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1. Introduction

For the resolution of stiff and nonstiff differential equations.
extrapolation methods are often used. in particular if a high
precision of the selution is required. A serious drawback of these
methods is that they are usnally not equipped with a dense output
formula. In [7). [8} HaiRER and OSTERMANN have provided some
extrapolation methods with dense output formulas: the GBS
(Gragg-Bulirsch-Stoer)-algorithm, the explicit, implicit and semi-
implicit Euler methods.

The aim of this paper is to discuss the theoretical and algorithmic
éxistence of dense output formulas for the extrapolation method
based on the semi-implicit midpoint rule due to BADER and
DeurFLHARD [1]. Some of the ideas of [7]. [8] can be easily adapted
to our situation. However, for siff differential equations some
modifications have to be achieved. and the proofs are completely
different due to the fact that the remainder of an asymplotic
expansion is not bounded independently of the stiffness.

After the presentation of the method (Section 2), we introduce
in Section 3 an algorithm for the construction of a dense output
formula, adapted to stiff problems. Next we give some theoretical
results in relation with Rosenbrock-type methods (Section 4). In
Section 5 we study the application of the algorithm to differential-
algebraic systems of index 1 as a limit case of very stiff differential
equations. Finally we consider some aspects of the implementation
{Section 6).

2. The semi-implicit midpoint rule

We consider the system of differential equations

¥=710), ylxo=ro- 2.1)
The application of the semi-impliciz midpoint rule reads [1], [9, p. 146]:
(I — k) (y: — yo) = hf o), (2.22)
(= BNy — 3= —U + B = yic 1) + 20103,

i=1..n, (22t
Salxy + H) = i-% 220

where J is an arbitrary matrix of the same dimension as the system
(2.1), H is the basic stepsize, and k== H/n with n even. The value
$,(x¢ + H)is simply the result of one semi-implicit Euler step (2.2a),
followed by n steps of the linearly implicit midpoint rule (2.2b), and
by a smoothing step(2.2c). We choose ar increasing sequence {#;} ;2
of even integers, put h; == H/n;, and define

Y, = 8,,(x0 + H). (2.3

The error S,(xq + H} — y(xo + H}has an asymptotic i*-expansion
[11. [9, Section TV.9, Theorem 9.1}, thus these values can be extra-
polated with formulas (14, Section 7.2.14]

Y= Yiosa

(”jf"j—k)z -1

Yj.h; = }Su. + (2.4)

Each extrapolation eliminates one power of #* [6, Sections 11.8 and
11.9], so that

O(H™ if J+0,

mwu%+m={

3. Construction of dense output formulas

Assume that the value y, = Y, has been accepted as an approxi-
mation to the solution at x4, + H. To obtain a continuous solution
we construct an Hermite interpolation polynomial by means of ap-
proximations 10 y{xo), ¥(xg + H), ¥'(xg + H). y*™(xo + H:2), for
. = 0, ..., u. With y,{x) denoting the numerical solution y; of (2.2) at
x = xq + ih, the error y,{x) — y(x} has a different asvmptotic
expansion for i even or odd. For this reason, in the algorithm below,
the indices involved in building up divided differences and their
extrapolated values are required to be of the same parity. This
impiies that the indices 12 have to be either all even or all odd
and therefore

Roy—m;=0mod@) for j=1L2... (3.1)

4

In the implementation we have chosen the sequence (see {1} [2] for’

other reasons)

(s, = (2.6.10.14,22. 34, 50.70,98. ...} 3.2)

fjz21

which satisfies (3.1). A dense output can be constructed as [ollows.

Algorithm 1

Step I: Foreach je {1, ..., »), we compute approximations to the
derivatives of y{(x} at the midpoint x = x, + H/2 and to the first
derivative at the endpoint x = xo + H:

A0 = g5 k) for k=0,...,2j—1, (3.3a)
0 = SR, (3.3b)

where 17 .= yi?, 34 is the approximation to y(x;) obtained during
the computation of ¥, and &y;:= y;,; — y:-, denotes the cen-
tral difference operator (8%y,:= y;). We mention that no sup-
plementary function evaluation is necessary and we insist on the
fact that the values f(y™") are not used, in contrast to the algorithm
given in [7]. This is important for stiff problems.

Step 2: We extrapolate d¥'"V (x — ) times, 47" (x — 1 — 1)
times and r*! (x — 1) times. This yields 4*' and r'*!,

Step 3; For given p, —1 £ p. = 2x — 1, we define the vector-
valued polynomial P,(8) of degree 4 + 3 by

Pi0)=yo, PAl=y,, P,):=Hr", (34a,b,¢)
PM(1/2) = H™ for k=0,...,4. (3.4d)

Remark: The above definition of P,(6) does not use the first
derivative at the lefi-hand side. If one is interested in a solution
which is globally C', one can add the condition P;,(0) = HI''!, where
I is the value of r*’ of the previous step. For stiff problems it is
not recommended to take I''' = f{},) because the large eigenvalues
of the Jacobian of f would amplifly errors in y,.

“Theorem 3.1: If the step number sequence {n;};», satisfies (3.1}
then the error of P,(8) verifies for 8 €[0, 1]

P,(0) — ylxo + 6H) = O(H™) for p2 2t~ 4. (3.5

Proof: To Jollow the proof for the GBS-algorithm as given in
[8. Theorem 8], the error of y; must possess an asymptotic expansion
in h* with coefficients depending on the parity of the index i
Concerning the even indices, this result is contained in [9. Section
1V.9, Theorem 9.1, Formula (9.20})

X

lx) — px) = ¥ adx) ¥ 4+ 2400 h) {3.6)
=1

and we also have aj(x;) = 0 For the odd indices we easily obtain

a stmilar result, with different coefficients by{x} and B(x, f1. but

generally b;{x,} < 0 [10, Lemma 4.2].




326 ZAMM - Z. angew. Math. Mech. 73 (1993} 11

Since P,(8) is a polynomial of degree u + 3, the error due to the
interpolation is of size O(H***), which explains the restriction on
in {3.3). The divided differences (3.3) use only even or odd indices i
of ¥. from which it can be seen that the errors of ¢ and i have
an hi-expansion.

dF = yM(xg + H:2) + hid, W(xy + Hf2)

+ hidy (g + HI2Y + ., (3.7a)
i =y + H) + hirgtxe + HY + hiry(xg + HY + ... (3.7b)
Thus the extrapolated values satisfy
OH™Y if kodd
kg glky ik ) = ?
Hid ¥itxo + Hi2) {O(Hz"} if keven, (38a)
Hirf — yUx, + HY) = O(H Y. (3.8b)

Numerical example

We have provided the code SODEX of [9} with the above dense
output. In Fig. | we present the application of this code to the
nonstiff Van der Pol equation

)= (amstn-sn) G-
¥ L=y~ )’ 2(0) o/’

with Algorithm 1 using TOL = 1077 (the tolerance), yr = 2x — 3,
and the control of the error of each derivative and of the error due
to interpolation (see Section 6). We have plotted the continuous
solution and its global error together with each final step-point for
0<x< 10

(3.9)

-1

2L

157

107

10"

0 5 19

+, Fig. 1. Solution and etror of (3.9)

4. Connection with Roseabrock-type methods

The main application of the extrapolation method based on
(2.2) is the solution of stiff differential equations. Unfortunately, the
numerical solution of the semi-implicit midpoint rule (2.2) does not
have an asymptotic expansion with smooth coefficients and a
remainder which is bounded independently of the stiffness of the
problem. In order to get convergence results for the above dense
output we consider the entries of the extrapolation method as a
Rosenbrock-type method (also named W-method, semi-implicit
method or linearly implicit method),

Rosenbrock-type methods applied to (2.1) are defined by [9,
Section IV.7]:

-1 -1
=yl k= f(.Vo + H Z g‘ijk_;) + HJ E Yik;,
i=1 =1

i=1,..,s, (4.1a)

yi=Vo+ H Y bk, (4.1b)
E=1

where the coefficients «;;, y;; and b, characterize the method, H and
Jare as in {2.2). If J = f'(y,) we obtain Rosenbrock methods.
Every element Y given by (2.3) and (2.4) is a linear combination
of ;44 1v..., Vi and can be interpreted as numerical solution of
a method of type (4.1). The coefficients corresponding to Y.,

depending on 1 = n, are [3. Section 5]:

I/m if j=1 and i even,

=92 if T<j<i and {—j odd, 4.2z}
0 else ;

M=yt i j=t er j=i, 1h

i = {2{—1)"-{fn fl<j<i: 4.25)
I/n if “j=1andiodd™ or i=j,

By={2m i l<j<i and i—j even, {4.2c)
0 else ;
I/n if i=1 or i=n+1,

bi=4{2m if 1<i<n+1 and i odd, (4.2d)
0 else .

Here we have included the expressions for Bi; =7y + ;. which are
usually used in the presentation of the order conditions for the
method (4.1) with J = f"(yo). The formulas (4.2} can easily be
obtained from (2.2) by putting

ky={ — ylfh.
kivi=ie1 = Vi 2R),

A general expression of a continuous solution for our method
written in the form (4.1) is
atl

Wil =ye + H X bif,m)k, for 06=1,
i=1

(4.3a)
(4.3b)

i=1,...,n.

{44)

where (0, n) are polynomials in & such that 5,0, n) = 0, b,(1, 1)
= b, The values Y,(6) obtained by {4.4) and the recursion (2.4) are
said to have order p if

Ya(®) — y{xo + 8H) = O(H**Y) for 0261, (4.5)

Necessary and sufficient conditions on b,(f, n) to obtain the same
order as at the final value ¥, (1} = ¥, in formula (2.5) have been
derived in [10, Theorem 3.1} These conditions are identical to those
for the GBS-algorithm [8, Section 5), excepted the supplementary
assumption by (f,n) = b, (8)/n for k Z 2, so that the remarks in the
aforementioned article apply. We omit the proof which is long and
technical The main idea is the application of “simplifying
assumptions”. Details are given in [10, Chapter 3.

We are now interested in studying the error of the dense output
formula for singulacly perturbed problems

Vo=, ¥ =y, }

ez’ =gy, z), z(xg) = 2.

It seems to be very difficult to obtain detailed knowledge of the
errors yu(x) — yix) and z,(x) — z{x) which enter in the analysis of
the error estimation for the finite differences (3.3), We therefore only
analyse the limit case ¢ = 0 in the next section, which already gives
much insight into the numerical behaviour of the method, but we
mention that in practice the method is not well-suited for the
resolution of differential-algebraic systems.

(4.6)

5. Dense output -
for differential-algebraic equations

We consider the differential-algebraic system
¥ =fn1,
0= g (_V. z),

and we make the assumption that the initial values arc consistent
(g(re. zo) = 0) and that g, is invertible in the neighbourhood of the
solution {index 1). The application of our method {2.2) to {5.1} can
be achieved by first applying it to (4.6) with

(4 2
E 8 & '8:

the Jacobian of the system (4.6) where all partial derivatives are
evaluated at the initial value (y,, zo), and then by taking the limit

y(xp) = yo .

5.1
2(xo) = 2o, G

5.2)
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& — 0. It leads to

I—hf, —hf:) (y, - yo) (f(yo, 20)
53

( —hg, ~hg./\z— % g(¥os o) (5.32)
(1 — hf, —h;;) (; - ‘)

—hg, —hg J\&e—

B (1 + kY, hf:)( P— v 1) 2 (f(.v.-,z,-})

hg, hg J\zi — 7oy g{vi, zi)

i=1,...,n, (5.3b)

i IR A /TSI 5
Sl¥o + H) = — (Zm N z,,_;)' (5.3¢)

We extrapolate the values 5, (xo + H) = [¥};, Z;,]" with {2.4) and

we obtain
= O(Her + 1) ,
OH»),

Ya — ylxo + H}
Zy — z(xg + H) =

where ry, (resp. sy) is the 4i ﬂerennai-a!gebrmc order of the y-com-
ponent (resp z). The global error in the two components is of
size O(H®*) where p; = min (7, 5x)

For the convenience of the reader the resuits are only presented
here with some indications for their proof. We do not present all
the details.

Theorem 5.1 ({4]}: For the siandard sequence (3.2} the dif-
ferential-algebraic orders are given in the jollowing Tables 1, 11
and I (* indicates an unknown order between 5 and 7):

(34)

Table1. Orders ry, Table il Orders sy, Table11. Orders py.

Qutline of the proof: We consider the scheme (5.3) as a
Rosenbrock method whose coefficients are given by (4.2) and we
verify the order conditions derived in [12] and [13} For thlS

purpose we need to calculate the matrix W= (wy}:== 74 = ()"
As P is triangular we easily find
Wy = n*(— 1)(;’-;),'2 ﬂij
a(—10-#  jf “i=1landiodd” or i=j,
= {(~1F" P2 if 1 <j<i and i—j even, (55)
0 else. 0

For a dense output (abbrewated d.c.) we define the dxfferenual-
algebraic orders r§™, s&* and p§® sumlarly as in (5.4). p&° as high
as possible is desirable and theoretically pi> = [(py + 1)/2} is at
least attainable {11, Theorem 4], where the function {'] denotes “the
integer part of™.

Theorem 5.2: Defining the dense ouwrput with Algorithm 1, we
obtain for the sequence (3.2) the following differential-algebraic orders:

Table IV, Orders 15®. Table V. Orders s5°. Table V1. Orders p3*

Remark: In contrast to the semi-implicit Euler method (see [5]),
the numerical solution of the semi-implicit midpoint rule (5.3) does
not have a perturbed asymptotic expansion, therefore the proof in
[8] can not be extended.

Qutline of the proof: Because of

e = min [ min ([ + order (Y @(1)),
1=0,1

1=0,....¢

min { + order(yj-i‘(l,'z)))} . (5.6a)

s%° = min [ min (I + order (Z§(1N),
1=0.1

min {! + order (Z' (5.6b)

1=0.....p

j-i'u;‘zm] )

it remains to find the orders of the approximations:

— YW/ of ¥O(xg + H2L Tor =0, ..u;
— Z‘”(] 2y of x4+ H2), for =0, p;
YR of ¥MVixg + HY;
23 of 2%xe + H),

For a cqnn‘nuous solution {Y{8), Z(@)" the conditions to obiain a
differential-aigebraic oder r (resp. s} for the y-component (resp. ) are

(r}

&
Y bi(B) i1y = —,
i ¥}

for all 1 e DAT,, o(t) £ r, {resp for all ¢ DAT,, p(t) £ s — 1) (see
[113,[123,{13] {9 Sectiop V1.3] for the definitions of the DAT-trees ¢
and the related quantities &,{1), o{t} and 7{r)). As mentioned in [9,
Section V1.3, Lemma 3.9], for Rosenbrock methods only a subset of
the DAT-trees has to be considered. For [Y(8), Z9(0)]", ! 2 0. the
otrder conditions become

(5.7

-7
[2 b(8) @, (r)] (3:([) ) (5.82)
or equivalently
3 606 840
n-1 i
_ e -1+ —0 0 002, (5.8b)
0 else .

Instead of directly verifying the order conditions (5.7) for
[Y(3), J,‘(9)]T with polynomials b, ;,(6), we can simply compute the
correspondmg coeflicients b, (1/2} for { = 0, ..., 4, and b’} (1) for
1 = 0,1, then substitute the values 1/2 and 1 respecnvcly for @ in
(5.8), and finally extrapolate the left side of (5.8b) according to (2.4).
We have

bi.jl(ll"z) = By 4160

and we do niot need to verify the order conditions for the derivatives
of the }-th order with [ Z 1, because their contribution in (5.6) can-
not decrease the differential-algebraic orders computed only with
the remaining 0-th order derivatives.

Compared to Table ITI we observe in Table VI a loss of accuracy
and it is interesting to investigate whether a modilication of the
dense output of Section 3 can improve the behaviour. Several
numerical tests have led to the following

(5.9)

Algorithm 2

The modifications with respect to Algorithm | (Section 3} are as
follows: in step 1 we use

GUr . —

‘!*] + .)
Yi e —

2

{5.10)
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and we consider formula (3.3a)only for k=0, ..., 2 — 2. In step
2 we extrapolate """ (x — I — 1) times. The restriction on g in
step3is(—1 £ p £ 2 — 2)andifx = 2werestrict g in{—1,0}.

Theorem 5.3; For the sequence (3.2) and with Algorithm 2 the
differeniial-algebraic orders of the dense outpur are given br

1
i
1
1 4
1 4

4
4 4

MR T FV R VYR ¥V
R S S -

R I N I (S i A
R VE I PV DU #9)
ML N N -

T bk mek e
RIS VN [ U5 i 5% S )
L N S

4
4 4 4
Table V1. Orders r%™. Table V111, Orders 5. Table IX. Orders p3°.

Qutline of the proof: Instead of the result of Theorem 3.1, we
get for Algorithm 2 apphied to nonstiff problems and for » = 3

PO — vixg + OH) = O(H™™ Y}y for puz2x-35, (5.113
due to the fact that
HYA™ — W (xg + H2) = O(H*™™Y if k odd. {5.12)

Now we can follow the proof of the previous Theerem 5.2 with
ceefficients

by (172} = wa"*"““; Thidd (5.13a)
Apen P— Xy

b:“ 1!,2 - rpl+ 3.0 nyl2 1.11 513b

v .}l( ) 4/1!1- ( )
1 if i=n+1,

wm={ Ll (5.13¢)
0 else. 0

Numerical example: We have applied the code SODEX to
the pendulum problem in index 1 formulation

¥ ¥3 ¥1(0) 1
¥ Ya ¥2(0) 0
¥a| = —Fi¥s : @ =101, (514
¥ —¥ays — 1 ¥4(0} 0
¥s Wi+ yi—¥1—¥s ys(0) 0

with Algorithm 2 using TOL = 1077, ¢ = 2»— 4, and the control
of the error of each derivative and of the error due to interpolation
{see Section 6). Fig. 2 shows the solution and the global errors of
the components y,, y; and y; for 0 £ x £ 10

al
8
19
¢

-1

107

107

107" L

Fig. 2. Solutien and errar of (5.14)

6. Implementation

The code SODEX. based on the semi-implicit midpoint rule
(2.2) and on the extrapolation formula (2.4). is written for problems
of the form

My = flx.1). (6.1}

Vixol = Vg.

where M is a constant square matrix, which may be singular. The
implementation of the dense output is similar to the one described
in [7] for the GBS-algorithm. The vector-valued polynomial P (@),
defined by (3.4), has the representation

PA) = Pyl®) + 001 — 0V {ag + a,(8 — 1) + ... +a 0 — 3.
(6.2)
where Pu(9) is the Hermite polynomial of degree 2 defined by the

first 3 conditions of {3.4). The g, are calculated by building up the
finite difference table for yq, v,, Hr't', 9 ., H*d"/y! and we find

1
ap = 8 (d'”' - Py (—)), (6.3a)
2
a =8 (Hd“' — Py (l) +1a ) (6.3b)
1 5 7 %) :
1/ .. e 1 1
a; = 8 (; (H'd["l - P(hT) (3)) + Z a, + ‘5 ao), [63C]
1 1 1
a, =8 (E_‘ HY4™ 4 Xak—] + -Z-ak_z - ak_B)
for k=3,..,u. {6.3d)

We can also take into account the error due to interpolation.
The error of P,{6) is given by

l),.-u PSS
2 (n+ 4)!

where xg < & < xo + H (¢ may be different for each component
of y). We estimate the norm of this error for P,_ (@) il ¢ = 0 by

6(1 — 8)? (6 - uve (64)

1 “
1P,(6) — P 1 (B}l = ‘9(1 - 07 (9 - —2-) *lla, I - (6.5}
This function (6.5) is maximal at
1 1 |/1 4
Ouime = — — TV et . {6.6)
2 4(u + 3)
We thus use
errint = [P, 6, 1) — Py 16,00 (6.7)

as error estimator, which together with (6.4} (u replaced by u — 1)
leads to the stepsize prediction formula (see [6, Section 11.4})
TOLINT\ 3
H,=H (-'“"-'"“—- ) . {6.8)
ernnt

where TOLINT is the tolerance of the interpolation error. In
SODEX we have chosen TOLINT = 10-TOL. If pu = —1 an
estimated error is given by

181 — 8- llyy — yo — Hr'Y

which is maximal at 6_, ;, = 1/2.

Also with control of the interpolation error, the numerical results
were sometimes disappointing.-The reason lies in the stiff accuracy
of the method with J = f'(35)-(.e. .+1.; = b [9, pp. 448 —450]).
Stiffly accurate methods are tuned to give a highly accurate (even
asymptotically exact for Prothero-Robinson-like examples) result
at the end of the integration interval. Therefore it is impossible to
get a dense output of the same accuracy without reducing the
stepsize. As a remedy we propose to control also the error
contribution of each k-th order derivative D™ entering in the
definition of the dense output. We collect the terms of (6.2)
multiplying D™ and we find that the worst error contribution is
given by

(6.9)

!
errder (D™) = max [P, poa(8) - rh ert (H*D™}, (6.10)

fef0.1] 1
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where P, pw(8) is a polynomial in & different for each u and D,
and err {H*D™) is the norm of the error of H*D™\. For example, if
DW= U we find

P, .l = NG — e - P {6.11)
whose absolute value is maximal at
1 15/ 2
Bpn=—+—]/1- ——. (6.12)
2 2 u+3

If we do (v = 2) extrapolations for the computation of D, we can
use the following error estimator for the m-th component of
H*DY)

v.r—1

Hk . lD{kl.m —

vy

D | (6.13)
For small v it has been numerically observed that this estimator
can be too pessimistic, and we have replaced it by

k.| k- k. + g+ 1)
(H* - |DY-m — DT e ia= D

(6.14)

where p (resp. g) is the order of H*D¥ (resp. H*D®, ). Here we
have p = g + 2. This new quantity (6.14) now behaves (in terms
of power of H} like the error of H*D¥.

As before a stepsize prediction formula is given by

TOLDER !+t
H_p(lu = H T s
errder (D™}

where TOLDER is the tolerance of the error contribution of a
derivative, and formula (6.14) is used for the computation of
err (H*D'™) entering in (6.10). In SODEX we have chosen TOLDER
= 10- TOL.

Numerical example: In Fig. 3 we present the result of the code
SODEX when applied to a stiff problem, the reaction equation of
RoBerTson (1966) (see (9, Section IV.10])

(6.15)

Y1 —0.04y, + 10%y,y;
ya| = [004y, — 10%,p; — 3- 10733 {,
, 7.,2
¥s 3107 (€.16)
¥71{0) 1
¥ (0} 0

with Algorithm 2, TOL = 10~° using # = 2% — 4, and the control
of the error and of each derivative and of the error due to
interpolation. In the upper picture we have plotted the solution for

0 £ x £ 40. The lower picture shows the global errors of each
component.

l‘.“-‘_‘-‘_‘_‘-—-——.—-_

N " ) ) : " A
107}
10}
w0}
L
& 5 10 15 20 ) 30 35 1]

Fig. 3. Solution and error of {6.16)

The three numerical examples presented clearly show the be-
haviour of the method and of the associated dense output formulas.
For stifl and differential-algebraic problems the dense output is less
accurate than the solution at the grid points, but as mentioned
before we can control its accuracy. It explains the “waves” in the
global error of the second and third examples.

Acknowledgements: I wish to thank E. HalRer [or many
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advices. and W. Hunpsporrer for a careful reading of the manu-
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