22M174/22C174: Optimization techniques.

Homework 1. Due 02/04/13.

1. Prove Theorem I.2.1.1.
2. Prove Lemma I.2.2.9.
3. Find the stationary points of the three following objective functions

$$
\begin{aligned}
f_{1}\left(x_{1}, x_{2}\right) & =2 \cos \left(x_{1}\right) x_{2}+x_{2}^{2} \\
f_{2}\left(x_{1}, x_{2}\right) & =3 x_{1}^{2}+2 x_{2}^{4}-8 x_{2}^{2}-10 \\
f_{3}\left(x_{1}, x_{2}\right) & =12 x_{1} x_{2}\left(x_{1}-x_{2}+1\right)+4 x_{2}^{3}-6 x_{2}^{2}
\end{aligned}
$$

Which of these points are local minimizers, local maximizers, or saddle points?
4. Is $[0,0,0]^{T}$ a local minimizer of $f\left(x_{1}, x_{2}, x_{3}\right)=4 x_{1}^{2}+2 x_{3} \cos \left(3 x_{2}\right)$? If not, find points arbitrarily close to $[0,0,0]^{T}$ with a lower function value.
5. Show that $[0,0]^{T}$ is a local minimizer of $f\left(x_{1}, x_{2}\right)=\left(x_{1}-2 x_{2}^{2}\right)\left(x_{1}-8 x_{2}^{2}\right)$ along every line passing through $[0,0]^{T}$. Show also that $f\left(3 x_{2}^{2}, x_{2}\right)<$ $f(0,0)$ if $x_{2} \neq 0$.

