator in H = L2(T); compare with Fig. 1.

Proof. This is a direct application of the two previous lemmas. �

5. Group Actions

In this section we state our first results regarding factorization in (infinite-
dimensional) groups of functions taking values in some Lie groupG; matrix-functions
for short.

We outline notational conventions and state the factorization problem in a simple
case. Generalities will be added later. We begin with two key lemmas to be applied
later.

Let N ∈ Z+ be given (N > 1), and consider F = (fj)j∈Z+
in F2(N) :=

L2(T,CN ) =
∑N−1 ⊕

0 L2(T) with

‖F‖2
2 =

N−1
∑

j=0

‖fj‖
2
L2(T) <∞.

We will be making use of the special vector b ∈ F2(N),

b(z) =















1
z
z2

...
zN−1















;

see Corollary 4.6.
Let

(5.1) (Sjf)(z) = zjf(zN)

be the Cuntz-representation from Definition 4.9 and Lemma 4.10.

Lemma 5.1. Let N ∈ Z+ be fixed, N > 1, and let A = (Aj,k) be an N×N matrix-
function with Aj,k ∈ L2(T). Then the following two conditions are equivalent:

(i) For F = (fj) ∈ F2(N), we have F (z) = A(zN )b(z).
(ii) Ai,j = S∗

j fi where the operators Si are from the Cuntz-relations (5.1).
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Proof. (i) ⇒ (ii). Writing out the matrix-operation in (i), we get

(5.2) fi(z) =
∑

j

Ai,j(z
N )zj =

∑

j

(SjAi,j)(z)

Using S∗
j Sk = δj,kI, we get Ai,j = S∗

j fi which is (ii).
Conversely, assuming (ii) and using

∑

j SiS
∗
j = I, we get

∑

j SjAi,j = fi which

is equivalent to (i) by the computation in (5.2) above. �

Corollary 5.2. Let N ∈ Z+ be fixed, and let A and B be N ×N matrix-functions
with L2-entries. Then the following are equivalent:

(i) A(zN )b(z) = B(zN )b(z) and
(ii) A ≡ B.

5.1. Factorizations. We will now sketch the first step in the general conclusions
about factorization.

In the arguments below, the size of the problem has two parts:

(a) The matrix size, i.e., the size of N where we consider N ×N matrices.
(b) The number of factors in our factorizations.

To illustrate the idea, we begin with consideration of the case when both numbers
in (a) and (b) are 2.

Lemma 5.3. Let

A =

(

A B
C D

)

be a 2 × 2 matrix-function, and let
{

f0(z) = A(z2) + zB(z2)

f1(z) = C(z2) + zD(z2)

Let L and U be scalar functions. Then the following are equivalent:

(i)
(

1 0
L 1

) (

1 U
0 1

)

=

(

A B
C D

)

(ii) U = S∗
1f0 and L = S∗

0f1.

Proof. This is a direct consequence of the lemmas in section 4. �

5.2. Notational Conventions.

(i) Let N ∈ Z+ be fixed. We will denote N × N matrix function A(z) =
(Aj,k(z))j,k∈ZN

with row/column indices from {0, 1, · · · , N−1}, andN -column
vector functions

v(z) =











v0(z)
v1(z)

...
vN−1(z)











We will consider A acting on the vector v as follows:

(5.3) AN [v](z) := A(zN)v(z)

where the RHS in (5.3) is a (N×N)(N×1) matrix-product. Note the subscript
N in the definition (5.3) above.
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(ii) If f and g are two scalar valued functions, we set

(5.4) 〈f, g〉N (z) =
1

N

∑

w∈T wN=z

f(w)g(w),

i.e., this is an inner product taken values in spaces of funtions.
(iii) If f is given, we set

(5.5) (Sfϕ)(z) := f(z)ϕ(zN )

and

(5.6) (S∗
fϕ)(z) :=

1

N

∑

w∈T wN=z

f(w)ϕ(w) = 〈f, ϕ〉N (z)

(iv) Note that S∗
f is the L2(T)−adjoint operator, i.e., if ϕ, ψ ∈ L2(T), then

(5.7) 〈Sfϕ, ψ〉L2(T) = 〈ϕ, S∗
fψ〉L2(T)

where 〈·, ·〉L2(T) denotes the usual inner product in the Hilbert space L2(T).

Lemma 5.4. Let f0, f1, · · · , fN−1 be a system of N complex functions. (For the
present purpose, we only need to assume that each fj is in L∞(T).)

Then the following three conditions are equivalent:

(i) The functions fj satisfy

(5.8) 〈fj , fk〉N (z) = δj,k1, ∀z ∈ T, module-orthogonality.

(ii) The operator Sfj
satisfy the Cuntz-relations

(5.9)

{

S∗
fj
Sfk

= δj,kIL2(T), and
∑N−1

j=0 Sfj
S∗

fj
= IL2(T).

(iii) With ζN := ei 2π
N , form the matrix function

(5.10) MN (z) = (fj(ζ
k
Nz))j,k∈ZN

.

Then MN is a unitary matrix-function.

Definition 5.5. A system of function (fj)j∈ZN
satisfying any one of the three

conditions in Lemma 5.4 is called an orthogonal system of sub-band filters.

Remark 5.6. An advantage of the operator formalism in Lemma 5.4 (representations
of Cuntz algebras) is that the operators Pj := SjS

∗
j will then be a system of

mutually orthogonal projections, projections onto the subspaces in L2(T) ∼ l2(Z)
corresponding to frequency bands, with P0 = projection onto the subspace of the
lowest band.

This simplifies in the case of just two bands: then the family

Qi := Si
1S0S

∗
0S

∗i

1 , i = 0, 1, 2, · · ·

is infinite and mutually orthogonal. We get a well-defined infinite sum (of orthog-
onal projections):

(5.11)

∞
∑

i=0

Qi = IL2(T) ∼ Il2 .
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To justify (5.11), we use that limn→∞ Sn
1 S

∗n

1 = 0 holds in the strong operator
topology. With this, we then get a useful version of the pyramid algorithm, and
even an image-subdivision scheme; see Fig 3 and Fig 6.

Figure 2. Pyramid Algorithm.

Figure 3. For images with N = 4.

Corollary 5.7. Every orthogonal system of sub-band filters F = [fj ]j∈ZN
has the

form

(5.12) F = UN [b]

where U is a unitary matrix-function, and where

b =















1
z
z2

...
zN−1
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and where UN [b](z) = U(zN)b(z).

Definition 5.8. A matrix-function or a vector function is said to be of polynomial
type, or a polynomial matrix-function, if its entries are polynomials: If H ⊂ Z is a
finite subset of the integers and a : H 7→ C is a function on H , by a polynomial we
shall mean the expression

(5.13) fH(z) :=
∑

n∈H

anz
n

so a finite Laurent expression.

The difference D = maxH −minH will be called the degree of fH .
Let N ∈ Z+ be given and fixed. The following terminology will be used:

GLN(pol): the N×N polynomial matrix function A such that A−1 is also polynomial.

(5.14) SLN(pol) := {A ∈ GLN (pol); detA ≡ 1}.

Our work in matrix function give the following:

Theorem 5.9. (Sweldens [SR91]) Let A ∈ SL2(pol), then there are l, p ∈ Z+,
K ∈ C \ {0}, and polynomial functions U1, . . . , Up, L1, . . . , Lp such that
(5.15)

A(z) = zl

(

K 0
0 K−1

) (

1 U1(z)
0 1

) (

1 0
L1(z) 1

)

· · ·

(

1 Up(z)
0 1

) (

1 0
Lp(z) 1

)

.

Remark 5.10. Note that if
(

α β
γ δ

)

∈ SL2(pol),

then one of the two functions α(z) or δ(z) must be a monomial.

6. Divisibility and residues for matrix-functions

The present section deals with some key steps in the proof of our two main
theorems.

6.1. The 2 × 2 case. To highlight the general ideas, we begin with some details
worked out in the 2 × 2 case; see equation (5.15).

First note that from the setting in Theorem 5.9, we may assume that matrix
entries have the form fH(z) as in (5.13) but with H ⊂ {0, 1, 2, · · · }, i.e., fH(z) =
a0 + a1z + · · · . This facilitates our use of the Euclidean algorithm.

Specifically, if f and g are polynomials (i.e., H ⊂ {0, 1, 2, · · · }) and if deg(g) ≤
deg(f), the Euclidean algorithm yields

(6.1) f(z) = g(z)q(z) + r(z)

with deg(r) < deg(g). We shall write

(6.2) q = quot(g, f), and r = rem(g, f).

Since

(6.3)

(

K 0
0 K−1

) (

1 U
0 1

)

=

(

1 K2U
0 1

) (

K 0
0 K−1

)
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we may assume that the factor
(

K 0
0 K−1

)

from the equation (5.15) factorization occurs on the rightmost place.
We now proceed to determining the polynomials U1(z), L1(z), · · · , etc. induc-

tively starting with

A =

(

1 U
0 1

)

B

where U and B are to be determined. Introducing (5.12), this reads

(6.4) A(z2)

(

1
z

)

=

(

1 U(z2)
0 1

)

B(z2)

(

1
z

)

=

(

1 U(z2)
0 1

) (

h(z)
k(z)

)

But the matrix function

A =

(

α β
γ δ

)

is given, and fixed see Remark 5.10. Hence

(6.5) γ(z2) + δ(z2)z = k(z)

is also fixed. The two polynomials to be determined are u and h in (6.4). Carrying
out the matrix product in (6.4) yields:

α(z2) + β(z2)z = h(z) + u(z2)k(z) = h0(z) + h1(z
2)z + u(z2){γ(z2) + δ(z2)z}

where we used the orthogonal splitting

(6.6) L2(T) = S0S
∗
0L

2(T) ⊕ S1S
∗
1L

2(T)

from Lemma 4.10. Similarly, from (6.5), we get

γ(z2) + δ(z2)z = k0(z
2) + k1(z

2)z;

and therefore γ = k0 and δ = k1, by Lemma 5.1.
Collecting terms, and using the orthogonal splitting (6.6) we arrive at the fol-

lowing system of polynomial equations:

(6.7)

{

α = h0 + uγ

β = h1 + uδ;

or more precisely,
{

α(z) = h0(z) + u(z)γ(z)

β(z) = h1(z) + u(z)δ(z);

It follows that the two functions u, h may be determined from the Euclidean algo-
rithm. With (6.3), we get

(6.8)











u = quot(γ, α)

h0 = rem(γ, α)

h1 = rem(δ, β)
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Remark 6.1. The relevance of the determinant condition we have from Theorem
5.9 is as follows:

detA = αδ − βγ ≡ 1

Substitution of (6.7) into this yields:

h0δ − h1γ ≡ 1.

Solutions to (6.7) are possible because the two polynomials δ(z) and γ(z) are
mutually prime. The derived matrix

(

h0 h1

γ δ

)

is obtained from A via a row-operation in the ring of polynomials.
For the inductive step, it is important to note:

(6.9) deg(h0) < deg(γ), and deg(h1) < deg(δ).

The next step, continuing from (6.4) is the determination of a matrix-function C,
and three polynomials p, q, and L such that

(6.10)

(

1 −U
0 1

)

A =

(

1 0
L 1

)

C,

and

(6.11)

(

1 −U(z2)
0 1

)

A(z2)

(

1
z

)

=

(

1 0
L(z2) 1

) (

p(z)
q(z)

)

Here
(

p
q

)

= C(z2)

(

1
z

)

.

The reader will notice that in this step, everything is as before with the only
difference that now

(

1 0
L 1

)

is lower diagonal in contrast with
(

1 U
0 1

)

in the previous step.
This time, the determination of the polynomial p in (6.11) is automatic. With

p(z) = p0(z
2) + zp1(z

2)

(see (6.6)), and we get the following system:
{

p0 = α− uγ = h0

p1 = β − uδ = h1; and
{

γ = L(α− uγ) + q0 = Lh0 + q0

δ = L(β − uδ) + q1 = Lh1 + q1

So the determination of L(z) and q(z) = q0(z
2)+zq1(z

2) may be done with Euclid:

(6.12)











L = quot(α− uγ, γ) = quot(h0, γ)

q0 = rem(α− uγ, γ) = rem(h0, γ)

q1 = rem(β − uδ, δ) = rem(h1, δ)
14



Combining the two steps, the comparison of degrees is as follows:

(6.13)

{

deg(q0) < deg(h0) < deg(γ)

deg(q1) < deg(h1) < deg(δ)

Two conclusions now follow:

(i) the procedure may continure by recursion;
(ii) the procedure must terminate.

Remark 6.2. In order to start the algorithm in (6.8) with direct reference to Euclid,
we must have

(6.14) deg(γ) ≤ deg(α)

where

A =

(

α β
γ δ

)

is the initial 2 × 2 matrix-function.
Now, suppose (6.14), i.e., that

deg(γ) > deg(α)

Then determine a polynomial L such that

(6.15) deg(γ − Lα) ≤ deg(α).

We may then start the procedure (6.8) on the matrix function
(

α β
γ − Lα δ

)

=

(

1 0
−L 1

)

A.

If a polynomial U and a matrix function B is then found for
(

α β
γ − Lα δ

)

then the factorization

A =

(

1 0
L 1

) (

1 U
0 1

)

B

holds; and the recursion will then work as outlined.
In the following, starting with a matrix-function A, we will always assume that

the degrees of the polynomials (Ai,j)i,j∈ZN
have been adjusted this way, so the

direct Euclidean algorithm can be applied.

6.2. The 3 × 3 case. The thrust of this section is the assertion that Theorem 5.9
holds with small modifications in the 3 × 3 case.

6.2.1. Comments: In the definition of A ∈ SL3(pol), it is understood that A(z)
has detA(z) ≡ 1, and that the entries of the inverse matrix A(z)−1 are again
polynomials.

Note that if L,M,U and V are polynomials, then the four matrices

(6.16)





1 0 0
L 1 0
0 M 1



 ,





1 0 0
0 1 0
L 0 1



 ,





1 U 0
0 1 V
0 0 1



 and





1 0 U
0 1 0
0 0 1





are in SL3(pol) since
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(6.17)





1 0 0
L 1 0
0 M 1





−1

=





1 0 0
−L 1 0
LM −M 1



 , and

(6.18)





1 U 0
0 1 V
0 0 1





−1

=





1 −U UV
0 1 −V
0 0 1



 .

Theorem 6.3. Let A ∈ SL3(pol); then the conclusion in Theorem 5.9 carries
over with the modification that the alternating upper and lower triangular matrix-
functions now have the form (6.16) or (6.17)-(6.18) where the functions Lj ,Mj, Uj,
and Vj, j = 1, 2, · · · are polynomials.

6.3. The N ×N case.

Theorem 6.4. Let N ∈ Z+, N > 1, be given and fixed. Let A ∈ SLN(pol); then
the conclusions in Theorem 5.9 carry over with the modification that the alternative
factors in the product are upper and lower triangular matrix-functions in SLN (pol).
We may take the lower triangular matrix-factors of the form

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
Lp 0 1 0 0 0 0 0
0 Lp+1 0 1 0 0 0 0
0 0 . 0 1 0 0 0
0 0 0 . 0 1 0 0
0 0 0 0 . 0 1 0
0 0 0 0 0 LN−1 0 1

























;

L = (Li,j)i,j∈ZN
, polynomial entries

(6.19)

{

Li,i ≡ 1,

Li,j(z) = δi−j,pLi(z);

and the upper triangular factors of the form U = (Ui,j)i,j∈ZN
with

(6.20)

{

Ui,i ≡ 1,

Li,j(z) = δi−j,pUi(z);

Proof. Notation. Let U1, · · · , UN , L1, · · · , LN be polynomials, and set

(6.21) UN (U) =





















1 U1 0 0 0 0 0
0 1 U2 0 0 0 0
0 0 1 . 0 0 0
0 0 0 1 . 0 0
0 0 0 0 1 . 0
0 0 0 0 0 1 UN−1

0 0 0 0 0 0 1
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(6.22) LN (L) =





















1 0 0 0 0 0 0
L1 1 0 0 0 0 0
0 L2 1 0 0 0 0
0 0 . 1 0 0 0
0 0 0 . 1 0 0
0 0 0 0 . 1 0
0 0 0 0 0 LN−1 1





















Note that both are in SLN(pol); and we have

UN (U)−1 = UN (−U), and

LN (L)−1 = LN (−L).

Step 1: Starting with A = (Ai,j) ∈ SLN (pol). Then left-multiply with a
suitably chosen UN (−U) such that the degrees in the first column of UN (−U)A
decrease, i.e.,

(6.23) deg(A0,0) ≤ deg(A1,0 − u2A1,0) ≤ · · · deg(AN−1,0)

In the following, we shall use the same letter A for the modified matrix-function.
Step 2: Determine a system of polynomials L1, · · · , LN−1 and a polynomial

vector-function








f0
f1
. . .
fN−1









such that

(6.24) AN













1
z
z2

. . .
zN−1













= LN (L)N









f0
f1
. . .
fN−1









,

or equivalently

N−1
∑

j=0

Ai,j(z
N )zj =

{

f0(z) if i = 0

Li(z
N)fi−1(z) + fi(z) if i > 0

.

Step 3: Apply the operators Sj and S∗
j from (5.1) to both sides in (6.24). First

(6.24) takes the form:

N−1
∑

j=0

SjAi,j =

{

f0 if i = 0

Sfi−1
Li + fi if i > 0

.

For i = 1, we get

(6.25) A1,j = L1A0,j + kj where kj = S∗
j f1.

By (6.23) and the assumptions on the matrix-functions, we note that the system
(6.25) may now be solved with the Euclidean algorithm:

(6.26)

{

L1 = quot(A0,j , A1,j)

kj = rem(A0,j , A1,j)
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with the same polynomial L1 for j = 0, 1, · · · , N − 1.
For the polynomial function f1 we then have

(6.27) f1 =
N−1
∑

j=0

Sjkj ;

i.e.

f1(z) = k0(z
N) + k1(z

N )z + · · · + kN−1(z
N−1)zN−1.

The process now continues recursively until all the functions L1, L2, · · · , f1, f2, · · ·
have been determined.

Step 4: The formula (6.24) translates into a matrix-factorizations as follows:
With L and F determined in (6.24), we get

(6.28) A = LN (L)B

as a simple matrix-product taking B = (Bi,j), and

(6.29) Bi,j = S∗
j fi

where we used Lemmas 4.10 and 5.1.
Step 5: The process now continues with the polynomial matrix-function from

(6.28) and (6.29). We determine polynomials U1, · · · , UN−1 and a third matrix
function

C = (C(z)) = (Ci,j(z)) such that B = UN (U)C.

Step 6: As each step of the process we alternate L and U ; and at each step, the
degrees of the matrix-functions is decreased. Hence the recursion must terminate
as stated in Theorem 6.4. �

7. Quantization

In addition to building algorithms for signal and image processing, there is the
related problem of quantization. We define “quantization” broadly, and indeed
there is a variety of approaches.

Indeed the “signals” may have a subtle form; the time variable might correspond
to numbers in a system of pixel grids. The tools we developed in the previous
sections are sufficiently versatile. For clarity of discussion, it helps to separate
quantization of the two sides, input and output; so for example, “time” one and
“magnitude” the other. The idea is to select a finite set of possibilities on either side,
be it points, e.g., by sampling; or one might make suitable selections of intervals
on the two sides of the quantization problem.

In order to adapt to hardware, and to reduce the number of computations, one
makes a selection of a threshold. Specifically, when thresholding is applied to a
set of numbers in an algorithm, the threshold function denoted Q below) sends
insignificant numbers (for example “very small”) to zero.

In the thresholding process, applied to image processing, individual pixels are
marked as object-pixels if their value is greater than some threshold value (assuming
an object to be brighter than the background) and as background-pixels otherwise; a
convention known as threshold above. This contrasts threshold below, or threshold
inside, where a pixel is labeled “object” if its value is between two thresholds; and
threshold outside; the opposite of threshold inside.

Below we will outline briefly recursive quantization schemes. The purpose is
to illustrate how the particular filters we developed in section 5, and choice of
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threshold function, have the effect of making the recursive quantization schemes
run faster, and be more effective. A popular method in recent papers (sigma delta
quantization) is based on these ideas, plus the use of subtle difference/summation
algorithms, see eg., [LPY10, LHR09]

The literature in the subject is vast. A pioneering paper [Ben48] opens up the
door to the use of spectral analysis, and stochastic processes, especially amenable
to the present results. On the theoretical side, recent papers are relevant: [Abd08,
BOT08].

A key factor of the filtering algorithms from sections 4 and 6 is careful use
of upsampling and downsampling. With a finite filter (h1h2, · · · ), we get local
input/output boxes (Fig. 4)

Filter
(uk)k<n

un

Figure 4. Standard filter.

where

(7.1) un =
∑

j≥1

hjun−j = h1un−1 + h2un−2 + · · ·

or in matrix form

(7.2)







0 h1 h2 h3 · · ·
0 0 h1 h2 · · ·
...

...
...

...
. . .






.

For contrast, compare with the standard operator matrices from (5.6)

(7.3)

















0 0 h1 h2 h3 h4 h5 · · ·
0 0 0 0 h1 h2 h3 · · ·
0 0 0 0 0 0 h1 · · ·
...

...
...

...
...

...
... · · ·

...
...

...
...

...
...

...
. . .

















.

For emphasis, we give (7.3) in diagram form

.
.
.
.

..

. ...

Figure 5. Filter operation with slanting. See Lemma 5.4.
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For the pyramid algorithm in Fig. 2, we use two versions of the slanted matrix
in Fig. 5, high vs. low.

For the image processing (Fig. 3) we use four versions of the slanted matrices,

(a) a matrix that takes the average in horizontal direction
(b) a matrix that takes the average in vertical direction
(c) a matrix that takes the difference in horizontal direction
(d) a matrix that takes the difference in vertical direction.

which yield “average”, “horizontal”, “vertical” and “diagonal” details.

aa

ad

da

dd

Figure 6. Level 1 decomposition. Clockwise: Average, horizon-
tal, diagonal and vertical details.

Filter

delay

(xk)k<n

un+1 bn+1

un - bn

Figure 7. Quantization.

(7.4)

{

un+1 = (Fu)n + xn − bn

bn = Q((Fu)n + xn)

The figure and (7.4) together, thus summarizing the combined processes from
the discussion and Fig 7:

The filter F from the first eq in (7.4), and the first box in Fig 7, may be any
one of those built in sections 4 through 6 above. So the particular filter F selected
may itself be the result of a factorization algorithm as outlined above: it may be a
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time series, a wireless signal, or a system of pixel values; and in each case, it may
involve any number of frequency bands.

The output from F (see Fig 7) will pass through a thresholding filter Q, thus
outputting bn+1. In symbols, the next two steps are: “take difference”, and time-
shift the result (“delay”) , so from n + 1 back to n. The first eq in (7.4) indicates
how the process repeats itself, but with the output from the previous step, as input
in the next.

References

[Abd08] Fatma Abdelkefi. Performance of sigma-delta quantizations in finite frames. IEEE
Trans. Inform. Theory, 54(11):5087–5101, 2008.

[Akh65] N. I. Akhiezer. The classical moment problem and some related questions in analysis.
Translated by N. Kemmer. Hafner Publishing Co., New York, 1965.

[Ben48] W. R. Bennett. Spectra of quantized signals. Bell System Tech. J., 27:446–472, 1948.
[BJ02a] Ola Bratteli and Palle Jorgensen. Wavelets through a looking glass. Applied and Nu-
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