22M174/22C174: Optimization techniques.

Homework 4. Due 03/01/13.

1. Find the two zeros of the system of nonlinear equations

$$
F\left(x_{1}, x_{2}\right):=\left[\begin{array}{c}
x_{1}^{2}+x_{2}^{2}-9 \\
x_{1}+x_{2}-3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Let $x_{0}:=[5,1]^{T}$ and $B_{0}:=F^{\prime}\left(x_{0}\right)$. Carry out two iterations of Broyden's method. Show that for $k \geq 0$ we have $\left(B_{k}\right)_{21}=1,\left(B_{k}\right)_{22}=1$. Show that the equation $\left(x_{k}\right)_{1}+\left(x_{k}\right)_{2}-3=0$ is satisfied for $k \geq 1$, hence $[1,1] s_{k}=0$ for $k \geq 1$. Then show that $\left(B_{k+1}-B_{k}\right)[1,1]^{T}=0$ for $k \geq 1$, hence $\left(B_{k}\right)_{11}+\left(B_{k}\right)_{12}=9$ for $k \geq 1$. Assuming $F\left(x_{k}\right) \neq 0$ and $\lim _{k \rightarrow \infty} x_{k}=[3,0]^{T}$, from the quasi-Newton equation show that

$$
\lim _{k \rightarrow \infty}\left(\left(B_{k}\right)_{11}-\left(B_{k}\right)_{12}\right)=6
$$

Do we have $\lim _{k \rightarrow \infty} B_{k}=F^{\prime}\left(x^{*}\right)$ where x^{*} is one of the zeros?
2. Consider the system of nonlinear equations

$$
F\left(x_{1}, x_{2}\right):=\left[\begin{array}{c}
\sin \left(x_{1} e^{3 x_{2}}-1\right) \\
x_{1}^{3} x_{2}+x_{1}^{3}-7 x_{2}-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

which has a zero at $x^{*}=[1,0]^{T}$.
(a) Starting from $x_{0}=[1.3,-0.15]^{T}$ apply Newton's method until $\left\|x^{*}-x_{k}\right\|_{2} \leq 10^{-14}$. At each iteration print the two components of x_{k} and the error $\left\|x^{*}-x_{k}\right\|_{2}$.
(b) Starting from $x_{0}=[1.3,-0.15]^{T}$ with $B_{0}:=F^{\prime}\left(x_{0}\right)$ (or $C_{0}:=$ $\left(F^{\prime}\left(x_{0}\right)\right)^{-1}$, apply Broyden's method until $\left\|x^{*}-x_{k}\right\|_{2} \leq 10^{-14}$. At each iteration print the two components of x_{k} and the error $\left\|x^{*}-x_{k}\right\|_{2}$.
3. Consider

$$
B_{k}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right], \quad s_{k}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right], \quad y_{k}=\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
$$

Observe that B_{k} is symmetric. Show that B_{k} is positive definite. Compute Broyden's update B_{k+1} (II.4.3.3) and show that it is neither
symmetric nor positive definite. Compute the SR1 update $B_{k+1}^{S R 1}$ (on p. I.22) and show that it is symmetric, but not positive definite. Compute the BFGS update $B_{k+1}^{B F G S}$ (I.4.2.4 on p. I.23) and the DFP update $B_{k+1}^{D F P}$ (I.4.2.6 on p. I.24) and show that both updates are symmetric and positive definite.
4. Prove that for

$$
\phi:=\frac{y_{k}^{T} s_{k}}{y_{k}^{T} s_{k}-s_{k}^{T} B_{k} s_{k}}
$$

in the Broyden class of updates (I.4.2.8 on p. I.24) we obtain the SR1 update (on p. I.22).

