22M174/22C174: Optimization techniques.

Homework 5. Due 03/13/13.

1. Apply Algorithm I.4.2.5 (BFGS on quadratics with exact line-search, p. I.25) by hand to the quadratic

$$
q\left(x_{1}, x_{2}\right)=x_{1}-\frac{3}{4} x_{2}+\frac{4}{9} x_{1}^{2}-2 x_{1} x_{2}+3 x_{2}^{2}
$$

starting with

$$
x_{0}=\left[\begin{array}{c}
-1 \\
4
\end{array}\right], \quad B_{0}=\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right] .
$$

Compute the updates x_{k} and B_{k} and stop when the algorithm has found the minimizer or $k=4$. Modify Algorithm I.4.2.5 for the DFP update and repeat the calculations for this case. Are the updates B_{k} for BFGS and DFP close to each other and to the exact Hessian? If yes, at which iteration?
2. Given a set of $m+1$ linearly independent vectors $\left\{d_{0}, \ldots, d_{m}\right\}$ in \mathbb{R}^{n} $(m+1 \leq n)$ and a symmetric positive definite matrix H, show that the following (generalized) Gram-Schmidt procedure

$$
p_{0}:=d_{0}, \quad p_{j}:=d_{j}-\sum_{i=0}^{j-1} \frac{d_{j}^{T} H p_{i}}{p_{i}^{T} H p_{i}} p_{i} \quad \text { for } j=1, \ldots, m
$$

produces a set of vectors $\left\{p_{0}, \ldots, p_{m}\right\}$ conjugate with respect to matrix H. Hint: prove this result by induction on j.
3. For conjugate direction methods (Algorithm I.4.3.2 on p. I. 28 with H replaced by A or Algorithm 3.5.1 on p. 72 of the typed notes) show that the "quasi-Newton" condition

$$
A s_{k}=y_{k}
$$

holds where $s_{k}:=x_{k+1}-x_{k}, y_{k}:=g_{k+1}-g_{k}, g_{k}:=A x_{k}-b$. Then show that the conjugacy condition $p_{i}^{T} A p_{j}=0$ for $i \neq j$ is equivalent to the orthogonality condition $y_{i}^{T} p_{j}=0$ for $i \neq j$ as long as $\alpha_{i} \neq 0$. Hint: use the relation $g_{k+1}=g_{k}+\alpha_{k} A p_{k}$.
4. Show by induction on k that for conjugate direction methods (Algorithm I.4.3.2 on p. I. 28 with H replaced by A or Algorithm 3.5.1 on p. 72 of the typed notes) we have $g_{k}^{T} p_{i}=0$ for $i=0, \ldots, k-1$. Hint: use the relation $g_{k+1}=g_{k}+\alpha_{k} A p_{k}$.
5. Show that for the linear conjugate gradient (CG) method (Algorithm I.4.3.4 on p. I. 30 or Algorithm 3.5.2 on p. 74 of the typed notes) the coefficients α_{k} and β_{k} satisfy

$$
\alpha_{k}=\frac{g_{k}^{T} g_{k}}{p_{k}^{T} A p_{k}}, \quad \beta_{k}=\frac{g_{k+1}^{T} g_{k+1}}{g_{k}^{T} g_{k}} .
$$

6. We consider the system of linear equations $A x=b$ given by the following symmetric and positive definite matrix

$$
A=\left[\begin{array}{rrrrrrr}
2 & -1 & & & & & \\
-1 & 2 & -1 & & & & \\
& -1 & 2 & -1 & & & \\
& & \ddots & \ddots & \ddots & & \\
& & & -1 & 2 & -1 & \\
& & & & -1 & 2 & -1 \\
& & & & & -1 & 2
\end{array}\right]
$$

of dimension $n=15$ and right-hand-side b given by $b:=A x^{\star}$ where $x^{\star}:=[1,-2,3,-4, \ldots,-14,15]^{T}$. Starting from $x_{0}:=b$ (apply the conjugate gradient (CG) method (Algorithm I.4.3.4 on p. I. 30 or Algorithm 3.5.2 on p. 74 of the typed notes). Print the forward relative errors

$$
\frac{\left\|x^{\star}-x_{k}\right\|_{A}}{\left\|x^{\star}\right\|_{A}}
$$

for $k=0, \ldots, 15$ where $\|v\|_{A}:=\sqrt{v^{T} A v}$.

