
Dense Output 339

D

Dense Output

Lawrence F. Shampine1 and Laurent O. Jay2

1Department of Mathematics, Southern Methodist

University, Dallas, TX, USA
2Department of Mathematics, The University of Iowa,

Iowa City, IA, USA

Introduction

We solve numerically an initial value problem, IVP, for

a first-order system of ordinary differential equations,

ODEs. That is, we approximate the solution y.t/ of

y0.t/ D f .t; y.t//; t0 � t � tF

that has given initial value y.t0/. In the early days this

was done with pencil and paper or mechanical calcu-

lator. A numerical solution then was a table of values,

yj � y.tj /, for mesh points tj that were generally

at an equal spacing or step size of h. On reaching tn
where we have an approximation yn, we take a step

of size h to form an approximation at tnC1 D tn C h.

This was commonly done with previously computed

approximations and an Adams-Bashforth formula like

ynC1 D yn C h

�

23

12
fn

16

12
fn�1 C

5

12
fn�2

�

: (1)

Here fj D f .tj ; yj / � f .tj ; y.tj // D y0.tj /. The

number of times the function f .t; y/ is evaluated is an

important measure of the cost of the computation. This

kind of formula requires only one function evaluation

per step.

The approach outlined is an example of a discrete

variable method [9]. However, even in the earliest

computations, there was a need for an approximation to

y.t/ between mesh points, what is now called a contin-

uous extension. A continuous extension on Œtn; tnC1� is

a polynomial Pn.t/ that approximates y.t/ accurately

not just at end of the step where Pn.tnC1/ D ynC1, but

throughout the step. Solving IVPs by hand is (very)

tedious, so if the approximations were found to be

more accurate than required, a bigger step size would

be used for efficiency. This was generally done by

doubling h so as to reuse previously computed values.

Much more troublesome was a step size that was not

small enough to resolve the behavior of the solution

past tn. Reducing h to h0 amounts to forming a new

table of approximations at times tn h
0; tn 2h

0; : : :

and continuing the integration with this new table

and step size. This was generally done by halving

h so as to reuse some of the previously computed

values, but values at tn h=2; tn 3h=2; : : : had to be

obtained with special formulas. Continuous extensions

make this easy because the values are obtained by

evaluating polynomials. Indeed, with this tool, there is

no real advantage to halving the step size. To solve hard

problems, it is necessary to vary the step size, possibly

often and possibly by large amounts. In addition, it

is necessary to control the size of the step so as to

keep the computation stable. Computers made this

practical. One important use of continuous extensions

is to facilitate variation of step size.

Some applications require approximate solutions

at specific points. Before continuous extensions were

developed, this was done by adjusting the step size

so that these points were mesh points. If the natu-

ral step size has to be reduced many times for this

reason, we speak of dense output. This expense can

be avoided with a continuous extension because the

step size can be chosen to provide an accurate result

efficiently and a polynomial evaluated to obtain as

many approximations in the course of a step as needed.

This is especially important now that problem-solving

environments like MATLAB and graphics calculators

are in wide use. In these computing environments, the

solutions of IVPs are generally interpreted graphically

and correspondingly, we require approximate solutions

at enough points to get a smooth graph.

The numerical solution of ODEs underlies contin-

uous simulation. In this context, it is common that a

model is valid until an event occurs, at which time

the differential equations change. An event is said to

occur at time t� if g.t�; y.t�// D 0 for a given event

function g.t; y/. There may be many event functions

associated with an IVP. Event location presents many

difficulties, but a fundamental one is that in solving the

algebraic equations, we must have approximations to

y.t/ at times t that are not known in advance. With

a continuous extension, this can be done effectively

by testing g.tn; yn/ and g.tnC1; ynC1/ for a change of

sign. If this test shows an event in Œtn; tnC1�, it is located

accurately by solving g.t�; Pn.t
�// D 0.

In the following sections, we discuss briefly contin-

uous extensions for the most important methods for

340 Dense Output

solving IVPs numerically. In the course of this dis-

cussion, we encounter other applications of continuous

extensions. Providing an event location capability for

a wide range of methods was the principal reason

for developing the MATLAB ODE suite [13]. A few

details about this will make concrete our discussion of

some approaches to continuous extensions.

Linear Multistep Methods

Adams-Bashforth formulas are derived by approximat-

ing the integrated form of the differential equation

y.t/ D y.tn/C

Z t

tn

f .x; y.x// dx;

with an interpolating polynomial. Previously computed

slopes fn; fn�1; : : : ; fn�kC1 are interpolated with a

polynomialQ.x/ and then

Pn.t/ D yn C

Z t

tn

Q.x/ dx: (2)

The Adams-Bashforth formula of order k, ABk, is

ynC1 D Pn.tnC1/. The example (1) is AB3. A very

convenient aspect of this family of formulas is that the

polynomial Pn.t/ is a natural continuous extension.

The Adams-Moulton formulas are constructed in the

same way except that Q.x/ also interpolates the un-

known value f .tnC1; ynC1/. This results in implicitly

defined formulas such as AM3

ynC1 D ynCh

�

5

12
f .tnC1; ynC1/C

8

12
fn

1

12
fn�1

�

:

The new value ynC1 of an implicit Adams-Moulton

formula is computed by iteration. In practice, this costs

a little less than twice as many function evaluations

as an explicit Adams-Bashforth formula. However, the

Adams-Moulton formulas are more accurate and more

stable, so this is a bargain. The point here, however, is

that a natural continuous extension (2) is available for

these formulas too.

Another important family of formulas is based on

interpolation of previously computed values. The back-

ward differentiation formulas, BDFs, are defined by

a polynomial Pn.t/ that interpolates solution values

ynC1; yn; : : : and satisfies the differential equation at

tnC1, i.e., P 0
n.tnC1/ D f .tnC1; Pn.tnC1//. For instance,

BDF3 is

hf .tnC1; ynC1/ D
11

6
ynC1 3yn C

3

2
yn�1

1

3
yn�2:

These formulas are implicit, and evaluating them ef-

ficiently is the principal challenge when solving stiff

IVPs. Here, however, the point is that these methods

are defined in terms of polynomials Pn.t/ which are

natural continuous extensions.

The formulas exhibited are linear combinations of

previously computed values and slopes and in the

case of implicit formulas, the value and slope at the

next step. They are representative of linear multistep

methods, LMMs [9]. By using more data, it is possible

to obtain formulas of higher order, but they have seri-

ous defects. The Adams methods and closely related

methods called predictor-corrector methods are very

popular for the solution of non-stiff IVPs, and the

BDFs are very popular for stiff IVPs. All these methods

have natural continuous extensions, which contributes

to their popularity. And, from the derivation outlined,

it is clear that the methods are defined for mesh points

that are not equally spaced. Some popular programs

work with constant step size until a change appears

worth the cost. This is standard for BDFs, including

the ode15s program of Shampine and Reichelt [13].

Other programs vary the step size, perhaps at every

step. This is less common, but is the case for the

Adams-Bashforth-Moulton predictor-corrector method

of ode113 [13]. A continuous extension for other

LMMs can be constructed by interpolation to all the

values and slopes used by the formula (Hermite in-

terpolation). With some care in the selection of step

size, this is a satisfactory continuous extension. Still,

only a very few other LMMs are seen in practice.

One, the midpoint rule, underlies a popular approach

to solving IVPs discussed in the section “Extrapolation

Methods.”

Runge-Kutta Methods

Using previously computed values causes some diffi-

culties for LMMs. For instance, where do these values

come from at the start of the integration? Runge-

Kutta, RK, methods use only information gathered

in the current step, so are called one-step methods.

Dense Output 341

D

An explicit RK formula of three function evaluations,

or stages, has the form

yn;1 D yn;

yn;2 D yn C hˇ2;1fn;1;

yn;3 D yn C h Œˇ3;1fn;1 C ˇ3;2fn;2� ;

ynC1 D yn C h Œ1fn;1 C 2fn;2 C 3fn;3� :

Here tn;j D tn C ˛jh and fn;j D f .tn;j ; yn;j /. The

coefficients ˛j ; ˇj;k ; andj are chosen primarily to

make ynC1 approximate y.tnC1/ to high order. It is

easy to find coefficients that make a LMM as high

an order as possible because they appear in a linear

way. This is very much more complicated and difficult

with RK methods because the coefficients appear in a

nonlinear way. The higher the order, the more algebraic

equations, the equations of condition, and the number

increases rapidly with the order. It is actually easy to

find formulas of any given order – the trick is to find

formulas of few stages. It is known that it takes at least

k stages to get a formula of order k. In this case, it is

possible to get order 3 with just three stages. Typically

RK formulas involve families of parameters, and that

is the case for this example.

Explicit RK methods are much more expensive in

terms of function evaluations than an explicit Adams

method, but they are competitive because they are more

accurate. However, for this argument to be valid, a

program must be allowed to use the largest step sizes

that provide the specified accuracy. As a consequence,

it is especially inefficient with RK methods to obtain

output at specific points by reducing the step size so

as to produce a result at those points. Event location

is scarcely practical for RK methods without a con-

tinuous extension. Unfortunately, it is much harder to

construct continuous extensions for RK methods than

for LMMs.

An obvious approach to constructing a continuous

extension is to use Hermite polynomial interpolation

to yn; yn�1; : : : and fn; fn�1; : : :, much as with LMMs.

Gladwell [6] discusses the difficulties that arise when

interpolating over just two steps. An important ad-

vantage of RK methods is that they do not require a

starting procedure like the methods of section “Linear

Multistep Methods,” but this approach to continuous

extension does require starting values. Further, con-

vergence of the approximation requires control of the

rate of increase of step size. This approach can be

used at low orders, but a more fundamental difficulty

was recognized as higher-order formulas came into

use. In the case of explicit Adams methods, the step

size is chosen so that an interpolating polynomial

provides an accurate approximation throughout the

step. Runge-Kutta methods of even moderate order use

much larger step sizes that are chosen independent

of any polynomial interpolating at previous steps. In

practice, it was found that the interpolating polynomial

does not achieve anything like the accuracy of the

approximations at mesh points.

The resolution of an important difference between

RK methods and LMMs is crucial to the construction

of satisfactory continuous extensions. This difference

is in the estimation of the error of a step. LMMs can

use previously computed values for this purpose. There

are several approaches taken to error estimates for RK

methods, but they are equivalent to taking each step

with two formulas of different orders and estimating

the error of the lower-order formula by comparison.

RK methods involve a good many stages per step, so

to make this practical, the two formulas are constructed

so that they share many function evaluations. Generally

this is done by starting with a family of formulas and

looking for a good formula that uses the same stages

and is of one order lower. Fehlberg [5] was the first to

introduce these embedded formulas and produce useful

pairs. For example, it takes at least six stages to obtain

an explicit RK formula of order 5. He found a pair of

orders 4 and 5 that requires only the minimum of six

stages to evaluate both formulas. Later he developed

pairs of higher order [4], including a very efficient (7,

8) pair of 13 stages.

Another matter requires discussion at this point.

If each step is taken with two formulas, it is only

natural to advance the integration with the higher-order

formula provided, of course, that other properties like

stability are acceptable. After all, the reliability of the

error estimate depends on the higher-order formula

being more accurate. In this approach, called local ex-

trapolation, the step size is chosen to make the lower-

order result pass an error test, but a value believed to

be more accurate is used to advance the integration. All

the popular programs based on explicit RK methods do

local extrapolation. There is a related question about

the order of a continuous extension. If the formula

used to advance the integration has a local error that

is O.hpC1/, the true, or global, error y.tn/ yn is

342 Dense Output

O.hp/, which is to say that the formula is of order p.

Roughly speaking, for a stable problem and formula,

errors at each step that are O.hpC1/ accumulate after

O.1=h/ steps to yield a uniform error that is O.hp/.

This leads us to the question as to the appropriate order

of a continuous extension. It would be natural to ask

that it has the order of the formula used to advance the

integration, but it is not used to propagate the solution,

so it can be one lower order and still achieve the

global order of accuracy. Because it can be expensive

to obtain a continuous extension at high orders, this is

an important practical matter.

Horn [10] was the first to present a modern ap-

proach to continuous extensions for RK methods. In

her approach, a family of formulas is created, one for

each point in the span of a step. Each member of the

family is a linear combination of the stages used in

the basic formula plus other stages as necessary. By

virtue of reusing stages, it is possible to approximate

the solution anywhere in the span of the step with a

small number of extra stages. In more detail, suppose

that a total of s stages are formed in evaluating the pair

of formulas. For some 0 < � < 1, we approximate the

solution at tnC� D tnC�hwith an explicit RK formula

that uses these stages:

ynC�Dyn C �h Œ1.�/fn;1C2.�/fn;2C : : : s.�/fn;s � :

This is a conventional explicit RK formula of s stages

with specified coefficients ˛j ; ˇj;k for approximating

y.tn C �h/. We look for coefficients j .�/ which

provide an accurate approximation ynC� . This is com-

paratively easy because these coefficients appear in

a linear way. Although we have described this as

finding a family of RK formulas with parameter � ,

the coefficients j .�/ turn out to be polynomials in

� , so we have a continuous extension Pn.�/. It can

happen that there is enough information available to

obtain approximations that have an order uniform in

� that corresponds to the global order of the method.

For instance, the (4, 5) pair due to Dormand and Prince

[2] that is implemented in the ode45 program of

MATLAB is used with a continuous extension that is

of order 4. We digress to discuss some practical aspects

of continuous extensions of RK formulas with this pair

as example.

Solutions of IVPs are customarily studied in graph-

ical form in MATLAB, so the output of the solvers

is tailored to this. For nearly all the solvers, which

implement a wide range of methods, the default output

is the set ftn; yng chosen by the solver to obtain

accurate results efficiently. Generally this provides a

smooth graph, but there is an option that computes

additional results at a fixed number of equally spaced

points in each step using a continuous extension. The

(4, 5) pair implemented in ode45 must take relatively

large steps if it is to compete with Adams methods,

and correspondingly, a solution component can change

significantly in the span of a step. For this reason,

results at mesh points alone often do not provide a

smooth graph. The default output of this program is not

just results at mesh points but results at four equally

spaced points in the span of each step. This usually

provides a smooth graph. In this context, a continuous

extension is formed and evaluated at every step. The

pair does not involve many stages, so any additional

function evaluations would be a significant expense.

This is why a “free” continuous extension of order 4

was chosen for implementation.

Some of the continuous extensions can be derived in

a more direct way by interpolation [12] that we use to

raise another matter. The yn;j approximate y.tn;j /, but

these approximations are generally of low order. Some

information of high order of accuracy is to hand. After

forming the result ynC1 that will be used to advance

the integration, we can form f .tnC1; ynC1/ for use in a

continuous extension. Certainly we would prefer con-

tinuous extensions that are not only continuous but also

have a continuous derivative from one step to the next.

To construct such an extension, we must have fnC1.

Fortunately, the first stage of an explicit RK formula is

always fn D f .tn; yn/, so the value fnC1 is “free” in

this step because it will be used in the next step. We

can then use the cubic Hermite interpolant to value and

slope at both ends of the step as continuous extension.

Interpolation theory can be used to show that it is an

excellent continuous extension for any formula of order

no higher than 3. It is used in the MATLAB program

ode23 [13]. Some of the higher-order formulas that

have been implemented have one or more intermediate

values yn;j that are sufficiently accurate that Hermite

interpolation at these values, and the two ends of the

step provides satisfactory continuous extensions.

If the stages that are readily available do not lead to

a continuous extension that has a sufficiently high order

uniformly in 0 � � � 1, we must somehow obtain

additional information that will allow us to achieve our

goal. A tactic [3] that has proved useful is to observe

Dense Output 343

D

that in addition to the ends of the step, the extension

Pn;s.�/ based on s stages may be of higher order at one

or more points in .0; 1/. If �� is such a point, we define

tn;sC1 D tn C ��h and yn;sC1 D ynC�� and evaluate

fn;sC1 D f .tn;sC1; yn;sC1/. If there is more than one

such point, we do this for each of the points. We now

try to find a continuous extension that uses these new

stages in addition to the ones previously formed. If

this new continuous extension has a uniform order that

is acceptable, we are done and otherwise we repeat.

This tactic has resulted in continuous extensions for

some popular formulas of relatively high order. After

Fehlberg showed the effectiveness of a (7, 8) pair of 13

stages, several authors produced pairs that are better in

some respects and more to the point have continuous

extensions. Current information about quality RK pairs

is found at Verner [15]. Included there are (7, 8) pairs

with a continuous extension of order 7 that requires

three additional stages and order 8 that requires four.

Implicit Runge-Kutta, IRK, formulas are exempli-

fied by the two-stage formula

yn;1 D yn C h Œˇ1;1fn;1 C ˇ1;2fn;2� ;

yn;2 D yn C h Œˇ2;1fn;1 C ˇ2;2fn;2� ;

ynC1 D yn C h Œ1fn;1 C 2fn;2� :

This is a pair of simultaneous algebraic equations

for yn;1 and yn;2, and as a consequence, it is much

more trouble to evaluate an IRK than an explicit RK

formula. On the other hand, they can be much more

accurate. Indeed, if tn;1 and tn;2 are the nodes of the

two-point Gauss-Legendre quadrature formula shifted

to the interval Œtn; tnC1�, the other coefficients can be

chosen to achieve order 4. For non-stiff IVPs, this high

order is not worth the cost. However, IRKs can also be

very much more stable. Indeed, the two-stage Gaussian

formula is A-stable. This makes them attractive for

stiff problems despite the high costs of evaluating the

formulas for such problems. IRKs are also commonly

used to solve boundary value problems for ODEs. IVPs

specify a solution of a set of ODEs by the value y.t0/ at

the initial point of the interval t0 � t � tF . Two-point

boundary value problems, BVPs, specify a solution

by means of values of components of the solution at

the two ends of the interval. More specifically, the

vector solution y.t/ is to satisfy a set of equations,

g.y.t0/; y.tF // D 0. In this context, the formula must

be evaluated on all subintervals Œtn; tnC1� simultane-

ously. This is typically a large system of nonlinear

equations that is solved by an iterative procedure. If

an approximation to y.t/ is not satisfactory, the mesh

is refined and a larger system of algebraic equations

is solved. A continuous extension is fundamental to

this computation because it is used to generate starting

guesses for the iterative procedure.

The IRKs commonly implemented are based on

Gaussian quadrature methods or equivalently collo-

cation. There is a sense of direction with IVPs, so

the formulas for stiff IVPs in wide use are based on

Radau formulas. The lowest-order case is the implicit

backward Euler method ynC1 D ynChf .tnC1; ynC1/, a

formula that happens to be AM1 and BDF1. There is no

preferred direction when solving BVPs with implicit

RK methods, so the symmetric Gauss-Legendre or

Gauss-Lobatto formulas are used. The nodes of the

former do not include an endpoint of the step, and the

nodes of the latter include both. As mentioned above,

the two-point Gauss-Legendre formula is of order 4.

It can be derived by collocation rather like the BDFs.

This particular formula is equivalent to collocation

with a quadratic polynomial Pn.t/ that interpolates

Pn.tn/ D yn and also P.tn;j / D yn;j for j D 1; 2.

The yn;j are determined by the collocation conditions

P 0
n.tn;j / D f .tn;j ; P.tn;j // for j D 1; 2. Although

the formula is of order 4 at mesh points, this quadratic

approximation has a uniform order of 2. This is typical.

Popular codes like COLSYS [1] use Gauss-Legendre

formulas of quite high order for which the uniform

order of approximation by the collocation polynomial

is roughly half the order of approximation at mesh

points. This is not all that one might hope for, but

a convenient continuous extension is very important

and formulas of a wide range of orders are available.

The three-point Gauss-Lobatto formula collocates at

both endpoints of the step and the midpoint. The

underlying cubic polynomial is uniformly of order 4,

which is adequate for solving BVPs in MATLAB. The

collocation conditions imply that the approximation is

C 1Œt0; tF �, which is useful in a computing environment

where results are often studied graphically.

Extrapolation Methods

Extrapolation methods are built upon relatively simple

methods of order 1 or 2 such as the explicit/forward

Euler method and the implicit midpoint rule.

344 Dense Output

The construction of extrapolation methods relies on

the theoretical existence of an asymptotic expansion

of the global error of the low-order underlying method

in terms of a constant step size h. For example, let us

consider the explicit/forward Euler method

ykC1 D yk C hf .tk ; yk/:

We denote yh.tk C nh/ D ykCn for n D 0; 1; 2; : : :

With initial condition y.tk/ D yk , it can be shown

that for sufficiently smooth f .t; y/, the global error

at t D tk C nh of the explicit Euler method has an

asymptotic expansion of the form

yh.t/ y.t/ D e1.t/hC e2.t/h
2

C : : :C eN .t/h
N C EN .t; h/h

NC1;

where e1.t/; : : : ; eN .t/ are smooth functions and

EN .t; h/ is bounded for jhj sufficiently small. For

a symmetric method such as the implicit midpoint

rule, all the odd terms e2kC1.t/ vanish. Given a

finite sequence of increasing natural numbers ni for

i D 1; : : : ; I such as ni D i , for a given macro step

size H , we define the micro step sizes hi D H=ni .

By independent applications of ni steps of the explicit

Euler method with constant step size hi , we obtain a

finite sequence Yi1 D yhi .tk C H/ of approximations

to the solution y.tk CH/ of the ODE passing through

y.tk/ D yk . Defining the table of values

Yi;jC1 D Yij C
Yij Yi�1;j

.ni=ni�j / 1

for i D 2; : : : ; I; j D 1; : : : ; i 1; (3)

the extrapolated values Yij are of order j , i.e., Yij

y.tk CH/ D O

H jC1
�

. For symmetric methods, we

replace the term ni=ni�j in (3) by .ni=ni�j /
2, and we

obtain Yij y.tk C H/ D O

H 2jC1
�

. If there is no

stiffness, an efficient symmetric extrapolation method

is given by the Gragg-Bulirsch-Stoer (GBS) algorithm

where yh.tk C nh/ for n � 2 with n even is obtained

starting from z0 D yk as follows:

z1 D z0 C hf .tk ; z0/; zlC1 D zl�1 C 2hf .tk C lh; zl /

for l D 1; : : : ; n;

yh.tk C nh/ D
1

4
.zn�1 C 2zn C znC1/:

Due to their possible high-order, extrapolation

methods may take large step sizesH . Hence, the use of

a sufficiently high order continuous extension is really

required if an accurate approximation at intermediate

points is needed. A continuous extension can be

obtained by building a polynomial approximation to

the solution. First finite-difference approximations

D
.m/
1i .t/ to the derivatives y.m/.t/ at the left endpoint

t D tk , at the midpoint t D tk C H=2, or/and at the

right endpoint t D tk C H are built for each index

i when possible based on the intermediate values of

f .t; y/ or y. In the presence of stiffness, it is not

recommended to use the intermediate values based on

f .t; y/ since f may amplify errors catastrophically,

and approximations to the derivatives should be

based only on the intermediate values of y in this

situation. The valuesD
.m/
1i .t/ are extrapolated to obtain

higher-order approximations. We denote the most

extrapolated value by D.m/.t/. A polynomial P.�/

approximating f .tk C �H/ is then defined through

Hermite interpolation conditions. For example, for the

GBS algorithm, we consider a sequence of increasing

even natural numbers ni satisfying niC1 � ni mod 4.

We define a polynomial Pd .�/ of degree d C 4 with

 1 � d � 2I satisfying the Hermite interpolation

conditions

Pd .0/ D yk ; Pd .1/ D YII ; P 0

d .0/ D Hf.tk ; yk/;

P 0

d .1/ D Hf.tk CH;YII /;

P
.m/

d .1=2/ D HmD.m/.tk CH=2/ form D 0; : : : ; d:

For n1 D 4 and d � 2I 4, it can be shown thatPd .�/

is an approximation of order 2I in H to y.tk C �H/,

i.e., Pd .�/ y.tk C �H/ D O.H 2IC1/ for � 2 Œ0; 1�.

If one wants to have a continuous extension with

a certain required accuracy, one also needs to control

its error and not just the error at the endpoint. This

can be done by using an upper bound on the norm

of the difference between the continuous extension

and another continuous extension of lower order. For

example, for the GBS algorithm for d � 0, one can

consider the difference

Pd .�/ Pd�1.�/ D �2.1 �/2.� 1=2/dcdC4;

where cdC4 is the coefficient of �dC4 in Pd .�/. The

function j�2.1 �/2.� 1=2/d j is maximum on Œ0; 1�

Density Functional Theory 345

D

at �d D
1
2
.1˙

p

d=.d C 4//, and we obtain the error

estimate

max
�2Œ0;1�

kPd .�/ Pd�1.�/k � j�
2
d .1 �d /

2

.�d 1=2/
d j � kcdC4k;

which can be used in a step size controller.

For more information on continuous extensions for

extrapolation methods, we refer the reader to Hairer

and Ostermann [7] for the extrapolated Euler method

and the linearly implicit Euler method; to Hairer

and Ostermann [7], Hairer et al. [8], and Shampine

et al. [14] for the GBS algorithm; and to Jay [11] for

the semi-implicit midpoint rule.

References

1. Ascher, U.M., Christiansen, J., Russell, R.D.: Collocation

software for boundary value ODEs. ACM Trans. Math.

Softw. 7, 209–222 (1981)

2. Dormand, J.R., Prince, P.J.: A family of embedded Runge-

Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

3. Enright, W.H., Jackson, K.R., Nørsett, S.P., Thomson, P.G.:

Interpolants for Runge-Kutta formulas. ACM Trans. Math.

Softw. 12, 193–218 (1986)

4. Fehlberg, E.: Classical fifth-, sixth-, seventh-, and eighth or-

der Runge-Kutta formulas with step size control. Technical

report, 287, NASA (1968)

5. Fehlberg, E.: Klassische Runge-Kutta-Formeln vierter und

niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre

Anwendung auf Wärmeleitungsprobleme. Computing 6,

61–71 (1970)

6. Gladwell, I.: Initial value routines in the NAG library. ACM

Trans. Math. Softw. 5, 386–400 (1979)

7. Hairer, E., Ostermann, A.: Dense output for extrapolation

methods. Numer. Math. 58, 419–439 (1990)

8. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary

Differential Equations I. Nonstiff Problems. Springer Series

in Computational Mathematics, vol. 18, 2nd edn. Springer,

Berlin (1993)

9. Henrici, P.: Discrete Variable Methods in Ordinary Differ-

ential Equations. Wiley, New York (1962)

10. Horn, M.K.: Fourth and fifth-order scaled Runge-Kutta

algorithms for treating dense output. SIAM J. Numer. Anal.

20, 558–568 (1983)

11. Jay, L.O.: Dense output for extrapolation based on the semi-

implicit midpoint rule. Z. Angew. Math. Mech. 73, 325–329

(1993)

12. Shampine, L.F.: Interpolation for Runge-Kutta methods.

SIAM J. Numer. Anal. 22, 1014–1027 (1985)

13. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite.

SIAM J. Sci. Comput. 18, 1–22 (1997)

14. Shampine, L.F., Baca, L.S., Bauer, H.J.: Output in extrapo-

lation codes. Comput. Math. Appl. 9, 245–255 (1983)

15. Verner, J.: Jim Verner’s refuge for Runge-Kutta pairs. http://

people.math.sfu.ca/�jverner/ (2011)

Density Functional Theory

Rafael D. Benguria

Departamento de Fı́sica, Pontificia Universidad

Católica de Chile, Santiago de Chile, Chile

Synonyms

Exchange corrections; Generalized gradient correc-

tions; Kohn–Sham equations; Local density approxi-

mation; Statistical model of atoms; Thomas–Fermi

Definition

Density functional theory (DFT for short) is a power-

ful, widely used method for computing approximations

of ground state electronic energies and densities in

chemistry, material science, and biology. The purpose

of DFT is to express the ground state energy (as well

as many other quantities of physical and chemical

interest) of a multiparticle system as a functional of the

single-particle density � .

Overview

Since the advent of quantum mechanics [20], the

impossibility of solving exactly problems involving

many particles has been clear. These problems are

of interest in such areas as atomic and molecular

physics, condensed matter physics, and nuclear

physics. It was, therefore, necessary from the early

beginnings to introduce approximative methods such

as the Thomas–Fermi model [4, 21], (see J. P. Solovej

⊲Thomas–Fermi Type Theories (and Their Relation

to Exact Models) in this encyclopedia) and the

Hartree–Fock approximation [5, 6] (see I. Catto

⊲Hartree–Fock Type Methods in this encyclopedia),

to compute quantities of physical interest in these

areas. In quantum mechanics of many particle systems,

