22M174/22C174: Optimization techniques.

Homework 10. Due 05/08/13.

1. Consider the matrix $A \in \mathbb{R}^{4 \times 2}$

$$
A=\left[\begin{array}{rr}
1 & 4 \\
-3 & 2 \\
12 & -2 \\
-10 & 6
\end{array}\right]
$$

Solve the linear least squares problem $\min _{x \in \mathbb{R}^{2}}\|b-A x\|_{2}$ for the vector $b \in \mathbb{R}^{4}$

$$
b=\left[\begin{array}{r}
10 \\
2 \\
24 \\
0
\end{array}\right]
$$

using the normal equations.
2. Let $A \in \mathbb{R}^{m \times n}$. Show that for $p>0 \in \mathbb{R}$ the matrix

$$
A^{T} A+p I_{n}
$$

is nonsingular. Then show that the pseudo-inverse $A^{+} \in \mathbb{R}^{n \times m}$ of A satisfies

$$
A^{+}=\lim _{p \rightarrow 0^{+}}\left(A^{T} A+p I_{n}\right)^{-1} A^{T}
$$

3. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $x^{*} \in \mathbb{R}^{n}$.
(a) Show that if $F\left(x^{*}\right)=0 \Rightarrow x^{*}$ is a global minimizer of $\|F(x)\|$.
(b) Show by a counterexample that a global minimizer x^{*} of $\|F(x)\|$ is not necessarily a zero of $F(x)$.
