22M174/22C174: Optimization techniques.

Homework 2. Due 02/13/13.

1. To find the zero x^{*} of $g(x):=\sqrt{x} e^{x}-1=0$ in the interval $[0.1,1]$ apply 10 iterations of
(a) the bisection method starting with $a:=0.1, b:=1$. How many iterations k of the bisection method ensure an absolute error of 10^{-7} on x^{*}, i.e., $\left|c_{k}-x^{*}\right|<10^{-7}$?
(b) the simplified Newton iterates starting with $x_{0}:=0.55$;
(c) the Newton iterates starting with $x_{0}:=0.55$;
(d) the secant iterates starting with $x_{0}:=0.55, x_{1}:=x_{1, \text { Newton }}$;
(e) the fixed-point iterates $x_{k+1}=e^{-2 x_{k}}$ starting with $x_{0}:=0.55$.

For each method compute also the absolute errors $\left|x_{k}-x^{*}\right|$ for each iterate. Note: the zero is $x^{*}=0.426302751006863 \ldots$
2. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be twice continuously differentiable and $x^{*} \in \mathbb{R}$ a zero satisfying $g\left(x^{*}\right)=0$ and $g^{\prime}\left(x^{*}\right) \neq 0$. Show that in a neighborhood of x^{*} Newton's method is a contraction mapping.
3. To find a zero of $g(x):=4 x^{5}-x^{3}-x$ apply 10 iterations of Newton's method starting with $x_{0}:=0.5$. Print x_{k} for $k=0, \ldots, 10$. Do these iterations converge?
4. To find a zero of $g(x):=x^{6}-(3 / 2)^{6}$ apply 6 iterations of the secant method starting with $x_{0}:=0.25$ and $x_{1}:=5$. Print x_{k} for $k=$ $0, \ldots, 6,7$. Do these iterations seem to converge numerically?
5. To find an approximation to the minimimizer of the function

$$
f(x)=2 x^{3 / 2}+3 e^{-x}+5
$$

on the interval $\left[a_{0}, b_{0}\right]:=[0.2,0.6]$ apply 3 steps of the golden section method, i.e., give the 3 intervals of uncertainty $\left[a_{1}, b_{1}\right]$, $\left[a_{2}, b_{2}\right]$, and $\left[a_{3}, b_{3}\right]$ obtained with that method.
6. In the golden section method prove that we obtain $\alpha_{k+1}=\beta_{k}$ when $f\left(\alpha_{k}\right)>f\left(\beta_{k}\right)$.

