22M174/22C174: Optimization techniques.

Homework 7. Due 04/10/13.

1. Is the function $f(x):=2 x^{3}$ convex on [$\left.-2,2\right]$? Same question for the function $g(x):=-2 x^{3}$ on $[-4,-2]$.
2. Prove that the set $C:=\left\{\left[x_{1}, x_{2}\right]^{T} \in \mathbb{R}^{2} \mid 3 x_{1}-2 x_{2}>0\right\}$ is convex. Is the function $f\left(x_{1}, x_{2}\right):=x_{1}^{4}+x_{2}^{2}-\ln \left(3 x_{1}-2 x_{2}\right)+\left|2 x_{1}-3\right|$ convex on C ?
3. Assume that $f: C \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex on a convex set C. Let $x^{(1)}, \ldots, x^{(m)}$ be arbitrary points of C and $\alpha_{1}, \ldots, \alpha_{m}$ be nonnegative numbers satisfying $\sum_{i=1}^{m} \alpha_{i}=1$. Show that

$$
f\left(\sum_{i=1}^{m} \alpha_{i} x^{(i)}\right) \leq \sum_{i=1}^{m} \alpha_{i} f\left(x^{(i)}\right) .
$$

Hint: use induction on m.
4. Find the global minimizers and maximizers of $f\left(x_{1}, x_{2}\right):=x_{1} x_{2}$ in the set

$$
X:=\left\{x \in \mathbb{R}^{2} \mid x_{1}^{2}+4 x_{2}^{2}=4\right\}
$$

first without using Lagrange multipliers (i.e., by elimination) and then by using Lagrange multipliers.
5. Using Lagrange multipliers, find the global minimizers and maximizers of $f\left(x_{1}, x_{2}, x_{3}\right):=x_{3}-x_{2}-x_{1}$ in the set

$$
X:=\left\{x \in \mathbb{R}^{3} \mid x_{3}^{2}+2 x_{2}^{2}=1,3 x_{3}-4 x_{1}=0\right\} .
$$

