22M174/22C174: Optimization techniques.

Homework 3. Due 02/20/13.

1. Consider a matrix $M \in \mathbb{R}^{n \times n}$. Show that there exists a unique symmetric matrix $S \in \mathbb{R}^{n \times n}\left(S^{T}=S\right)$ such that

$$
x^{T} M x=x^{T} S x \quad \forall x \in \mathbb{R}^{n} .
$$

Give explicitly the matrix S.
2. Prove that the inverse M^{-1} of a positive definite matrix $M \in \mathbb{R}^{n \times n}$ (not necessarily symmetric) is positive definite. Hint: do not try to prove these results using eigenvalues, because you cannot assume that the eigenvalues of a nonsymmetric positive definite matrix M are real, for example

$$
M=\left[\begin{array}{rr}
2 & -1 \\
1 & 2
\end{array}\right]
$$

is nonsymmetric, positive definite, but its eigenvalues are complex $\left(\lambda_{1,2}(M)=2 \pm i\right)$. Even if a nonsymmetric matrix has real positive eigenvalues, it does not imply that the matrix is positive definite. For example the eigenvalues of

$$
M=\left[\begin{array}{rr}
9 & 4 \\
-4 & -1
\end{array}\right]
$$

are $\lambda_{1}(M)=1, \lambda_{2}(M)=7$. However, this matrix is not positive definite, since $p^{T} M p=9 p_{1}^{2}-p_{2}^{2}$.
3. Does the following quadratic objective function

$$
q\left(x_{1}, x_{2}\right)=3-3 x_{1}-3 x_{2}+x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}
$$

have a global minimum value? If yes, find all the global minimizer(s) and give the minimum value of q.
4. Consider the nonlinear system $F(x)=0$ where $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
(a) Show that Newton's method is affine invariant, i.e., Newton's method applied to $F(x)=0$ starting at x_{0} and Newton's method applied to $G(y):=M F(N y+v)=0$ starting at y_{0} satisfying $N y_{0}+v=x_{0}$ where M and N are two invertible matrices in $\mathbb{R}^{n \times n}$ and $v \in \mathbb{R}^{n}$, lead to iterates x_{k} and y_{k} satisfying $N y_{k}+v=x_{k}$ for $k=0,1,2, \ldots$
(b) Show that Newton's method is in general not invariant when $F(x)=0$ is transformed to $G(x):=M(x) F(x)=0$ where $M(x) \in \mathbb{R}^{n \times n}$ is an invertible matrix function. Write down the linear models (used for Newton's method around a point x_{k}) $L_{F, k}(x) \approx F(x)$ and $L_{G, k}(x) \approx G(x)$. Is in general the zero x_{k+1} of $L_{F, k}(x)=0$ also the zero of $L_{G, k}(x)=0$? Remark:

$$
D M(x)(\cdot, \cdot)
$$

is a bilinear application

$$
(D M(x)(u, v))_{i}=\sum_{k=1}^{n} \sum_{j=1}^{n} \frac{\partial M_{i j}}{\partial x_{k}}(x) u_{j} v_{k} .
$$

5. Sherman-Morrison-Woodbury formula. Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix, show that for $U, V \in \mathbb{R}^{n \times m}$ we have $A+U V^{T} \in \mathbb{R}^{n \times n}$ is invertible $\Longleftrightarrow I_{m}+V^{T} A^{-1} U \in \mathbb{R}^{m \times m}$ is invertible. Hint: in this situation, show that we have

$$
\begin{aligned}
\left(A+U V^{T}\right)^{-1} & =A^{-1}-A^{-1} U\left(I_{m}+V^{T} A^{-1} U\right)^{-1} V^{T} A^{-1}, \\
\left(I_{m}+V^{T} A^{-1} U\right)^{-1} & =I_{m}-V^{T}\left(A+U V^{T}\right)^{-1} U .
\end{aligned}
$$

