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Introduction

Lobatto methods for the numerical integration

of differential equations are named after Rehuel

Lobatto. Rehuel Lobatto (1796–1866) was a Dutch

mathematician working most of his life as an advisor

for the government in the fields of life insurance and of

weights and measures. In 1842, he was appointed

professor of mathematics at the Royal Academy

in Delft (known nowadays as Delft University of

Technology). Lobatto methods are characterized by the

use of approximations to the solution at the two end

points tn and tnC1 of each subinterval of integration

Œtn; tnC1�. Two well-known Lobatto methods based on

the trapezoidal quadrature rule which are often used

in practice are the (implicit) trapezoidal rule and the

Störmer-Verlet-leapfrog method.

The (Implicit) Trapezoidal Rule

Consider a system of ordinary differential equations

(ODEs):
d

dt
y D f .t; y/ (1)

where f W R � Rd ! Rd . Starting from y0 at

t0 one step .tn; yn/ 7! .tnC1; ynC1/ of the (implicit)

trapezoidal rule applied to (1) is given by the implicit

relation:

ynC1 D yn C
hn

2
.f .tn; yn/C f .tnC1; ynC1//

where hn D tnC1  tn is the step size. The (im-

plicit) trapezoidal rule is oftentimes called the Crank-

Nicholson method when considered in the context of

time-dependent partial differential equations (PDEs).

This implicit method requires the solution of a sys-

tem of d equations for ynC1 2 Rd that can be

expressed as:

F.ynC1/ WD ynC1  yn  
hn

2
.f .tn; yn/

Cf .tnC1; ynC1// D 0

and which is nonlinear when f .t; y/ is nonlinear in y.

Starting from an initial guess y
.0/
nC1 � ynC1, the solu-

tion ynC1 can be approximated iteratively by modified

Newton iterations as follows:

y
.kC1/
nC1 D y

.k/
nC1 C p

.k/
nC1; Jnp

.k/
nC1 D  F.y

.k/
nC1/

using, for example, an approximate Jacobian:

Jn D Id  
hn

2
Dyf .tn; yn/ � DyF.y

.k/
nC1/:
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Taking Jn D Id leads to fixed-point iterations:

y
.kC1/
nC1 D yn C

hn

2

�

f .tn; yn/C f .tnC1; y
.k/
nC1/

�

:

The Generalized Newton-Störmer-Verlet-

Leapfrog Method

Consider now a partitioned system of ODEs:

d

dt
q D v.t; p; q/;

d

dt
p D f .t; q; p/ (2)

where v W R � Rdq � Rdp ! Rdq and f W R �

Rdq �Rdp ! Rdp . Starting from .q0; p0/ at t0 one step

.tn; qn; pn/ 7! .tnC1; qnC1; pnC1/ of the generalized

Newton-Störmer-Verlet-leapfrog method applied to (2)

reads:

pnC1=2Dpn C
hn

2
f .tn; qn; pnC1=2/;

qnC1Dqn C
hn

2

 

v.tn; qn; pnC1=2/

Cv.tnC1; qnC1; pnC1=2/
�

; (3)

pnC1DpnC1=2 C
hn

2
f .tnC1; qnC1; pnC1=2/

where hn D tnC1 tn is the step size. The first equation

is implicit for pnC1=2, the second equation is implicit

for qnC1, and the last equation is explicit for pnC1.

When v.t; q; p/ D v.t; p/ is independent of q, and

f .t; q; p/ D f .t; q/ is independent of p the method

is fully explicit. If in addition v.t; q; p/ D v.p/ is

independent of t and q, the method can be simply

expressed as:

pnC1=2Dpn C
hn

2
f .tn; qn/;

qnC1Dqn C hnv.pnC1=2/;

pnC1DpnC1=2 C
hn

2
f .tnC1; qnC1/:

This explicit method is often applied as follows:

pnC1=2Dpn�1=2 C
1

2
.hn�1 C hn/f .tn; qn/ ;

qnC1Dqn C hnv.pnC1=2/:

Depending on the field of applications, this method

is known under different names: the Störmer method

in astronomy; the Verlet method in molecular dy-

namics; the leapfrog method in the context of time-

dependent PDEs, in particular for wave equations.

This method can be traced back to Newton’s Principia

(1687), see [10].

Lobatto Methods

In this entry, we consider families of Runge-Kutta

(RK) methods based on Lobatto quadrature formulas

whose simplest member is the trapezoidal quadrature

rule. When applied to (1) Lobatto RK methods can be

expressed as follows:

Yni Dyn C hn

s
X

j D1

aij f .tn C cj h; Ynj /

for i D 1; : : : ; s; (4)

ynC1Dyn C hn

s
X

j D1

bj f .tn C cj h; Ynj / (5)

where the stage value s satisfies s � 2 and the coeffi-

cients aij ; bj ; cj characterize the Lobatto RK method.

The s intermediate values Ynj for j D 1; : : : ; s are

called the internal stages and can be considered as

approximations to the solution at tn C cj hn, the main

numerical RK approximation at tnC1 D tn C hn is

given by ynC1. Lobatto RK methods are characterized

by c1 D 0 and cs D 1. They can also be considered

in combination with other families of RK methods, for

example, with Gauss methods in the context of certain

systems of differential-algebraic equations (DAEs), see

the section “Lobatto Methods for DAEs” below. The

symbol III is usually found in the literature associated

to Lobatto methods, the symbols I and II being reserved

for the two types of Radau methods. The (implicit)

trapezoidal rule is the simplest member (s D 2) in the

Lobatto IIIA family. The generalized Newton-Störmer-

Verlet-leapfrog method seen above can be interpreted

as a partitioned Runge-Kutta (PRK) resulting from the

combination of the (implicit) trapezoidal rule and the

Lobatto IIIB method for s D 2, see the section “Addi-

tive Lobatto Methods for Split and Partitioned ODEs”

below.
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Families of Lobatto Methods

For a fixed value of s, the various families of Lobatto

methods described below all share the same coeffi-

cients bj ; cj of the corresponding Lobatto quadrature

formula.

Lobatto Quadrature Formulas

The problem of approximating a Riemann integral:

Z tnChn

tn

f .t/dt (6)

with f assumed to be continuous is equivalent to the

problem of solving the initial value problem at t D

tn C hn:
d

dt
y D f .t/; y.tn/ D 0

since y.tn C hn/ D
R tnChn

tn
f .t/dt . The integral (6)

can be approximated by using a standard quadrature

formula:

Z tnChn

tn

f .t/dt � hn

 

s
X

iD1

bi f .tn C ci hn/

!

with s node coefficients c1; : : : ; cs , and s weight coef-

ficients b1; : : : ; bs . Lobatto quadrature formulas, also

known as Gauss-Lobatto quadrature formulas in the

literature, are given for s � 2 by a set of nodes and

weights satisfying conditions described hereafter. The

s nodes cj are the roots of the polynomial of degree s:

d s�2

dt s�2
.t s�1.1  t/s�1/:

These nodes satisfy c1 D 0 < c2 < : : : < cs D 1. The

weights bj and nodes cj satisfy the condition B.2s 2/

where:

B.p/ W

s
X

j D1

bj ck�1
j D

1

k
for k D 1; : : : ; p;

implying that the quadrature formula is of order 2s 2.

There exists an explicit formula for the weights

bj D
1

s.s  1/Ps�1.2cj  1/2
> 0

for j D 1; : : : ; s

�

b1 D bs D
1

s.s  1/

�

where

Pk.x/ D
1

kŠ2k

d k

dxk

 

.x2  1/k
�

is the kth Legendre polynomial. Lobatto quadrature

formulas are symmetric, that is their nodes and weights

satisfy:

bsC1�j D bj ; csC1�j D 1  cj for j D 1; : : : ; s:

For s D 3, we obtain the famous Simpson’s rule:

.b1; b2; b3/D .1=6; 2=3; 1=6/; .c1; c2; c3/D .0; 1=2; 1/:

Procedures to compute numerically accurately the

nodes and weights of high order Lobatto quadrature

formulas can be found in [7] and [23]. The subroutine

GQRUL from the IMSL/MATH-LIBRARY can

compute numerically these nodes and weights.

Lobatto Families

The families of Lobatto RK methods differ only in the

values of their coefficients aij . Various equivalent def-

initions can be found in the literature. The coefficients

aij of these families can be linearly implicitly defined

with the help of so-called simplifying assumptions:

C.q/ W

s
X

j D1

aij ck�1
j D

ck
i

k

for i D 1; : : : ; s and k D 1; : : : ; q;

D.r/ W

s
X

iD1

bi c
k�1
i aij D

bj

k

 

1  ck
j

�

for j D 1; : : : ; s and k D 1; : : : ; r:

The importance of these simplifying assumptions

comes from a fundamental result due to Butcher,

see [5, 9], saying that a RK method satisfying the

simplifying assumptions B.p/, C.q/, and D.r/ is of

order at least min.p; 2qC2; qCrC1/. The coefficients

aij ; bj ; cj characterizing the Lobatto RK method (4)

and (5) will be displayed below in the form of a table

called a Butcher-tableau:
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c1 D 0 a11 a12 � � � a1;s�1 a1s

c2 a21 a22 � � � a2;s�1 a2s

:::
:::

:::
: : :

:::
:::

cs�1 as�1;1 as�1;2 � � � as�1;s�1 as�1;s

cs D 1 as1 as2 � � � as;s�1 ass

b1 b2 � � � bs�1 bs

In the four main families of Lobatto methods described

below, namely Lobatto IIIA, Lobatto IIIB, Lobatto

IIIC, and Lobatto IIIC�, only one method does not

satisfy the relation C.1/, that is,

s
X

j D1

aij D ci for i D 1; : : : ; s;

this is the Lobatto IIIB method for s D 2, see

below. The Lobatto IIIA, IIIB, IIIC, and IIIC�

methods can all be interpreted as perturbed collo-

cation methods [19] and discontinuous collocation

methods [11].

Lobatto IIIA

The coefficients aA
ij of Lobatto IIIA methods can be

defined by C.s/ (Table 1). They satisfy D.s 2/, aA
sj D

bj for j D 1; : : : ; s, and aA
1j D 0 for j D 1; : : : ; s.

Lobatto IIIA methods are symmetric and of nonstiff

order 2s  2. Their stability function R.z/ is given

by the .s  1; s  1/-Padé approximation to ez. They

are A-stable, but not L-stable since R.1/ D . 1/sC1.

They are not B-stable and thus not algebraically stable.

They can be interpreted as collocation methods. Since

the first internal stage Yn1 of Lobatto IIIA methods is

explicit (Yn1 D yn and f .tn C c1hn; Yn1/ D f .tn; yn/)

and the last internal stage satisfies Yns D ynC1 (and

thus f .tnC1; ynC1/ D f .tn C cshn; Yns/), these meth-

ods are comparable in terms of computational work to

Gauss methods with s  1 internal stages since they

also have the same nonstiff order 2s  2. For s D 2,

we obtain the (implicit) trapezoidal rule which is often

expressed without its two internals stages Yn1; Yn2 since

they are respectively equal to yn and ynC1. The method

for s D 3 is sometimes called the Hermite-Simpson (or

Clippinger-Dimsdale) method and it has been used, for

example, in trajectory optimization problems [4]. This

method can be equivalently expressed in a compact

form as:

Yn2D
1

2
.yn C ynC1/

C
hn

8
.f .tn; yn/ f .tnC1; ynC1//;

ynC1Dyn C
hn

6

 

f .tn; yn/C 4f .tnC1=2; Yn2/

Cf .tnC1; ynC1/
�

where tnC1=2 D tn C hn=2. It can be even further

reduced by rewriting

ynC1Dyn C
hn

6
.f .tn; yn/C f .tnC1; ynC1//

C
2hn

3
f

�

tnC1=2;
1

2
.yn C ynC1/

C
hn

8
.f .tn; yn/  f .tnC1; ynC1//

�

:

Lobatto IIIB

The coefficients aB
ij of Lobatto IIIB methods can be

defined by D.s/ (Table 2). They satisfy C.s  2/,

aB
i1 D b1 for i D 1; : : : ; s and aB

is D 0 for i D 1; : : : ; s.

Lobatto IIIB methods are symmetric and of nonstiff

order 2s  2. Their stability function R.z/ is given by

the .s  1; s  1/-Padé approximation to ez. They are

A-stable, but not L-stable since R.1/ D . 1/sC1.

They are not B-stable and thus not algebraically

stable. The coefficients aB
ij can also be obtained

from the coefficients aA
ij of Lobatto IIIA through the

relations:

bi a
B
ij C bj aA

j i  bi bj D 0 for i; j D 1; : : : ; s;

or

aB
ij D bj  aA

sC1�i;sC1�j for i; j D 1; : : : ; s:

Lobatto IIIC

The coefficients aC
ij of Lobatto IIIC methods can be

defined by aC
i1 D b1 for i D 1; : : : ; s and C.s  1/

(Table 3). They satisfy D.s  1/ and aC
sj D bj for j D

1; : : : ; s. Lobatto IIIC methods are of nonstiff order

2s 2. They are not symmetric. Their stability function

R.z/ is given by the .s  2; s/-Padé approximation to

ez. They are L-stable. They are algebraically stable

and thus B-stable. They are excellent methods for stiff

problems.
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Lobatto Methods, Table 1 Coefficients of Lobatto IIIA for s D 2; 3; 4; 5

0 0 0

1
1

2

1

2

AsD2

1

2

1

2

0 0 0 0

1

2

5

24

1

3
�

1

24

1
1

6

2

3

1

6

AsD3

1

6

2

3

1

6

0 0 0 0 0

1

2
�

p
5

10

11 C
p

5

120

25 �
p

5

120

25 � 13
p

5

120

�1 C
p

5

120

1

2
C

p
5

10

11 �
p

5

120

25 C 13
p

5

120

25 C
p

5

120

�1 �
p

5

120

1
1

12

5

12

5

12

1

12

AsD4

1

12

5

12

5

12

1

12

0 0 0 0 0 0

1

2
�

p
21

14

119 C 3
p

21

1960

343 � 9
p

21

2520

392 � 96
p

21

2205

343 � 69
p

21

2520

�21 C 3
p

21

1960

1

2

13

320

392 C 105
p

21

2880

8

45

392 � 105
p

21

2880

3

320

1

2
C

p
21

14

119 � 3
p

21

1960

343 C 69
p

21

2520

392 C 96
p

21

2205

343 C 9
p

21

2520

�21 � 3
p

21

1960

1
1

20

49

180

16

45

49

180

1

20

AsD5

1

20

49

180

16

45

49

180

1

20

Lobatto IIIC�

Lobatto IIIC� are also known as Lobatto III methods

[5], Butcher’s Lobatto methods [9], and Lobatto IIIC

methods [22] in the literature. (The name Lobatto

IIIC� was suggested by Robert P.K. Chan in an e-

mail correspondence with the author on June 13, 1995.)

The coefficients aC �

ij of Lobatto IIIC� methods can be

defined by aC �

is D 0 for i D 1; : : : ; s and C.s  1/

(Table 4). They satisfy D.s  1/ and aC �

1j D 0 for j D

1; : : : ; s. Lobatto IIIC� methods are of nonstiff order

2s 2. They are not symmetric. Their stability function

R.z/ is given by the .s; s 2/-Padé approximation to ez.

They are not A-stable. They are not B-stable and thus

not algebraically stable. The Lobatto IIIC� method for

s D 2 is sometimes called the explicit trapezoidal rule.

The coefficients aC �

ij can also be obtained from the

coefficients aC
ij of Lobatto IIIC through the relations:

bia
C �

ij C bj aC
j i  bi bj D 0 for i; j D 1; : : : ; s;

or

aC �

ij D bj  aC
sC1�i;sC1�j for i; j D 1; : : : ; s:

Other Families of Lobatto Methods

Most Lobatto methods of interest found in the literature

can be expressed as linear combinations of the four

fundamental Lobatto IIIA, IIIB, IIIC, and IIIC� meth-

ods. In fact, one can consider a very general family

of methods with three real parameters .˛A; ˛B ; ˛C / by

considering Lobatto coefficients of the form:

aij .˛A; ˛B ; ˛C / D ˛AaA
ij C ˛BaB

ij C ˛C aC
ij C ˛C � aC �

ij

(7)

where ˛C � D 1  ˛A  ˛B  ˛C . For any choice of

.˛A; ˛B ; ˛C / the corresponding Lobatto RK method is

of nonstiff order 2s 2 [13]. The Lobatto IIIS methods

presented in [6] depend on a real parameter � . They

can be expressed as:

aS
ij .�/ D .1 �/

�

aA
ij C aB

ij

�

C

�

�  
1

2

�

�

aC
ij C aC �

ij

�

for i; j D 1; : : : ; s;

corresponding to ˛A D ˛B D 1  � and ˛C D ˛C � D

�  1
2

in (7). These methods satisfy C.s  2/ and
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Lobatto Methods, Table 2 Coefficients of Lobatto IIIB for s D 2; 3; 4; 5

0
1

2
0

1
1

2
0

BsD2

1

2

1

2

0
1

6
�

1

6
0

1

2

1

6

1

3
0

1
1

6

5

6
0

BsD3

1

6

2

3

1

6

0
1

12

�1 �
p

5

24

�1 C
p

5

24
0

1

2
�

p
5

10

1

12

25 C
p

5

120

25 � 13
p

5

120
0

1

2
C

p
5

10

1

12

25 C 13
p

5

120

25 �
p

5

120
0

1
1

12

11 �
p

5

24

11 C
p

5

24
0

BsD4

1

12

5

12

5

12

1

12

0
1

20

�7 �
p

21

120

1

15

�7 C
p

21

120
0

1

2
�

p
21

14

1

20

343 C 9
p

21

2520

56 � 15
p

21

315

343 � 69
p

21

2520
0

1

2

1

20

49 C 12
p

21

360

8

45

49 � 12
p

21

360
0

1

2
C

p
21

14

1

20

343 C 69
p

21

2520

56 C 15
p

21

315

343 � 9
p

21

2520
0

1
1

20

119 � 3
p

21

360

13

45

119 C 3
p

21

360
0

BsD5

1

20

49

180

16

45

49

180

1

20

D.s  2/. They are symmetric and symplectic. Their

stability function R.z/ is given by the .s  1; s  1/-

Padé approximation to ez. They are A-stable, but not L-

stable. They are algebraically stable and thus B-stable.

The Lobatto IIIS coefficients for � D 1=2 are given by:

aS
ij .1=2/ D

1

2

�

aA
ij C aB

ij

�

for i; j D 1; : : : ; s:

For � D 1 we obtain the Lobatto IIID methods [6, 13]:

aD
ij D aS

ij .1/ D
1

2

�

aC
ij C aC �

ij

�

for i; j D 1; : : : ; s:

These methods are called Lobatto IIIE in [19] and

Lobatto IIIE in [22]. They satisfy C.s 1/ and D.s 1/,

and they can be interpreted as perturbed collocation

methods [19]. Another family of Lobatto RK methods

is given by the Lobatto IIID family of [19] called here

Lobatto IIINW where the coefficients for s D 2; 3

are given in Table 5. (Notice on p. 205 of [19] that


1 D  4.2m  1/.) These methods correspond to

˛A D 2, ˛B D 2, ˛C D  1, and ˛C � D  2 in (7).

Their stability function R.z/ is given by the .s  2; s/-

Padé approximation to ez. These methods are L-stable.

They are algebraically stable and thus B-stable. They

are of nonstiff order 2s  2. They are not symmet-

ric. They can be interpreted as perturbed collocation

methods [19].

Additive Lobatto Methods for Split and
Partitioned ODEs

Consider a split system of ODEs:

d

dt
y D f1.t; y/C f2.t; y/ (8)

where f1; f2 W R � Rd ! Rd . Starting from y0 at t0
one step .tn; yn/ 7! .tnC1; ynC1/ of an additive Lobatto

RK method applied to (8) reads:
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Lobatto Methods, Table 3 Coefficients of Lobatto IIIC for s D 2; 3; 4; 5

0
1

2
�

1

2

1
1

2

1

2

CsD2

1

2

1

2

0
1

6
�

1

3

1

6

1

2

1

6

5

12
�

1

12

1
1

6

2

3

1

6

CsD3

1

6

2

3

1

6

0
1

12
�

p
5

12

p
5

12
�

1

12

1

2
�

p
5

10

1

12

1

4

10 � 7
p

5

60

p
5

60

1

2
C

p
5

10

1

12

10 C 7
p

5

60

1

4
�

p
5

60

1
1

12

5

12

5

12

1

12

CsD4

1

12

5

12

5

12

1

12

0
1

20
�

7

60

2

15
�

7

60

1

20

1

2
�

p
21

14

1

20

29

180

47 � 15
p

21

315

203 � 30
p

21

1260
�

3

140

1

2

1

20

329 C 105
p

21

2880

73

360

329 � 105
p

21

2880

3

160

1

2
C

p
21

14

1

20

203 C 30
p

21

1260

47 C 15
p

21

315

29

180
�

3

140

1
1

20

49

180

16

45

49

180

1

20

CsD5

1

20

49

180

16

45

49

180

1

20

Yni D yn C hn

s
X

j D1

.a1;ij f1.tn C cj h; Ynj /

Ca2;ij f2.tn C cj h; Ynj //

for i D 1; : : : ; s;

ynC1 D yn C hn

s
X

j D1

bj .f1.tn C cj h; Ynj /

Cf2.tn C cj h; Ynj //

where s � 2 and the coefficients a1;ij ; a2;ij ; bj ; cj

characterize the additive Lobatto RK method. Con-

sider, for example, any coefficients a1;ij and a2;ij from

the family (7), the additive method is of nonstiff order

2s  2 [13]. The partitioned system of ODEs (2) can

be expressed in the form (8) by having d D dq C dp,

y D .q; p/ 2 Rdq � Rdp , and:

f1.t; q; p/ D

�

v.t; q; p/

0

�

;

f2.t; q; p/ D

�

0

f .t; q; p/

�

:

Applying for s D 2 the Lobatto IIIA coefficients

as a1;ij and the Lobatto IIIB coefficients as a2;ij , we

obtain again the generalized Newton-Störmer-Verlet-

leapfrog method (3). Additive Lobatto methods have

been considered in multibody dynamics in [13, 21].

Additive methods are more general than partitioned

methods since partitioned system of ODEs can always

be reformulated as a split system of ODEs, but the

reverse is false in general.

Lobatto Methods for DAEs

An important use of Lobatto methods is for the solution

of differential-algebraic equations (DAEs). DAEs con-

sist generally of coupled systems of differential equa-

tions and nonlinear relations. They arise typically in

mechanics and electrical/electronic circuits simulation.
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Lobatto Methods, Table 4 Coefficients of Lobatto IIIC� for s D 2; 3; 4; 5

0 0 0

1 1 0

C �

sD2

1

2

1

2

0 0 0 0

1

2

1

4

1

4
0

1 0 1 0

C �

sD3

1

6

2

3

1

6

0 0 0 0 0

1

2
�

p
5

10

5 C
p

5

60

1

6

15 � 7
p

5

60
0

1

2
C

p
5

10

5 �
p

5

60

15 C 7
p

5

60

1

6
0

1
1

6

5 �
p

5

12

5 C
p

5

12
0

C �

sD4

1

12

5

12

5

12

1

12

0 0 0 0 0 0

1

2
�

p
21

14

1

14

1

9

13 � 3
p

21

63

14 � 3
p

21

126
0

1

2

1

32

91 C 21
p

21

576

11

72

91 � 21
p

21

576
0

1

2
C

p
21

14

1

14

14 C 3
p

21

126

13 C 3
p

21

63

1

9
0

1 0
7

18

2

9

7

18
0

C �

sD5

1

20

49

180

16

45

49

180

1

20

Lobatto Methods, Table 5 Coefficients of Lobatto IIINW for

s D 2; 3 [19]

0
1

2

1

2

1 �
1

2

1

2

1

2

1

2

0
1

6
0 �

1

6

1

2

1

12

5

12
0

1
1

2

1

3

1

6

1

6

2

3

1

6

Consider, for example, a system of DAEs of the

form:
d

dt
y D f .t; y; �/; 0 D k.t; y/

where Dyk.t; y/D�f .t; y; �/ is nonsingular. Lobatto

methods can be applied to this class of problems while

preserving their classical order of convergence [14].

For example, the application of the two-stage Lobatto

IIID method can be expressed as:

Yn1Dyn C
hn

4
.f .tn; Yn1; �n1/  f .tnC1; Yn2; �n2//;

Yn2DynC
hn

4
.3f .tn; Yn1; �n1/Cf .tnC1; Yn2; �n2//;

ynC1Dyn C
hn

2
.f .tn; Yn1; �n1/C f .tnC1; Yn2; �n2//;

0D
1

2
.k.tn; Yn1/C k.tnC1; Yn2//;

0Dk.tnC1; ynC1/:

For such DAEs, a combination of Gauss and Lobatto

coefficients is also considered in [18]. Consider now

overdetermined system of DAEs (ODAEs) of the form:

d

dt
q D v.t; q; p/;

d

dt
p D f .t; q; p; �/; 0 D g.t; q/;

0 D Dt g.t; q/CDqg.t; q/v.t; q; p/ (9)

where Dqg.t; q/Dpv.t; q; p/D�f .t; q; p; �/ is non-

singular. Very general Lobatto methods can be ap-

plied to this type of ODAEs [13]. Hamiltonian and
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Lagrangian systems with holonomic constraints can be

expressed in the form (9). For such ODAEs, the appli-

cation of Lobatto IIIA and IIIB methods can be shown

to preserve their classical order of convergence, to be

variational integrators, and to preserve a symplectic

two-form [8, 11, 12, 17]. For example, the application

of the two-stage Lobatto IIIA and IIIB method reads:

qnC1Dqn C
hn

2

 

v
 

tn; qn; pnC1=2

�

Cv
 

tnC1; qnC1; pnC1=2

��

;

pnC1=2Dpn C
hn

2
f
 

tn; qn; pnC1=2; �n1

�

;

0Dg.tnC1; qnC1/;

pnC1DpnC1=2 C
hn

2
f
 

tnC1; qnC1; pnC1=2; �n2

�

0DDt g.tnC1; qnC1/

CDqg.tnC1; qnC1/v.tnC1; qnC1; pnC1/:

Gauss methods with s stages can also be applied in

combination with Lobatto methods with sC1 stages for

this type of ODAEs when f .t; q; p; �/ is decomposed

in f .t; q; p/ C r.t; q; �/ and they also possess these

aforementioned properties while generally requiring

less computational effort [15]. For example, the appli-

cation of the midpoint-trapezoidal method (the .1; 1/-

Gauss-Lobatto SPARK method of Jay [15]) reads:

Qn1Dqn C
hn

2
v.tnC1=2; Qn1; Pn1/ D

1

2
.qn C qnC1/;

Pn1Dpn C
hn

2
f .tnC1=2; Qn1; Pn1/

C
hn

2
r.tn; qn; �n1/;

qnC1Dqn C hnv.tnC1=2; Qn1; Pn1/;

pnC1Dpn C hnf .tnC1=2; Qn1; Pn1/

Chn

�

1

2
r.tn; qn; �n1/C

1

2
r.tnC1; qnC1; �n2/

�

;

0Dg.tnC1; qnC1/;

0DDt g.tnC1; qnC1/

CDqg.tnC1; qnC1/v.tnC1; qnC1; pnC1/:

Lobatto Methods for Some Other Classes
of Problems

Lobatto IIIA methods have been considered for bound-

ary value problems (BVP) due to their good stability

properties [1, 2]. The MATLAB code bvp4c for BVP

is based on three-stage collocation at Lobatto points,

hence it is equivalent to the three-stage Lobatto IIIA

method [16]. Lobatto methods have also been applied

to delay differential equations (DDEs) [3]. The combi-

nation of Lobatto IIIA and IIIB methods has also been

considered for the discrete multisymplectic integration

of certain Hamiltonian partial differential equations

(PDEs) such as the nonlinear Schrödinger equation and

certain nonlinear wave equations [20].
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Introduction

The logarithmic norm is a real-valued functional on

operators, quantifying the notions of definiteness for

matrices; monotonicity for nonlinear maps; and ellip-

ticity for differential operators. It is defined either in

terms of an inner product in Hilbert space, or in terms

of the operator norm on a Banach space.

The logarithmic norm has a wide range of appli-

cations in matrix theory, stability theory, and numer-

ical analysis. It offers various quantitative bounds on

(functions of) operators, operator spectra, resolvents,

Rayliegh quotients, and the numerical range. It also

offers error bounds and stability estimates in initial

as well as boundary value problems and their dis-

cretizations. Some special fields in mathematics, such

as semigroup theory, rely on notions that are strongly

related to the logarithmic norm.

Let j � j denote an arbitrary vector norm on C
d ,

as well as its subordinate operator norm on Cd�d .

The classical definition of the logarithmic norm of

A 2 Cd�d is

M ŒA� D lim
h!0C

jI C hAj  1

h
: (1)

It is easily computed for the most common norms,

see Table 1. In Hilbert space, where the norm is

generated by an inner product jxj2 D hx; xi, one may

alternatively define the least upper bound logarithmic

norm M ŒA� and the greatest lower bound logarithmic

norm mŒA� such that for all x

mŒA� � jxj2 � Re hx; Axi � M ŒA� � jxj2: (2)

Unlike (1), this also admits unbounded operators,

while still agreeing with (1) if A is bounded, in which

case it also holds that

mŒA� D lim
h!0�

jI C hAj  1

h
: (3)

The functionals M Œ�� and mŒ�� can further be extended

to nonlinear maps, both in a Banach and a Hilbert space

setting, so that the above definitions become special

cases for linear operators.

The logarithmic norm has a large number of useful

properties and satisfy several important inequalities.

For A; B 2 Cd�d , ˛ 2 R and z 2 C, some of the

most important are:

1.  glbŒA� � M ŒA� � jAj

2. M Œ˛A� D ˛M ŒA�; ˛ � 0

3. M ŒAC zI � D M ŒA�C Re z

4. mŒA� D  M Œ A�

5. M ŒA�CmŒB� � M ŒAC B� � M ŒA�CM ŒB�

6. jM ŒA� M ŒB�j � jA Bj

7. jmŒA� mŒB�j � jA Bj

8. etmŒA� � jetAj � etM ŒA�; t � 0

9. M ŒA� < 0 ) jA�1j �  1=M ŒA�

10. mŒA� > 0 ) jA�1j � 1=mŒA�:


