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1. Introduction 

Index 3 problems often appear when modelling mechanical systems with con- 
straints (for further details see [1, Sect. 6.2], [3, pp. 6-7] or [5, pp. 483-486 
and pp. 539-540]). A usual way for solving such problems is by index reduction 
(see [-1, Subsects. 2.5.3 and 5.4.1]). However, for multibody systems containing 
rigid springs with a Hooke's constant 1/e 2 (e very small), the numerical solution 
behaves as that for the limit problem (e ~0 )  which is of index 3 (see [3, pp. 10-12] 
or [6] ). In this situation, an index reduction is not possible and one is compelled 
to study the convergence behaviour for the index 3 case. This remark also holds 
for very stiff mechanical systems in which a large potential forces the motion 
to be close to a manifold. 

Convergence of BDF-methods is stated in [-1, Subsect. 3.2.4]. Preliminary 
theoretical convergence results for general implicit Runge-Kutta (IRK) methods 
have been obtained in [-3, Sect. 6], but numerical experiments have shown that 
they are not optimal and sharper orders of convergence have been hypothesized 
[-3, pp. 18-19 and p. 86]. For  solvable linear constant coefficients systems of 
arbitrary index, necessary and sufficient conditions to ensure that the local and 
global errors of an IRK method attain a given order of accuracy have already 
been derived in [2]. 

The main result of this paper (Theorem 2.2 below) will be a partial proof 
of the conjecture of [3, p. 86], giving sharp convergence bounds for stiffly accu- 
rate collocation methods, such as the Radau IIA processes. The necessary tools 
for this proof (Sect. 5), which relate on the ideas of [-3, Sect. 6], and of [5, 
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Sect. VI.7] (devoted to index 2 systems), are collected in Sect. 3 (existence, 
uniqueness, and study of perturbations in the initial values) and in Sect. 4 (local 
error). 

2. Collocation methods for index 3 DAE's  

Let 

(2.1) y' =f(y ,  z), y ( xo )=Yo~" ,  
z'=k(y,z,u), Z(Xo)=ZoelR", 
0----- g(y), U(Xo)=Uoe]R p 

be a system of differential-algebraic equations given in an autonomous and 
semi-explicit formulation (or Hessenberg form). The initial values (Y0, Zo, u0) 
are assumed to be consistent, i.e., to satisfy 

(2.2a) 0=g(y )  

(2.2b) 0 = (gyf) (y, z) 

(2.2 c) 0 = (gyy ( f , f )  + gy fr f + gy f~ k) (y, z, u). 

Let us suppose that f, g, and k are sufficiently differentiable functions and that 

(2.3) gyf~ k, is invertible 

in a neighbourhood of the exact solution (index 3). If (2.2c) and (2.3) are satisfied 
for some (y*, z*, u*), then, in a vicinity of these values, (2.2c) defines an implicit 
function u = G(y, z). 

One step of a collocation method applied to (2.1) is defined as follows: 

Definition 2.1. Let c 1 . . . .  , cs be s distinct real numbers and let (Y(x), Z(x), U(x)) 
denote the collocation polynomials of degree s which satisfy 

(2.4 a) Y(xo) = Yo, Z (Xo) = Zo, U (Xo) = Uo, 

(2.4b) Y'(xo + ci h) =f (Y(xo  + ci h), Z(xo + ci h)) I 

Z ' (x~176176 U(x~ I i=1 ,  . . . ,s.  

0 = g (Y(Xo + ci h)) 

Then the numerical solution is given by 

(2.4c) Yl = Y(xo+h), zl =Z(xo+h), Ux = U(xo+h). 

Remark. The condition U(xo)=Uo in (2.4a) can be omitted if we require U(x) 
to be a polynomial of degree s - 1  only, and U(xo) to be close to Uo, i.e., U(xo) 
-Uo=O(1).  This modification does not alter the polynomials Y(x) and Z(x), 
and will apply throughout  this paper. Consequently the three collocation polyno- 
mials become independent of Uo. 
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In this article we turn our  interest to col locat ion methods  with s > 2  and 
coefficients satisfying the hypotheses 

H I :  c i + 0  for i--  1, . . . , s ;  

H 2 :  cs = 1, i.e., the method  is stiffly accurate. 

It can be noticed that  from H 2  we get g ( y 0 = 0  in (2.4). The  following theorem 
gives the optimal  orders of  convergence for col locat ion methods  satisfying these 
hypotheses,  proving the conjecture stated in [3, p. 86] for such methods:  

Theorem 2.2. Let us consider the differential-algebraic system (2.1) of  index 3 
with consistent initial values and the collocation method (2.4) satisfying s > 2, H 1, 
and H 2. Then, for  x ,  - Xo = n h < Const, the global error satisfies 

(2.5) Yn - -  Y (Xn) = O (h rain (p" 2 5 -  2)), Pz (Xn) (Zn - -  Z (Xn)) = O (h  rain (p" 2 s -  2)), 

z.--  z(x.)= O(hS), u . - u ( x . ) =  O(h ~- 1) 

where P~(x) = (I - k.(grf~ ku)- 1 grf~)(y(x), z(x), u(x)) and p is the order o f  the under- 
lying quadrature formula. I f  in addition the function k o f  (2.1) is linear in u 
then we get 

(2.5') y, - y (x,) = 0 (hP), I'~ (x,) ( z . -  z (x.)) = 0 (hV). 

The proof  will be presented in Sect. 5, and it makes  use of  prel iminary results 
contained in Sects. 3 and 4. 

The  result (2.5) shows that  if in a last step the numerical  solut ion is projected 
onto  the manifold (gyf)(y,  z )=0 ,  the accuracy of the z -component  can be 
improved.  This project ion can be done  as follows: ~. and /~. are the solut ion 
of 

(2.6) ~, = z. + ku (y,, z.,  u,) #,  

0 = (gyf)  (y,, ~.) 

where (y,, z.,  u.) is the numerical  solution of (2.4) at x . .  In this case we get 

(2.7) 
A , , f O  (h p) if k is linear in u, 
z,  - z tx,) = ~10 (h mi"tp' 2 s - 2 ) )  else. 

Fur thermore ,  if we define ~. as the solut ion together  with y.  and ~. of (2.2c), 
we have 

(2.8) a,  - u (x,) = ~ 0  (h e) if k is linear in u, 
~O (h min (p' 2 s- 2)) else. 

The  applicat ion of  the above  results to the Radau  I IA processes leads to: 
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Corol lary  2.3. For the s-stage (s>2) Radau IIA method applied to the index 
3 system (2.1), the global error satisfies 

(2.9) Yn - y(x,) = O (h 2s- 2), 

z,,-- z (x,,) = 0 (hS), 

u .  - u ( x . )  = 0 (h ~ -  1), 

and if k is linear in u we have 

(2.9') y . -  y(x.) = O(h 2~- 1), 
zn-- z(x,) = O(h 2s- 1), 

P~ (x.) (z,, -- z (x.)) = 0 (h 2~- 2), 

~,, - z (x,,) = 0 (h 2~- 2), 

a .  - u ( x . )  = 0 (h 2 s -  2) 

Pz(X.) ( z . -  z(x.)) = O(h zs- '), 

ll.--u(x.)=O(h2S-1). 

Proof The proof is obtained by putting p = 2 s - 1  in (2.5)-(2.5'), (2.7), and 
(2.8). []  

3. Exis tence ,  uniqueness,  and influence o f  perturbations 

In this section, (Yo, z0, Uo) in Definition 2.1 are replaced by approximate h-depen- 
dent starting values (~/, (, v). We will first investigate the existence and uniqueness 
of the collocation polynomials. 

T h e o r e m  3.1. Let us suppose that s>=2, H 1 is satisfied, (2.3) holds in a neighbour- 
hood of (q, ~, v), and that 

(3.1a) g(r/) = O(h~), z>3 ,  

(3.1b) (grf)(q,O=O(h~), re>2, 

(3.1 c) (g,, (f, f )  + g, f ,  f + g, f~ k) (q, (, v) = O (h). 

Then for h < h o the collocation polynomials (Y (x), Z(x), U (x)) of (2.4) with Y (xo) 
=q and Z ( x o ) = (  exist and are locally unique. 

Proof A straightforward extension of [4, Theorems II.7.6 and 11.7.7] to 
index 3 problems shows the equivalence of (2.4) with an s-stage IRK method. 
More precisely, the values Y (xo + c~ h), Z (xo + ci h), and U (xo + c~ h) can be inter- 
preted as the internal stages of a RK method whose coefficients, depending 
on the c~, are defined by the simplifying assumptions B(s) and C(s) (see [3, 
pp. 15-16] or [5, Sect. IV.5]). H1 ensures that the corresponding R K  matrix 
is invertible. By defining Co.'=0, the collocation polynomials are uniquely deter- 
mined by 

(3.2a) 

(3.2b) 

Y(x o + th)= L li(t) Y(xo + ci h)= lo(t) rl + L li(t) Y(xo + ci h) 
i = O  i = 1  

Z(xo + th) = L li(t) Z(xo + ci h)= lo(t) ~ + L li(t) Z(xo + ci h) 
i = 0  i = l  

(3.2 c) U (Xo + t h) -- L Li (t) U (Xo + ci h) 
i = 1  
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where the l~(t) and L~(t) are the Lagrange polynomials of degree s and s - 1  
respectively, given by 

(3.3) 
I t - c ~  \ 

l i ( t ) = : : l o ~ ) ,  Li(t)= [ l  (t--~-~-I �9 
j = 1 \ci -- cfl 

jr j ~ i  

The result is now an immediate consequence of the existence and uniqueness 
of the RK solution stated in [3, Theorem 6.1]. []  

We will study next the influence of perturbations in the initial values on the 
collocation solution. 

Theorem 3.2. In addition to the assumptions of Theorem 3.1, let us suppose that 
H2  holds and that 

(3.4) O=n+O(h3),  ~'= ~ + O(h2). 

Let us consider ( Y (x), Z(x), 0 (x)) the collocation polynomials satisfying ~'(Xo)= 0 
and 2(Xo) = ~. Then we have 

(3.5a) 

(3.5b) 

(3.5c) 

AY(xo + h ) = P r A n + h  f z P z A (  

+O(h IIAnll + h 2 IIP~ A~TI + h  m+2 IIQz A(II + IIQz A(II 2) 

P~ (x0 + h) AZ (x o + h) = Pz A ( 

+ O (llQr Anll + h IIPy Anl[ + h IIP~ A(II + h "+1 

1 A~II2) IIQ~Affll +~llQz 

O" 
Q~(xo+h) AZ(xo+h)= - ~  .SQ, An + O(llAnll +h IIA (tl) 

where a is a constant depending on the coefficients of  the method and is given 
in the proof, m = m i n ( z - 3 ,  x - 2 ,  s - 2 ,  m a x ( p - s - I ,  0)), n = m i n ( z - 3 ,  t c -2 ,  
s - 2 ,  p - s ) .  The projectors Qy, Pr, Qz, and P~ are defined under the hypothesis 
(2.3) by 

(3.6) S.'=ku (gr fz ku) -1 gy, 

O,'=L S, g ,=I-  Q,, Qz'=Sfz, P~,=I- Qz. 

In (3.5) they are evaluated at (n, ~, G(n, 0) with G described in Sect. 2 and the 
arguments of Pz(xo+h) and Q~(xo+h) are (Y(xo+h),  Z(xo+h) ,  G(Y(xo+h),  
Z (x o + h))). 
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Remarks. 1)The notation A indicates a difference between a "non-hat  value" 
with the corresponding "hat value", e.g., in (3.5a) AY(xo+h)=Y(xo+h) 
- ~'(xo+h) and Ar /= r / -~ .  
2) The missing arguments for fz, S, Py, etc., are (q, (, G(q, 0). 
3) TheAconditions (3.4) ensure the local existence and uniqueness of (~'(x), 
Z(x) ,  U(x)). 
4) If g ( f f )=0-g (q )  then Q~(~-~/)=O(II(t)-~/N2). Consequently this term may 
be neglected and the hypothesis t~ = t/+ O(h 3) can be relaxed to ff = q  + O(h2). 
5) If the function k of (2.1) is linear in u, then in (3.5a, b) 
m - - m a x ( p - s - l ,  0), n = p - s ,  and the terms ttQ~A(fl 2 are multiplied by one 
additional factor h. 
6) It can be noticed that m and n satisfy 0 < m_< n < m + i. 
7) The important results consist in the splitting of A ( according to the projections 
P~ and Qz and in the h-exponents in front of tl(2~ A(II in (3.5a, b). 
8) We point out that the constants entering in the O(- )  terms of (3.5) depend 
on those implied by the O(-)  terms of (3.1a, b) and (3.4). Nevertheless this 
will not affect the proof of Theorem 2.2 (see Sect. 5) where Theorem 3.2 will 
be used. 

Proof. A large number of the ideas contained in this proof are expressed in 
the demonstrations of [5, Theorem VI.7.9 and Lemma VI.7.10]. The proof is 
divided into four parts. Our first aim in a) is to show (3.15) with the help 
of the nonlinear variation-of-constants formula [4, Formula (I.14.20)]. In part b) 
we analyse in details the two terms entering in (3.15), leading to (3.22)-(3.23). 
Hence (3.15) can be rewritten as the sum (3.24) of several terms expressed in 
(3.25). Those are then estimated separately in the last part d) with the help 
of some technical results derived in c). 

a) The defect of the collocation polynomials (Y(x), Z(x), U(x)) inserted into 
the differential-algebraic problem (2.1) is defined as follows 

(3.7a) 
(3.7b) 

(3.7c) 

Y' (x) = f ( Y (x), Z (x)) + 6 (x) 

Z '  (x) = k ( r (x), Z (x), U (x)) + S~ (x) 

0 = g ( r ( x ) )  + O(x). 

According to Definition 2.1 6(x), p(x), and O(x) vanish at the points Xo+Cih. 
By differentiating (3.7c) twice with respect to x and by taking (3.7a, b) into 
account, the collocation polynomials and the defect are seen to satisfy for all 
x 

(3.7d) 

(3.7e) 

O=gr(Y)(f(Y, Z)+6)+O' 

O=grr(Y)( f (~ Z)+6,f(Y, Z)+6)+gr(Y)fr(Y, Z ) ( f  (Y, Z)+6) 
+ gr( Y) f~( Y,, Z) (k ( Y, Z, U) + #) + gy( Y) 6' + O". 

Furthermore, these equations can be used in a vicinity of the solution of (2.1) 
for arbitrary (Y,Z, U) and sufficiently small "perturbations".  In view of (2.3) 
U can be extracted from (3.7 e), giving 

(3.8) U = G(yZ,  6, 6', ~, 0") 
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and it extends the definition of G(y, z) in Sect. 2 which simply corresponds to 
G(y, z, 0, 0, 0, 0). Thus, (3.7b) can be rewritten 

(3.7b') Z ' (x)= k(Y(x), Z(x), G(Y(x), Z(x), 6(x), 6'(x), #(x), O"(x)))+p(x) 

forming together with (3.7a) a differential system for Y(x) and Z(x). As it con- 
cerns ($'(x), Z(x), O(x)), by straightforwardly following the above analysis with 
8(x),/~(x), and O(x) defined in the same way as in (3.7), we obtain 

(3.9a) ~"(x)=f(~(x),2(x))+8(x) 
(3.9b) Z'(x) = k(~(x), Z(x), G(~'(x), 2(x), 8(x), 8'(x), f~(x), O"(x)))+ f~(x). 

With the aim of expressing AY(x) and AZ(x), the nonlinear variation-of-con- 
stants formula of Gr6bner-Alekseev [-4, Corollary 1.14.6] can be applied. The 
difference between Y', Z' and Y, Z formally inserted into (3.9) needs to be comput- 
ed. We get 

(3.10) d(x, gZ)=(  ,'] { f(Y'Z)+~ 
\zT-!,k(Y, z, G(Y, z, $(x), 3'(x), 0"(x))) + p(x) 

= q~(x, Y,Z, 1 ) -  4~(x, Y, Z,O) 

where, leaving out the x-argument in the "perturbations", 

(3.11) ~(x, Y,Z, 3)=//6 +(~ - 1) A6,1t\ 
\ # +  ( 3 -  1) A/~] 

[ 0 
+ ~k(Y, Z, G(Y,Z, 6 + (z - 1) A6, 6 '+  (~ - 1) A6',/~ + ( 3 -  1)A#, 0" + ( 3 -  1)A 0"))]" 

With the shortened notation r 3)=q~(x, Y(x), Z(x), 3), the formula 4~(x, 1) 
1 

-~(x, 0)= ~ O~/03(x, 3)dz permits us to express the defect d(x, Y, Z) as 
0 

(3.12) 

We only give the expressions of Q2 and Q4 

(3.13 a) Q2(x, Y,Z)= i ku(Y, Z, G(...)) ~6, (...) d3 
0 

(3.13b) Q4(x, Y,z)= I k,(l~Z, G(...)) ~077 (...) d, 
0 
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where the missing arguments (...) are identical to those of G in (3.11). A simple 
differentiation of (3.7e) with respect to 6' and 0" shows that 

gG BU dG dU 
(3.14) t?6 ' - t?6 ' -  (grf~k~)-~gY' ~0"-~30"-  (grfzk")-~' 

hence we have 

1 

(3.13a') QE(X, Y,Z)= --S(ku(grf=ku)-'gr)(Y,Z,G(...))dz 
o 

----- Q4(X, Y,Z) gr(e) 
1 

(3.13 b') Q4(x, Y,Z)= - S (ku(gyfz k,)- 1)(Y,Z, G(...))dz. 
o 

The application of [4, Formula (I.14.20)] leads to 

(3.15) R(x, t, Y(t), Z(t)) d(t, Y(t), Z(t)) dt AZ(x)/ 

+ ~ R ( x ' x ~  A( 
0 

where the resolvent R is given by 

(3.16) R(x, t, y, z)= ~(Y, 2),  c~ (y, z) tx, t, y, z) 

and (Y,, 2)(x, t, y, z) denotes the solution at x of (3.9) passing through (y, z) at 
t. R satisfies R(s, s, y, z)= I and is the solution of the variational equation asso- 
ciated with the system (3.9). In the sequel we will use the abbreviations 

(3.17) R(x, t )= R(x, t, Y(t), Z(t)), d(t)=d(t, Y(t), Z(t)), 
Q,(t)=Qi(t, Y(t), Z(t)). 

b) Let us now consider the first integral in (3.15). By the use of (3.12) we 
get, after some integrations by parts, 

(3.18) f R(x, t) d(t) dt = ~ S~ (x, t) A6(t) 4- S2(x, t) A6'(t) 
XO XO 

4- S 3 ( X  , t) A#(t)+ S4(x, t) A0"(t) dt 

~- S2(x , t) A 6 ( t ) -  ~ t4  (x, t) A0(t) 

AO'(t) 7=xo i + S4(x, t) + a(x, t) d t 
XO 
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where we have defined 

(3.19) 

415 

t I S 1 (x, t)--R(x, )(QI (t))' S2(x, t)=R(x, t)(QO(t)), 

0 
S3(X , t)=R(x, t)( l+ Q3 (t)), S4(x, t)=R(x, t)(QO(t)) , 

Ap(t) + ~ f - ( x ,  ) - ~ - (  , +S3(x,t ) t)AO(t). 

An expression entering in (3.18) is 

0S4 X 
(3.20) ~ ( , t)= ~ t  (x, t) (Q~ R(x, t) (Q~(t)), 

therefore OR/Ot(x, t) remains to be computed. By using well-known properties 
of the resolvent, we arrive at 

(3.21) 

OR x t "" / fy(Y(t), Z(t)) f~(Y(t), Z(t)) \ 

OR + ~ (x, t, Y(t), Z(t)) (d(t, Y(t), Z(t))," ) 

where H(t):=G(Y(t), Z(t), 3(0, 3'(0,/~(t), 0"(t)) and we point out that OR/O(y, z) 
is a bilinear application. Now, we put x :=x o + h in (3.15). The assumption cs= 1 
implies that 6(x), 3(x), 0(x), and O(x) vanish at this point. By replacing O'(xo) 
and O'(Xo) with the help of (3.7d) and by using the relation S2(x,t) 
= S4(x, t)gy(Y(t)) which is a consequence of (3.13'), we deduce 

(3.22) 
xo+h 

R (xo + h, t) d(t) d t = S4(x o + h, Xo) ((Agr(q))./~(Xo) + A(grf)(q, ()) 
XO 

OS4 xo + h 
~tt (x~176176176176 ~ a(x~ 

XO 

Because of OR/O(y, z)(xo+h, Xo,y,z)= O(h), the second integral in (3.15) can be 
estimated by 

(3.23) R (Xo + h, Xo) A ( + O (h II A r/II 2 + h II A (ll 2). 

By collecting the previous results and rearranging the terms, we obtain 

(AY(x~ +hiLAr (3.24) \AZ (Xo + 



416 

where 

(3.25) 
o 

(1) = R (x o + h, Xo) [ \A( ]  \Q4(xo)((Agy(,))./~(Xo) + A(gyf)(r/, ())) 

+ { fztq, ~) Qa(xo) Ag(q)], 

\(k~+k.~z)(rl,~,H(xo))Q,*(Xo)-Q4(xo t 
d 

0 
(2) : -- (3(y, z ~  (x~ + h, x 0 , r/, 

(3)= Q4(xo+h) O'(xo+h' (4)= ~ a(xo+h,t)dt. 
Xo 

L. Jay 

In order to estimate each of these terms, some intermediate results will be 
required. 

c) First of all, by expanding the resolvent R(xo + h, Xo) at Xo, we obtain 

. - . / fy(q,O f~(q,O \+O(h z) 
ky+ku (...) kz+ku (... 

with (...)=(r;, ~, H(xo) ). Secondly, by differentiating k times the difference of 
the two collocation polynomials, written in the form (3.2), we arrive at 

(3.27a) hkAytk)(xo+th)=l~)(t)Arl+ ~ l~k)(t)AY(xo+cih), k = 0  . . . .  ,s, 
i = 1  

(3.27b) hkAZtk)(xo+th)=Itok)(t)A(+ ~ l~k)(t)AZ(xo+clh), k = 0  . . . .  ,s, 
i = 1  

(3.27c) hkAU'k)(xo+th)= ~ I3k'(t)AU(xo+cih), k=O . . . . .  s - l ,  
i = l  

and the higher derivatives vanish identically. The proof  of [-3, Theorem 6.4] 
related to RK methods may be adapted in our situation, leading to 

(3.28 a) 

(3.28b) 

(3.28c) 

AY(xo +ci h) =Py Av/+ci hf~ P~ A ( + O ( h  I[A t/I[ + h  2 ][A(II) 

AZ(xo+c, h)-:P~A(+O (1 'lQy aql '  + t'Pr Ar/I, + h ,IAf,,) 

AU(xo +c,  h)= O 1 IlQy AnTI II + ~  I1Pr Ar/tl + ~  tlO~ A(fl + IIP~ A(II �9 
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By using ~ li(t)= 1 and i li(t)ci=t, these relations inserted into (3.27) yield 
i=O i=0  

for x in an O(h)-neighbourhood of Xo, 

(3.29a) 

(3.29b) 

(3.29c) 

hkaytk)(x) =O (IIQr At/It +h i -,o~ ilpr At/If +h 2 ItQz A~tl +h 2-s'~ IIP~ A(II) 

hkAztk'(x)=O( 1 "Qy Ar/ll + IlP~ar/tl + 'IQ= A(II +hX-S~ A(II) 

hkAUt~'(x)=O(~--g IIQ, Artll + 1  IIP~ Ar/ll + 1  fIG A~II + IIP~ A~II) 

where Sjk= 1 if j > k  else S~k=O. Since A6(x)=AY'(x)--Af(Y(x) ,  Z(x)), A#(x) 
= AZ' (x)-- A k (Y(x), Z (x), U (x)), and A 0(x) = - A g (Y(x)), we have 

(3.30) A~(~)--O(h lIQ, A.ll + liP, A.ll + iIQ= Ar + ll~ A:il) 

A.(x)= o ( ~  i,~. A.,, +~ ,,~ A.i, +�88 ,,~= a:i, + i, ez A~,,) 

A0..(x): o ( ~  ,,~. A~,, +~ ,t~ A~,, +,l~z A:,, + ,i~ A:l,) 

Thirdly, we define (~/, ~', ~ as consistent values close to (r/, if, v) uniquely deter- 
mined by the equations (2.2), Py(r/-0) = 0  and P~(~-~')=0. The hypothesis (3.1a, 

r mm(r x) b) shows that Qy(rl-71)=O(h ) and Qz(~-~)=O(h " ' ). As in (3.7), we denote 
by a-(x), Ft(x), and ~7(x) the defects of the collocation polynomials passing through 
(if, ~', v'). These defects vanish at the collocation points Xo+Ci h, therefore we 
have a'(x)= O(hS), a-'(x) = O(h ~- i), ~(x)= O(h~), and g(x)= O(h ~+ 1), ~7'(x)= O(hS), 
~"(x)=O(h ~-~) by also taking into account the consistency of O, i.e., 0Ix0)= 
- g ( 0 ) = 0 .  These estimates and the application of (3.30) to r / - 0  and ~ - ~  lead 
to 

(3.31) (X) = (~ (X) - -  3(X))  + a-(X) = O (h min (* - 1  . . . .  )), 

~ ' (X)  = O ( h  mint*-  2,~r - 1 , s -  1)), 

]A(X)_~_O(hmin(r-2,~-l,s)), O,,(x)=O(hmin(r-2 . . . .  -1) ) .  

d) With these preparations we are now able to treat each term of (3.25). 
From (3.30) and (3.31) we deduce that 

(3.32) O_4(xo) g,f=Qza~= - o = a ~  
+ O (lIQr Ar/N + h liP r Ar/I I + h  min~*- 3,~- 2,s- 2)+, iIQz Ar 

+ I N G  A~l12+h2 HP~ A~,I) 
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and 

(3.33a) 

(3.33b) 

Q~ (Xo + h) Q4 (Xo + h) = - ku(gyf~ k~)- l(t/, ~, G (/I, ~)) -1- O (h) 

L. Jay 

P~(xo + h) Q4(xo + h) = O(h rnin(r- 2. r - 1, s -  1)) 

+O(hl_fllQyA~)l + l l l g A t / i  ] 1 A(II). +~tlQzA(II + IIP~ 

By collecting the results (3.26) and (3.32), we get 

(3.34) 
(1) =(PY At/+ P~A( h fz P~ A q  ] 

+[O(h tIA t/I] + hmin(r- a'K-2's- 2)+ 2t1 Qz A(tl + I tQz  A~tl 2+ hE tlPz A (I[)\ 

[ ~0 (]tAt/t] +h  min(~- 3,x- 2's- 2)+ 1 I IQz  A~[I +~-t[Qz A~[I2 + h ItPz A ~[I)/" | 

Because of d(xo, t/, 0 = O(h) we have the rough estimate (2)= O (h ]]A t/]t). By set- 

ting a :=  ~ / ~ ) ( 1 ) =  l tl)'tx 
- -  o ~J, a consequence of 

i=1 

a 
(3.35) AY'(xo+h)= -~QyAt/+f~P~A(+O(][At/[f+hJlA(t[) 

and A0'(x) = - A [gy(Y(x)) Y'(x)] is 

(3.36) A0'(Xo a + h)=~- gy Qy At /+ O([IA t/[I + h [IA(I[). 

Combined with (3.33) we obtain the following decomposit ion for Q4(xo 
+ h) A O' (x o + h) entering in (3) 

a 
(3.37 a) Q~(xo + h) Q4(xo +h)  A 0'(Xo + h)= - ~ SQy At/+ O(t[At/+ h IIA (II) 

(3.37b) 
P~ (Xo + h) Q4 (Xo + h) A 0' (x o + h) 

= O(llOy At/It + h  fIP r At/{I-{--h min('r-3'K- 2,s- 2)+ 2 [tQ, A~][ + t]Q~ A ( H  2 + h2 I[Pz A(tl). 

As in the proof  of [5, Theorem VI.7.9], a(xo+h, t) in (4) can be integrated 
c s yielding by the use of the quadrature formula {bi, i}i= 1, 

(3.38) (4) ----- ~ b i a ( x  0 + h, Xo + cl h) + err(a). 
i= ! ,e 

=0 
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The quadrature error is estimated by 

(3.39) er r (a )=O(  hp+l" maxt~txo,xo+hl ~ ' P a ( x ~  ) 

From (3.29) it follows that 

(3.40) 

(4)= O(h p-~ ][Qy At/II + h p-s+1 liPy A~/lt + h p-s+ 1 IlQz A~[t q-h r-s+2 [IPz A([I). 

Insertion of the expressions (1), (2), (3.37a, b), and (4) into (3.24) gives the desired 
result, except that if p = s, the term O (II Qy A q tl + h II Q~ A ~ II) in A Y(Xo + h) coming 
from (4) has to be neglected in view of (3.28a) for i=s,  and the term PyAq 
entering in P~(Xo + h)AZ(x o + h)is O(h It Pr A q fl), because of 

(3.41) P~(xo+c,h) AZ(xo +c ,h )=P~A(  +O(lIQyArlll +hllPyAqll +hllA(ll) 

which can be proven in the same way as (3.28). [ ]  

4. The local error 

We consider one step of a collocation method (2.4) with consistent initial values 
(Yo, Zo, Uo). The local error 

(4.1) 6 yh(xo)= yx -- y(xo + h), 6 zn(xo)= Zl -- Z(Xo + h ), 6uh(xo)=Ul -- U(Xo + h) 

can be estimated as follows: 

Theorem 4.1. Let us assume that s > 2 and that H 1 holds. Then we get 

(4.2) (~yh(xo)=O(hS+l), Py(xo+h) t~yh(xo)=O(hmin(p's+l)+l), 

6zh(Xo)=O(h~), P~(xo+h)6Zh(Xo)=O(h~+l), 

6 Uh (Xo) = 0 (h ~- 1) 

where p is the order of the underlying quadrature formula. Pr(x), Pz(x) are the 
projectors (3.6) evaluated at the exact solution of  (2.1) at x. I f  in addition H 2  
is satisfied, we have 

(4.3) r Pz(xo+h) 6zh(Xo)~-O(hmin(p'2s-2)+l). 

Remark. If the function k of (2.1) is linear in u, then instead of (4.3) we get 

(4.3') Pz(xo + h) 6 Zh(Xo) = O(h p + 1). 

Proof. The interpretation of the collocation solution in terms of one correspond- 
ing IRK method (see Theorem 3.1 for more details) allows us to apply I-3, Lem- 
ma 6.3] which leads to (4.2). 

The results (4.3) can be found quite easily with the same techniques used 
in the proof  of Theorem 3.2. Instead of computing the difference between two 
collocation polynomials with distinct initial values, we must estimate the differ- 
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ence between a collocation polynomial and the exact solution of (2.1), here 
with identical initial values. The exact solution has no defect (see (3.7)). The 
defect of the collocation polynomials vanishes at the collocation points Xo + c~ h, 
therefore for x~ [Xo, Xo + hi we have 6(x) = O(hS), 6'(x) = O(h ~- 1), /x(x)= O(h~), 
and O(x)=O(h~+l), O'(x)=O(h~), O"(x)=O(h ~-~) by consistency of the initial 
value Yo, i.e., 0 ( X o ) = - g ( y 0 ) = 0 .  It can be easily shown that the derivatives 
of the collocation polynomials are uniformly bounded (see [5, Theorem VI.7.8] 
for an equivalent result concerning index 2 systems). With similar formulas to 
(3.15) and (3.22) we finally arrive at 

(4.4) (y(xo + h ) -  Y(xo + h)] xo+h 
\ z  (x o + h)-- Z (x o + h)] = S cr (x o + h, t) d t - S 4 (Xo + h, Xo + h) O' (x o + h) 

XO 

= O ( h P + ' ) + [  1 0 0)  
\ o  ~ k . (g r f  ~ k . ) - ' ( y ,  z, G(y, z, r6, r&', r/z, tO")) dr .  

where y, z, 6, 6', #, 0", and O' are evaluated at x o + h in the last expression. []  

5. Proof of Theorem 2.2 

We only outline the main points. 
Following the proof given in [3, Theorem 6.4], we denote two neighbouring 

collocation solutions by {jT.,~.}, {j~,,~,} and their difference by A y . = y .  
--j?,, A z , = ~ . - ~ , .  In a first step it can be shown that (see [3, Theorem 6.4] 
or apply the second step with m = n = 0) 

(5.1) llAy, l l < C l h  s+l , I IAz . l l<Czh s+l. 

Therefore global convergence of order s for the y- and z-component occurs. 
We thus get 

(5.2) I1(grf) (37,, ~.)Jl < C3 h s, It(grf) (P,, e,)lt < C3 hE 

We insist on the fact that the constants C1, C2, and C3 can be chosen indepen- 
dently of n if h is sufficiently small. 

Secondly, because of g(~,)=0=g(jT,)  the fourth remark after Theorem 3.2 
holds, implying that 

(5.3 a) (Oy), Ay, = O(ttAy, II 2) = O(hS+ ~ It(g), Ay, II), 

though this is not essential for the present demonstration. With the above results, 
Theorem 3.2 can be applied, yielding 

(5.3b) (Pr),+ ~ Ay.+a = ( g ) . A y , + h ( g ) . ( f z ) , A z ,  

+O(h  I[(Pr) . Ay.lt q -h2 It(Pz)n Azntl-t -hm+2 t](az). Az.ll + lt(Qz). Az, t] 2) 

(5.3c) h(P~).+ i Az.+ 1 = h(P~), Az, 

+ O (h 2 II (Py), A y, tl + h2 l[ (P~). A z. l[ + h" + 2 [1 (Q~). A z. II + II (Q~). A z, tl 2) 

(5.3 d) h(O~),+ x Az.+~ = O(h ti(Pr) . Ay, II + h  2 ]lAz.tl) 
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where m = m i n ( s - 2 ,  m a x ( p - s - 1 , 0 ) ) ,  n = m i n ( s - 2 ,  p-s )  and (Py)., (Qr)., (f~)., 
(Pz),, (Q~), are evaluated at (33,, ~,, fi*). Here ~*..=G(33., ~,), with G as defined 
in Sect. 2. This choice of  a* does not  influence the values (33., ~.) (see the remark  
after Definition 2.1) and simplifies the proof. Hence the estimates (5.3) lead to 

(5.4a) ItAy, lI<C(lt(Py)oAyo]l+lI(P~)oAzoll+h"+'lt(Qz)oAzoll) 
(5.4b) hll(~),Az, lI<f(hlI(Pr)oAyoll+hll(P~)oAZoIl+h"+2lt(Q~)oAZo[I) 

(5.4c) h II(Qz), Az,  ll < C(h tl(g)0 AyoII + h II(P~)0 Azolt + h z lt(Qz)o Azotl). 

If  the function k of  (2.1) is linear in u then the fifth remark after Theorem 3.2 
and the remark after Theorem 4.1 hold. The final convergence result follows 
now from s tandard  techniques (see [3, Fig. 4.1] or  [4, Fig. 11.3.2]). [ ]  
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