22M174/22C174: Optimization techniques.

Homework 10. Due 05/08/13.

1. Consider the matrix $A \in \mathbb{R}^{4 \times 2}$

$$A = \begin{bmatrix} 1 & 4 \\ -3 & 2 \\ 12 & -2 \\ -10 & 6 \end{bmatrix}.$$

Solve the linear least squares problem $\min_{x \in \mathbb{R}^2} ||b - Ax||_2$ for the vector $b \in \mathbb{R}^4$

$$b = \begin{bmatrix} 10\\2\\24\\0 \end{bmatrix}$$

using the normal equations.

2. Let $A \in \mathbb{R}^{m \times n}$. Show that for $p > 0 \in \mathbb{R}$ the matrix

$$A^T A + p I_n$$

is nonsingular. Then show that the pseudo-inverse $A^+ \in \mathbb{R}^{n \times m}$ of A satisfies

$$A^{+} = \lim_{p \to 0^{+}} (A^{T}A + pI_{n})^{-1}A^{T}.$$

- 3. Let $F : \mathbb{R}^n \to \mathbb{R}^n$ and $x^* \in \mathbb{R}^n$.
 - (a) Show that if $F(x^*) = 0 \Rightarrow x^*$ is a global minimizer of ||F(x)||.
 - (b) Show by a counterexample that a global minimizer x^* of ||F(x)|| is not necessarily a zero of F(x).