On modified Newton iterations for SPARK methods applied to constrained systems in mechanics

Laurent O. Jay
Department of Mathematics, 14 MacLean Hall, The University of Iowa, Iowa City, IA 52242-1419, USA.
E-mail: ljay@math. uiowa.edu and na.ljay@na-net.ornl.gov.

Abstract

The application of modified Newton iterations to the solution of SPARK methods applied to a large class of overdetermined differential-algebraic equations (ODAEs) is described in some details. These ODAEs include the formulation of systems in mechanics with holonomic and nonholonomic constraints.

Keywords: Differential-algebraic equations, holonomic constraints, mechanical systems, nonholonomic constraints, SPARK methods. PACS: 02.60.Lj, 45.10.Db, 45.20.Jj. AMS-MSC: 65L05, 65L06, 65L80, 70F20, 70F25, 70G45, 70H03, 70H05, 70H15, 70 H 45.

1. INTRODUCTION

We consider the following class of systems of implicit, partitioned, additive, and overdetermined differential-algebraic equations (ODAEs)

$$
\begin{equation*}
\frac{d}{d t} y=v(t, y, z), \quad \frac{d}{d t} p(t, y, z)=f(t, y, z, \psi)+r(t, y, \lambda), \quad 0=g(t, y), \quad 0=g_{t}(t, y)+g_{y}(y) v(t, y, z), \quad 0=k(t, y, z) \tag{1}
\end{equation*}
$$

where we assume that

$$
\left(\begin{array}{ccc}
p_{z} & -r_{\lambda} & -f_{\psi} \tag{2}\\
g_{y} v_{z} & O & O \\
k_{z} & O & O
\end{array}\right) \quad \text { is nonsingular, }
$$

and that

$$
\left(\begin{array}{cc}
p_{z} & -r_{\lambda} \tag{3}\\
g_{y} v_{z} & O
\end{array}\right) \quad \text { is nonsingular. }
$$

The variable $t \in \mathbb{R}$ is the independent variable, $y \in \mathbb{R}^{n_{y}}$ and $z \in \mathbb{R}^{n_{z}}$ are the differential variables, $\lambda \in \mathbb{R}^{n_{\lambda}}$ and $\psi \in \mathbb{R}^{n_{\psi}}$ are the algebraic variables. The initial values $\left(y_{0}, z_{0}\right)$ at t_{0} are assumed to be given and consistent, i.e., the constraints in (1) must be satisfied. Sufficient differentiability of the functions v, p, f, r, g, k are also assumed to ensure existence and uniqueness of a solution. The ODAEs (1) include the formulation of mechanical systems with mixed constraints of holonomic, nonholonomic, scleronomic, and rheonomic types. In mechanics the quantities y, v, p represent respectively certain coordinates, their velocities, and their momenta; the right-hand side of the second equations in (1) contains forces acting on the system; the corresponding ODAEs can be derived from the Lagrange-d'Alembert principle; λ and ψ are Lagrange multipliers associated respectively to the holonomic constraints $0=g(t, y), 0=g_{t}(t, y)+g_{y}(y) v(t, y, z)$ and to the nonholonomic constraints $0=k(t, y, z)$.

2. (s, s)-SPARK METHODS

One step of an (s, s)-SPARK method applied to the system of ODAEs (1) with consistent initial values $\left(y_{0}, z_{0}\right)$ at t_{0} and stepsize h is given as follows

$$
Y_{i}=y_{0}+h \sum_{j=1}^{s} a_{i j} v\left(T_{j}, Y_{j}, Z_{j}\right) \quad \text { for } i=1, \ldots, s
$$

$$
\begin{aligned}
p\left(T_{i}, Y_{i}, Z_{i}\right) & =p\left(t_{0}, y_{0}, z_{0}\right)+h \sum_{j=1}^{s} \widehat{a}_{i j} f\left(T_{j}, Y_{j}, Z_{j}, \Psi_{j}\right)+h \sum_{j=0}^{s} \widetilde{a}_{i j} r\left(\widetilde{T}_{j}, \widetilde{Y}_{j}, \widetilde{\Lambda}_{j}\right) \quad \text { for } i=1, \ldots, s, \\
\widetilde{Y}_{i} & =y_{0}+h \sum_{j=1}^{s} \bar{a}_{i j} v\left(T_{j}, Y_{j}, Z_{j}\right) \quad \text { for } i=0,1, \ldots, s, \\
0 & =g\left(\widetilde{T}_{i}, \widetilde{Y}_{i}\right) \quad \text { for } i=0,1, \ldots, s, \\
0 & =\sum_{j=1}^{s} b_{j} c_{j}^{i-1} k\left(T_{j}, Y_{j}, Z_{j}\right) \quad \text { for } i=1, \ldots, s-1, \\
y_{1} & =y_{0}+h \sum_{j=1}^{s} b_{j} v\left(T_{j}, Y_{j}, Z_{j}\right), \\
p\left(t_{1}, y_{1}, z_{1}\right) & =p\left(t_{0}, y_{0}, z_{0}\right)+h \sum_{j=1}^{s} \widehat{b}_{j} f\left(T_{j}, Y_{j}, Z_{j}, \Psi_{j}\right)+h \sum_{j=0}^{s} \widetilde{b}_{j} r\left(\widetilde{T}_{j}, \widetilde{Y}_{j}, \widetilde{\Lambda}_{j}\right), \\
0 & =g\left(t_{1}, y_{1}\right), \\
0 & =g_{t}\left(t_{1}, y_{1}\right)+g_{y}\left(t_{1}, y_{1}\right) v\left(t_{1}, y_{1}, z_{1}\right), \\
0 & =k\left(t_{1}, y_{1}, z_{1}\right)
\end{aligned}
$$

where

$$
t_{1}:=t_{0}+h, \quad T_{i}:=t_{0}+c_{i} h \quad \text { for } i=1, \ldots, s, \quad \widetilde{T}_{i}:=t_{0}+\widetilde{c}_{i} h \quad \text { for } i=0,1, \ldots, s
$$

For Lobatto coefficients a similar definition was proposed in [1, 2]. The definition given here is more general as it can also include for example Gauss and Radau coefficients. We have four sets of coefficients $\left(b_{j}, a_{i j}, c_{i}\right),\left(\widehat{b}_{j}, \widehat{a}_{i j}\right),\left(\widetilde{b}_{j}, \widetilde{a}_{i j}\right)$, $\left(\bar{a}_{i j}, \widetilde{c}_{i}\right)$, where we have defined

$$
c_{i}:=\sum_{j=1}^{s} a_{i j} \quad \text { for } i=1, \ldots, s, \quad \widetilde{c}_{i}:=\sum_{j=1}^{s} \bar{a}_{i j} \quad \text { for } i=0,1, \ldots, s .
$$

We assume that $\bar{a}_{0 j}=0$ for $j=1, \ldots, s$ which implies that $\widetilde{Y}_{0}=y_{0}, \widetilde{c}_{0}=0, \widetilde{T}_{0}=t_{0}$, and $0=g\left(\widetilde{T}_{0}, \widetilde{Y}_{0}\right)=g\left(t_{0}, y_{0}\right)$ is thus automatically satisfied. We also assume that $\bar{a}_{s j}=b_{j}$ for $j=1, \ldots, s$ which implies that $\widetilde{Y}_{s}=y_{1}, \widetilde{c}_{s}=1$, and $\widetilde{T}_{s}=t_{1}$. Hence, from $0=g\left(\widetilde{T}_{s}, \widetilde{Y}_{s}\right)$ the condition $0=g\left(t_{1}, y_{1}\right)$ is also automatically satisfied. Notice that the coefficients $\left(b_{j}, c_{j}\right)_{j=1}^{s}$ and $\left(\widetilde{b}_{j}, \widetilde{c}_{j}\right)_{j=0}^{s}$ generally correspond to two distinct quadrature formulas. We assume $b_{i} \neq 0, c_{i} \neq c_{j}$ for $i \neq j$, and the matrix A to be invertible. We use the following notation, $\mathbb{1}_{s}:=(1,1, \ldots, 1)^{T} \in \mathbb{R}^{s}, 0_{s}:=(0,0, \ldots, 0)^{T} \in \mathbb{R}^{s}$, $e_{s+1}:=(0,0, \ldots, 0,1)^{T} \in \mathbb{R}^{s+1}, I_{s}:=\operatorname{diag}(1,1, \ldots, 1) \in \mathbb{R}^{s \times s}, C:=\operatorname{diag}\left(c_{1}, c_{2}, \ldots, c_{s}\right) \in \mathbb{R}^{s \times s}$, and we define

$$
\alpha:=\binom{A}{b^{T}} \in \mathbb{R}^{(s+1) \times s}, \quad \widehat{\alpha}:=\binom{\widehat{A}}{\widehat{b}^{T}} \in \mathbb{R}^{(s+1) \times s}, \quad \widetilde{\alpha}:=\binom{\widetilde{A}}{\widetilde{b}^{T}} \in \mathbb{R}^{(s+1) \times(s+1)} .
$$

We assume that $\widetilde{\alpha}$ is invertible. We also define

$$
\widetilde{Q}:=\left(\begin{array}{ll}
I & 0_{s}
\end{array}\right)+A M^{-1} \mathbb{1}_{s}\left(\begin{array}{cc}
-b^{T} A^{-1} & 1
\end{array}\right) \in \mathbb{R}^{s \times(s+1)}
$$

where we assume that

$$
M:=\left(\begin{array}{c}
b^{T} \\
b^{T}-b^{T} A \\
\vdots \\
b^{T}-(s-1) b^{T} C^{s-2} A
\end{array}\right) \in \mathbb{R}^{s \times s} \quad \text { is invertible. }
$$

We define

$$
\gamma^{T}=\left(\begin{array}{ll}
\widetilde{\gamma}^{T} & \gamma_{s+1}
\end{array}\right)^{T}:=\gamma_{s+1}\left(\begin{array}{cc}
-b^{T} A^{-1} & 1
\end{array}\right) \neq 0 \in \mathbb{R}^{s+1}
$$

which satisfies the s orthogonality conditions $\gamma^{T} \alpha=0$. We define the invertible matrix Q by

$$
Q:=\binom{\widetilde{Q}}{\gamma^{T}} \in \mathbb{R}^{(s+1) \times(s+1)}
$$

and the matrix \check{Q} by

$$
\check{Q}:=Q\left(\begin{array}{cc}
\check{A}^{-1} & 0_{s} \\
0_{s}^{T} & 1
\end{array}\right) \in \mathbb{R}^{(s+1) \times(s+1)}
$$

where we assume that

$$
\check{A}:=\left(\begin{array}{ccc}
\bar{a}_{11} & \cdots & \bar{a}_{1 s} \\
\vdots & \ddots & \vdots \\
\bar{a}_{s 1} & \cdots & \bar{a}_{s s}
\end{array}\right) \in \mathbb{R}^{s \times s} \quad \text { is invertible }
$$

and that $e_{s+1}^{T} Q \widehat{\alpha}=0_{s}$, for example by having $\widehat{\alpha}=\alpha$. More details can be found in [3, 4, 5].

2.1. Reformulation of (s, s)-SPARK methods

To solve the nonlinear system of equations for (s, s)-SPARK methods we consider the application of modified Newton methods. In order to obtain an efficient implementation requiring only the decomposition of the 2 matrices in (2) and (3) we reformulate the nonlinear system of equations of (s, s)-SPARK methods equivalently as follows

$$
\begin{align*}
& 0=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{s} \\
y_{1}
\end{array}\right)-\mathbb{1}_{s+1} \otimes y_{0}-h\left(\alpha \otimes I_{n_{y}}\right)\left(\begin{array}{c}
v\left(T_{1}, Y_{1}, Z_{1}\right) \\
\vdots \\
v\left(T_{s}, Y_{s}, Z_{s}\right)
\end{array}\right), \tag{4}\\
& 0=\left(Q \otimes I_{n_{z}}\right)\left(\left(\begin{array}{c}
p\left(T_{1}, Y_{1}, Z_{1}\right) \\
\vdots \\
p\left(T_{s}, Y_{s}, Z_{s}\right) \\
p\left(t_{1}, y_{1}, z_{1}\right)
\end{array}\right)-\mathbb{1}_{s+1} \otimes p\left(t_{0}, y_{0}, z_{0}\right)-h\left(\widehat{\alpha} \otimes I_{n_{z}}\right)\left(\begin{array}{c}
f\left(T_{1}, Y_{1}, Z_{1}, \Psi_{1}\right) \\
\vdots \\
f\left(T_{s}, Y_{s}, Z_{s}, \Psi_{s}\right)
\end{array}\right)\right. \tag{5}\\
& \left.-h\left(\widetilde{\boldsymbol{\alpha}} \otimes I_{n_{z}}\right)\left(\begin{array}{c}
r\left(\widetilde{T}_{1}, \widetilde{Y}_{1}, \widetilde{\Lambda}_{1}\right) \\
\vdots \\
r\left(\widetilde{T}_{s}, \widetilde{Y}_{s}, \widetilde{\Lambda}_{s}\right)
\end{array}\right)\right), \\
& 0=\left(\check{Q} \otimes I_{n_{\lambda}}\right)\left(\begin{array}{c}
\frac{1}{h} g\left(\widetilde{T}_{1}, y_{0}+h \sum_{j=1}^{s} \bar{a}_{1 j} v\left(T_{j}, Y_{j}, Z_{j}\right)\right) \\
\vdots \\
\frac{1}{h} g\left(\widetilde{T}_{s}, y_{0}+h \sum_{j=1}^{s} \bar{a}_{s j} v\left(T_{j}, Y_{j}, Z_{j}\right)\right) \\
g_{t}\left(t_{1}, y_{1}\right)+g_{y}\left(t_{1}, y_{1}\right) v\left(t_{1}, y_{1}, z_{1}\right)
\end{array}\right), \tag{6}\\
& 0=\left(\widetilde{Q} \otimes I_{n_{\psi}}\right)\left(\begin{array}{c}
k\left(T_{1}, Y_{1}, Z_{1}\right) \\
\vdots \\
k\left(T_{s}, Y_{S}, Z_{S}\right) \\
k\left(t_{1}, y_{1}, z_{1}\right)
\end{array}\right) \tag{7}
\end{align*}
$$

where

$$
\left(\begin{array}{c}
\widetilde{Y}_{0} \\
\widetilde{Y}_{1} \\
\vdots \\
\tilde{\widetilde{Y}}_{s}
\end{array}\right):=\mathbb{1}_{s+1} \otimes y_{0}-h\left(\bar{A} \otimes I_{n_{y}}\right)\left(\begin{array}{c}
v\left(T_{1}, Y_{1}, Z_{1}\right) \\
\vdots \\
v\left(T_{s}, Y_{s}, Z_{s}\right)
\end{array}\right)
$$

2.2. Modified Jacobian and modified Newton iterations

The modified Jacobian of the nonlinear system of equations (4)-(5)-(6)-(7) can be taken as

$$
\left(\begin{array}{llll}
I_{s+1} \otimes I_{n_{y}} & O & O & O \\
O & Q \otimes p_{z} & -h Q \widetilde{\alpha} \otimes r_{\lambda} & -h Q \widehat{\alpha} \otimes f_{\psi} \\
O & Q \otimes g_{y} v_{z} & O & O \\
O & \widetilde{Q} \otimes k_{z} & O & O
\end{array}\right)
$$

where the partial derivatives $p_{z}, f_{\psi}, r_{\lambda}, g_{y}, k_{z}, v_{z}$ are evaluated for example at $t_{0}, y_{0}, z_{0}, \lambda_{0}, \psi_{0}$. We consider intermediate quantities to solve the linear systems of the modified Newton iterations. First we can obtain a block diagonal linear system with s matrix blocks (2) of dimension $n_{z}+n_{\lambda}+n_{\psi}$ for

$$
\left(\begin{array}{c}
\Delta_{1}^{z} \\
\vdots \\
\Delta_{s}^{z}
\end{array}\right):=\left(\widetilde{Q} \otimes I_{n_{z}}\right)\left(\begin{array}{c}
\Delta Z_{1} \\
\vdots \\
\Delta Z_{s} \\
\Delta z_{1}
\end{array}\right), \quad\left(\begin{array}{c}
\Delta_{1}^{\lambda} \\
\vdots \\
\Delta_{s}^{\lambda}
\end{array}\right):=h\left(\widetilde{Q} \widetilde{\alpha} \otimes I_{n_{\lambda}}\right)\left(\begin{array}{c}
\Delta \widetilde{\Lambda}_{0} \\
\Delta \widetilde{\Lambda}_{1} \\
\vdots \\
\Delta \widetilde{\Lambda}_{s}
\end{array}\right), \quad\left(\begin{array}{c}
\Delta_{1}^{\psi} \\
\vdots \\
\Delta_{s}^{\psi}
\end{array}\right):=h\left(\widetilde{Q} \widehat{\alpha} \otimes I_{n_{\psi}}\right)\left(\begin{array}{c}
\Delta \Psi_{1} \\
\vdots \\
\Delta \Psi_{s}
\end{array}\right)
$$

By invertibility of $\widetilde{Q} \widehat{\alpha}$ we obtain the values $\Delta \Psi_{1}, \ldots, \Delta \Psi_{s}$ from

$$
\left(\begin{array}{c}
\Delta \Psi_{1} \\
\vdots \\
\Delta \Psi_{s}
\end{array}\right)=\frac{1}{h}\left((\widetilde{Q} \widehat{\alpha})^{-1} \otimes I_{n_{\psi}}\right)\left(\begin{array}{c}
\Delta_{1}^{\psi} \\
\vdots \\
\Delta_{s}^{\psi}
\end{array}\right) .
$$

We also obtain a linear system of dimension $n_{z}+n_{\lambda}$ with matrix (3) for

$$
\Delta_{s+1}^{z}:=\left(\gamma^{T} \otimes I_{n_{z}}\right)\left(\begin{array}{c}
\Delta Z_{1} \\
\vdots \\
\Delta Z_{s} \\
\Delta z_{1}
\end{array}\right), \quad \Delta_{s+1}^{\lambda}:=h\left(\gamma^{T} \widetilde{\alpha} \otimes I_{n_{\lambda}}\right)\left(\begin{array}{c}
\Delta \widetilde{\Lambda}_{0} \\
\Delta \widetilde{\Lambda}_{1} \\
\vdots \\
\Delta \widetilde{\Lambda}_{s}
\end{array}\right)
$$

By invertibility of Q and $\widetilde{\alpha}$ we then obtain the values $\Delta Z_{1}, \ldots, \Delta Z_{s}, \Delta z_{1}$ and $\Delta \widetilde{\Lambda}_{0}, \Delta \widetilde{\Lambda}_{1}, \ldots, \Delta \widetilde{\Lambda}_{s}$ from

$$
\left(\begin{array}{c}
\Delta Z_{1} \\
\vdots \\
\Delta Z_{s} \\
\Delta z_{1}
\end{array}\right)=\left(Q^{-1} \otimes I_{n_{z}}\right)\left(\begin{array}{c}
\Delta_{1}^{z} \\
\vdots \\
\Delta_{s}^{z} \\
\Delta_{s+1}^{z}
\end{array}\right), \quad\left(\begin{array}{c}
\Delta \widetilde{\Lambda}_{0} \\
\Delta \widetilde{\Lambda}_{1} \\
\vdots \\
\Delta \widetilde{\Lambda}_{s}
\end{array}\right)=\frac{1}{h}\left((Q \widetilde{\alpha})^{-1} \otimes I_{n_{\lambda}}\right)\left(\begin{array}{c}
\Delta_{1}^{\lambda} \\
\vdots \\
\Delta_{s}^{\lambda} \\
\Delta_{s+1}^{\lambda}
\end{array}\right)
$$

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant No. 0654044.

REFERENCES

1. L. O. Jay, SIAM J. Sci. Comput. 20, 416-446 (1998).
2. L. O. Jay, Numer. Algorithms 31, 171-191 (2002).
3. L. O. Jay, Math. Comput. 75, 641-654 (2006).
4. L. O. Jay, Lagrange-d'Alembert SPARK integrators for nonholonomic Lagrangian systems, Tech. Rep. 175, Dept. of Mathematics, Univ. of Iowa, USA (2009).
5. L. O. Jay, Lagrange-d'Alembert SPARK integrators for constrained systems in mechanics, Tech. Rep. 176, Dept. of Mathematics, Univ. of Iowa, USA (2009).
