22M174/22C174: Optimization techniques.

Homework 8. Due 04/19/13.

1. Find the points in the set

$$
X:=\left\{x \in \mathbb{R}^{3} \mid x_{1} x_{3}-x_{2}^{2}+4=0\right\}
$$

which are the closest to the origin $[0,0,0]^{T}$ (closest in the sense of the Euclidean distance).
2. We consider minimizing the quadratic function

$$
q\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-3 x_{1} x_{2}+x_{1}+x_{2}
$$

under the constraint $2 x_{1}+x_{2}=2$. A basis Z of the null-space of the Jacobian of $c_{1}\left(x_{1}, x_{2}\right):=2 x_{1}+x_{2}-2$ is given by one the following vectors

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
-3 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
-1 \\
2
\end{array}\right], \quad\left[\begin{array}{c}
3 \\
-2
\end{array}\right] .
$$

Which one? Find the stationary points $\left(x^{\star}, \lambda^{\star}\right)$ of the Lagrangian. Then evaluate $Z^{T} \nabla q\left(x^{\star}\right)$ and $Z^{T} \nabla^{2} q\left(x^{\star}\right) Z$. Give the global minimizer(s) of $q\left(x_{1}, x_{2}\right)$ in the set

$$
X=\left\{x \in \mathbb{R}^{2} \mid 2 x_{1}+x_{2}=2\right\} .
$$

3. Prove the lemma on p. III. 16 of the class notes.
4. Find the global minimizer(s) of $f\left(x_{1}, x_{2}\right)=\left(x_{2}-2\right)^{2}+2\left(x_{1}-1\right)^{2}$ in the set

$$
X:=\left\{x \in \mathbb{R}^{2} \mid x_{1} \geq x_{2}^{2}, x_{1}+x_{2} \leq 2\right\} .
$$

