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Abstract
Recently, numerous numerical schemes for solving linear time fractional diffusion-
wave equations have been developed. However, most of these methods require
relatively high smoothness in time and need extensive computational work and large
storage due to the nonlocal property of fractional derivatives. In this paper, an effi-
cient scheme and an alternating direction implicit (ADI) scheme are constructed
for one-dimensional and two-dimensional nonlinear time fractional diffusion-wave
equations based on their equivalent partial integro-differential equations. The pro-
posed methods require weaker smoothness in time compared to the methods based on
discretizing fractional derivative directly. They are proved to be unconditionally sta-
ble and convergent with first-order of accuracy in time and second order of accuracy
in space. Fast implementations of the proposed methods are presented by the sum-of-
exponentials (SOE) approximation for the kernel t−2+α on the interval [τ, T ], where
1 < α < 2. Finally, numerical experiments are carried out to illustrate the theo-
retical results of our direct schemes and demonstrate their powerful computational
performances.
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1 Introduction

In this paper, we consider numerical methods for nonlinear time fractional diffusion-
wave problems of the following form

C
0 Dα

t u(X, t) = �u(X, t) + f (X, t, u(X, t)), X ∈ �, 0 < t ≤ T , 1 < α < 2,
(1.1)

with initial conditions

u(X, 0) = φ(X), ut (X, 0) = ϕ(X), X ∈ �, (1.2)

and boundary condition

u(X, t) = ψ(X, t), X ∈ ∂�, 0 < t ≤ T , (1.3)

where the spatial variable X can be seen as the one-dimensional X = x or the two-
dimensional X = (x, y), � is the Laplacian, � is the domain of X, and ∂� and �

are the boundary and the closure of �, respectively. f (X, t, u) is a nonlinear function
of unknown u ∈ R and fulfills a Lipschitz condition with respect to u. φ(X), ϕ(X),
and ψ(X, t) are assumed to be sufficiently smooth functions. C

0 Dα
t u is the temporal

Caputo derivative of order α defined as

C
0 Dα

t u(X, t) = 1


(2 − α)

∫ t

0
(t − s)1−α ∂2u(X, s)

∂s2
ds. (1.4)

The time fractional diffusion-wave (1.1) possesses the remarkable feature that it
can be considered as intermediate between parabolic diffusion equations and hyper-
bolic wave equations. It has been widely applied in the modeling of anomalous
diffusive processes and in the description of viscoelastic damping materials, etc. [4,
16, 18, 22, 29]. However, due to the nonlocal property of fractional derivatives and
fractional integrals, it is difficult or even impossible to obtain analytical solutions of
time fractional diffusion-wave equations (see [2, 26, 28] for examples). Thus, there
has been a growing interest to develop numerical methods for solving time fractional
diffusion-wave equations.

In recent years, numerous numerical methods for solving time fractional diffusion-
wave equations, especially for the linear ones, have been proposed, discussed, and
analyzed. These numerical methods can be classified into two groups. The meth-
ods in the first group are constructed from discretizing the Caputo derivative in (1.1)
directly (see [1, 12, 17, 30, 32, 35, 36, 42] for examples). In [32], Sun and Wu pro-
posed a 3 − α order approximation for the Caputo derivative, constructed a fully
discrete difference scheme for linear time fractional diffusion-wave equations, and
gave a theoretical analysis. Li et al. in [17] applied a finite difference method in time
and a finite element method in space for time-space fractional diffusion-wave equa-
tions, and analyzed the semidiscrete and fully discrete numerical approximations.
In [30], Mustapha and Schötzau established an hp-version time-stepping discontin-
uous Galerkin method for fractional diffusion-wave evolution problems and showed
that exponential rates of convergence in the number of temporal degrees of free-
dom were achieved for solutions with initial singularity. In [36], Wang and Vong
presented a high-order alternating direction implicit (ADI) finite difference scheme
for the two-dimensional time fractional diffusion-wave equation, with temporal and
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spatial accuracy order equal to two and four, respectively. In [42], Zhang et al. pro-
posed a compact difference approach for spatial discretization and an ADI method
for the time-stepping and proved that the scheme was unconditionally stable and
H1-norm convergent with 3 − α order in time and fourth order in space. Then,
a similar ADI scheme was also constructed by Wang et al. in [35]. Fairweather
et al. in [12] formulated a numerical method for a two-dimensional time fractional
diffusion-wave equation based on orthogonal spline collocation in space and ADI
Crank-Nicolson L1-approximation in time, and proved that this scheme was stable
and super-convergent in various norms. In [1], Abbaszadeh and Dehghan proposed
an improved meshless method for solving two-dimensional distributed order time
fractional diffusion-wave equation and investigated the uniqueness, existence, and
stability of the new schemes and obtained an error estimate for the full-discrete
schemes. All those methods presented above are based on direct approximations to
the Caputo derivative. We remark that all these approximations based on uniform
grids often require the high smoothness in time, such as u(·, t) ∈ C3([0, T ]). How-
ever, high smoothness in fact does not generally hold in fractional systems due to the
singularities of fractional derivatives (see [15, 40] and references therein).

The second group of methods for time fractional diffusion-wave equations is based
on the partial integro-differential equations which are equivalent to (1.1) by discretiz-
ing the Riemman-Liouville integral [5, 6, 8, 9, 13, 19, 27, 38, 39, 41]. It is well-known
that the numerical methods constructed for integral equations are more stable than
for the corresponding differential equations and often need less smoothness require-
ments (see [11] and the references therein). In [13], Huang et al. constructed two
finite difference schemes to solve a class of time fractional diffusion-wave equations
based on their equivalent partial integro-differential equations, and proved that the
proposed two schemes were convergent and stable. Yang et al. in [38] extended the
results and constructed a difference scheme with α-order accuracy in time by using
the second-order convolution quadrature formula proposed in [24] by Lubich. In [19],
Li et al. presented a fast and efficient numerical method to solve a two-dimensional
fractional evolution equation by using a second-order difference quotient in space,
the backward Euler in time and the first-order convolution quadrature approximat-
ing the integral term. Bhrawya et al. in [5] presented a spectral numerical method
for solving fractional diffusion-wave equations and fractional wave equations with
damping. The proposed method was based on Jacobi tau spectral procedure together
with the Jacobi operational matrix for fractional Riemann-Liouville integrals. Zeng
in [41] proposed two stable and one conditionally stable finite difference schemes
of second order in both time and space for the time fractional super-diffusion equa-
tion by means of the fractional trapezoidal rule and the generalized Newton-Gregory
formula. Chen and Li in [6] constructed a novel compact finite difference scheme
for solving the fractional diffusion-wave equation based on its equivalent integro-
differential equation. The product trapezoidal scheme was employed to treat the
fractional integral term. In [8], Chen et al. proposed and analyzed a second-order
backward differentiation formula ADI difference scheme for the two-dimensional
fractional evolution equation based on standard central difference approximation in
space and second-order convolution quadrature in time. And then stability and con-
vergence of the proposed difference scheme in the L2 norm were derived by the
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energy method. In [9], Dehghan and Abbaszadeh constructed a finite difference-
spectral element method for nonlinear fractional evolution equations and discussed
their stability and convergence. Yang et al. in [39] devised a high-order numerical
scheme for an anomalous diffusion equation based on an equivalent transformation
by the use of a smooth operator. The main advantage of this approach was its high
convergence rate even though the solution had lower regularity at the starting point.
Lyu and Vong in [27] proposed a finite difference scheme with temporal nonuniform
mesh for time fractional Benjamin-Bona-Mahony equations with non-smooth solu-
tions. The proposed scheme was a linearized scheme on a nonuniform mesh deduced
from some high-order interpolation formulas to the Riemann-Liouville integral.

As is known, the above methods to approximate time fractional derivatives and
fractional integrals require the storage of the solution at all previous time steps and
the computational complexity of these approximations is O(N2), where N is the
number of time steps. The computational work is large when N is a large number.
Jiang et al. in [14] proposed a fast evaluation of the Caputo derivative by the sum-
of-exponentials (SOE) approximation and then applied this fast evaluation to solve a
time fractional diffusion equation. The resulting fast scheme can greatly reduce the
computational cost and the memory and is very suitable for long-time simulations.
The idea of this fast evaluation was also extended in [37] to improve the performance
of L2 − 1σ formula.

To the best of our knowledge, there still does not exist fast schemes for solv-
ing time fractional diffusion-wave equations based on equivalent partial integro-
differential equations, especially for nonlinear problems. Herein, an efficient scheme
and an ADI scheme are proposed for one-dimensional and two-dimensional non-
linear time fractional diffusion-wave equations based on equivalent partial integro-
differential equations. The proposed methods, constructed by the piecewise product
of right and left rectangular quadrature to the Riemann-Liouville integral, only
require u(·, t) ∈ C2([0, T ]) in time (note 1 < α < 2) and can be proved
to be unconditionally stable and convergent with first-order accuracy in time and
second-order accuracy in space. Fast implementations of the proposed methods are
presented based on the SOE approximation to the kernel t−2+α on the interval
[τ, T ]. The fast schemes obtained only need O(NNexp) computational cost where
Nexp is the number of exponentials to numerically calculate the nonlinear time frac-
tional diffusion-wave equations at a fixed spatial point. It is worth mentioning that
Lubich’s convolution quadratures [24] to the Riemann-Liouville integral cannot be
fast evaluated, because these quadratures are based on the generating functions.
Additionally, if the high-order piecewise approximations to the Riemann-Liouville
integral, such as the product trapezoidal approximation, is used, but it is difficult
to prove convergence although the deduced scheme can be fast calculated by SOE
technique (see [36]).

The paper is organized as follows. In Section 2, some preparations and useful
lemmas are discussed and proved. In Section 3, a finite difference scheme for the
one-dimensional nonlinear time fractional diffusion-wave equations is derived, and
the unconditional stability and convergence are proved. In Section 4, an ADI scheme
is formulated and analyzed for the two-dimensional problems. Fast implementations
of discretizing the Riemann-Liouville integral and the above proposed schemes are
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derived in Section 5. Numerical experiments are carried out in Section 6 to illus-
trate the theoretical results and demonstrate the performance of our schemes. Finally,
concluding remarks are given.

2 Preliminaries

In this section, we present basic definitions, some notations, and important lemmas
used throughout the remaining sections of this paper.

Lemma 2.1 (see [10, 13]). Equation (1.1) is equivalent to the following partial
integro-differential equation,

ut (X, t) = ϕ(X) + 0J
α−1
t �u(X, t) + 0J

α−1
t f (X, t, u), (2.1)

where 0J
β
t is the Riemann-Liouville integral operator of order β (0 < β < 1) defined

as

0J
β
t g(t) = 1


(β)

∫ t

0
(t − s)β−1g(s)ds,

where g(t) is a function with certain smoothness.

Lemma 2.2 Assume f (t) ∈ C1([0, T ]), then for any 0 < β < 1, the following two
approximations for the Riemann-Liouville integral hold

0J
β
t f (tn) = τβ


(β + 1)

n∑
k=1

c
β
n−kf (tk) + O(τ), (2.2)

and

0J
β
t f (tn) = τβ


(β + 1)

n∑
k=1

c
β
n−kf (tk−1) + O(τ), (2.3)

where tn = nτ , n is an integer and τ is a step size. cβ
k = (k +1)β −kβ for the integer

k ≥ 0.

In Lemma 2.2, the two approximations are constructed by the piecewise product
right and left rectangular quadrature to the Riemann-Liouville integral, respectively.
These two approximations with first-order accuracy can be used to discretize the
Riemann-Liouville integral under a weak smoothness assumption of the integrand
f (t), i.e., f (t) ∈ C1([0, T ]). This can provide enough accuracy in most situations of
practical scientific computing. In fact, a high smoothness requirement in fractional
system is often not available due to the properties of fractional derivatives and frac-
tional integral. Furthermore, (2.2) and (2.3) can be used to implicitly and explicitly
discretize the fractional systems with the Riemann-Liouville integral, respectively.
Now we only prove (2.2), the proof of (2.3) is similar.

Proof We have

1


(β)

∫ tk

tk−1

(tn − s)β−1ds = 1


(β)β
((tn − tk−1)

β − (tn − tk)
β) = τβ


(β + 1)
c
β
n−k .
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Let us consider the absolute error E between 0J
β
t f (tn) and τβ


(β+1)

n∑
k=1

c
β
n−kf (tk);

we have

E = | 1


(β)

n∑
k=1

∫ tk

tk−1

(tn − s)β−1f (s)ds − 1


(β)

n∑
k=1

f (tk)

∫ tk

tk−1

(tn − s)β−1ds |

= | 1


(β)

n∑
k=1

∫ tk

tk−1

(tn − s)β−1[f (s) − f (tk)]ds |

= | 1


(β)

n∑
k=1

∫ tk

tk−1

(tn − s)β−1[(s − tk)f
′(ξk)]ds |,

where ξk is a real number between s and tk . Note that for f (t) ∈ C1([0, T ]), from
the above formula, we have

E ≤ Cτ


(β)

n∑
k=1

∫ tk

tk−1

(tn − s)β−1ds = Cτ


(β)

∫ tn

0
(tn − s)β−1ds = Ct

β
n τ


(β + 1)
.

This completes the proof.

The following lemma, concerning the non-negative character of certain real
quadratic forms with convolution structure, plays an important role in our stability
and convergence analysis.

Lemma 2.3 (see [23]). Let {ωp}∞p=0 be a monotonously decreasing sequence of non-
negative real numbers with property ωp+1 + ωp−1 ≥ 2ωp (p ≥ 1), then for any
positive integer K and real vector (V1, V2, · · · , VK) ∈ R

K , it holds that

K∑
n=1

⎛
⎝n−1∑

p=0

ωpVn−p

⎞
⎠Vn ≥ 0. (2.4)

Actually, the inequality (2.4) is one of the key ingredients in the numerical analysis
of the partial integro-differential equation (see [34]). An alternative way to obtain

(2.4) is that if {ωp}∞p=0 is a sequence of real numbers such that â(z) =
∞∑

n=0
ωnz

n is

analytic in the open unit disk D = {z ∈ C :| z |< 1} and Re (̂a(z)) ≥ 0 for z ∈ D,
see [8] and [25] for examples. Obviously, it may be easier to check if the weights c

β
n

in Lemma 2.2 meet the conditions in Lemma 2.3. Thus, we have

Lemma 2.4 For 0 < β < 1, the weights {cβ
n }∞n=0 defined in Lemma 2.2 form a real

monotonously decreasing positive sequence with c
β

n+1 + c
β

n−1 ≥ 2cβ
n , (n ≥ 1).

Proof Rewrite c
β
n as

cβ
n = (n + 1)β − nβ = β

∫ n+1

n

tβ−1dt .
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From this expression, it can be deduced that {cβ
n }∞n=0 form a real monotonously

decreasing positive sequence.
To prove c

β

n+1 + c
β

n−1 ≥ 2cβ
n , (n ≥ 1), we note that c

β

n+1 + c
β

n−1 − 2cβ
n =

(c
β

n+1 − c
β
n ) − (c

β
n − c

β

n−1). Thus, the result can be achieved if {cβ

n+1 − c
β
n }∞n=0 is an

increasing sequence. Namely, we only need to prove {(n+2)β −2(n+1)β +nβ}∞n=0
is increasing. Let f (x) = (x + 2)β − 2(x + 1)β + xβ , then this result is true due to
the fact that

f ′(x) = β(x + 2)β−1 − 2β(x + 1)β−1 + βxβ−1

= β
[
(x + 2)β−1 − 2(x + 1)β−1 + xβ−1

]

= β(β − 1)

[∫ x+2

x+1
tβ−2dt −

∫ x+1

x

tβ−2dt

]
> 0.

The proof is completed.

Lemma 2.5 (see [33]). Suppose f (t) ∈ C2([tn−1, tn]), then the following approxi-
mation with integral remainder holds

δtf (tn) = f (tn) − f (tn−1)

τ
= f ′(tn) − τ

2

∫ 1

0
f ′′(tn − sτ )(1 − s)ds. (2.5)

Moreover, if g(x) ∈ C4([xi−1, xi+1]) and ξ(s) = g(4)(xi + sh) + g(4)(xi − sh), then

δ2xg(xi) = g(xi+1) − 2g(xi) + g(xi−1)

h2
= g′′(xi) + h2

24

∫ 1

0
ξ(s)(1 − s)3ds. (2.6)

tn and τ are defined in Lemma 2.2, and xi = ih is a point with the integer i and the
step size h.

To implement a fast evaluation of the Riemann-Liouville integral, the following
lemma is quite helpful. It establishes an error estimate of the SOE approximation to
the kernel t−2+α with 1 < α < 2 on the interval [τ, T ].

Lemma 2.6 (see [14]). For the power function t−β(0 < β < 1), the following
sum-of-exponentials approximation holds

∣∣∣∣∣∣t
−β −

Nexp∑
i=1

ωie
−si t

∣∣∣∣∣∣ ≤ ε, t ∈ [τ, T ], (2.7)

where si and ωi are the nodes and weights of the Gaussian quadrature, ε is the abso-

lute error, and Nexp = O
(
log 1

ε

(
log log 1

ε
+ log T

τ

)
+ log 1

τ

(
log log 1

ε
+ log 1

τ

))
.
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3 A direct scheme for the one-dimensional problem

3.1 Derivation of the direct scheme

For the one-dimensional problem with � = (0, L) and X = x, we introduce the
spatial step size h = L

M
with a positive integer M and the spatial grid xi = ih, i =

0, 1, · · · , M . Similarly, the temporal step size τ = T
N

with a positive integer N and
the temporal grid tn = nτ, n = 0, 1, · · · , N are defined, respectively. Then, we
consider (2.1) at the point (xi, tn), and let un

i = u(xi, tn), ϕi = ϕ(xi) and f n
i (un

i ) =
f (xi, tn, u(xi, tn)), namely

∂u(xi, t)

∂t
|t=tn = ϕi + 0J

α−1
tn

∂2u(x, t)

∂x2
|x=xi

+ 0J
α−1
tn

f (xi, t, u(xi, t)).

To avoid solving a nonlinear system, we apply (2.2) and (2.3) of Lemma 2.2 to
discretize the first integral and the second integral in the right-hand side of the above
equation respectively, and use (2.5) and (2.6) of Lemma 2.5 to approximate the terms
∂u(xi ,t)

∂t
and ∂2u(x,tn)

∂x2
in the above equation respectively, then we get

δtu
n
i = ϕi + τα−1


(α)

n∑
k=1

cα−1
n−k δ2xu

k
i + τα−1


(α)

n∑
k=1

cα−1
n−k f k−1

i (uk−1
i ) + (Rα−1

1 )ni , (3.1)

where the local truncation error
(
Rα−1
1

)n

i
can be represented as

(
Rα−1
1

)n

i
= −τ

2

∫ 1

0
(1 − s)

∂2u(xi, tn − sτ )

∂t2
ds + O(τ) + τα−1


(α)

n∑
k=1

cα−1
n−k

(
O
(
h2
))

= O(τ) + tα−1
n

(
O
(
h2
))

= O
(
τ + h2

)
.

Multiplying (3.1) by τ , omitting the small term τ
(
Rα−1
1

)n

i
, and replacing un

i with

its numerical approximation Un
i , one can get the following direct scheme for the

one-dimensional problem (1.1),

Un
i = Un−1

i + τϕi + τα


(α)

n∑
k=1

cα−1
n−k δ2xU

k
i

+ τα


(α)

n∑
k=1

cα−1
n−k f k−1

i

(
Uk−1

i

)
, 1 ≤ n ≤ N, (3.2)

with initial values U0
i = φ(xi), 0 ≤ i ≤ M , and boundary values Un

0 =
ψ(0, tn), Un

M = ψ(L, tn).

3.2 Analysis of the direct scheme

In this subsection and in the sequel, the symbol C denotes a generic positive con-
stant, whose value may be different from one line to another and is independent of
discretization parameters.
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The convergence and stability results of (3.2) will be considered in this subsection.
To do this, let us first define a grid function space

V0 = {vi | i = 0, 1, . . . , M, and v0 = vM = 0},

and the following inner product and norms for any grid function v, w ∈ V0,

〈v, w〉 = h

M−1∑
i=1

viwi, ‖v‖ = √〈v, v〉, ‖δxv‖ =
√√√√h

M∑
i=1

|δxvi |2.

Now we prove the following convergence result for the direct scheme (3.2).

Theorem 3.1 Suppose u(x, t) ∈ C
4,2
x,t (� × [0, T ]), and let u(xi, tn) and Un

i be the
exact and numerical solutions at the point (xi, tn), respectively. Then for sufficiently
small τ and h, and for 1 ≤ n ≤ N , we get

‖un − Un‖ ≤ C
(
τ + h2

)
.

Proof Subtracting (3.2) from (3.1), we obtain the following error equation

en
i − en−1

i = τα


(α)

n∑
k=1

cα−1
n−k δ2xe

k
i + τα


(α)

n∑
k=1

cα−1
n−k

×
[
f k−1

i

(
uk−1

i

)
− f k−1

i

(
Uk−1

i

)]
+
(
rα−1
1

)n

i
,

where en
i = un

i −Un
i , and

(
rα−1
1

)n

i
is the local truncation error which can be bounded

by C
(
τ 2 + τh2

)
with a positive constant C. Then, multiplying both sides of the

above equation by hen
i and summing over 1 ≤ i ≤ M − 1, we get

‖en‖2 − 〈en−1, en〉 = τα


(α)

n∑
k=1

cα−1
n−k 〈δ2xek, en〉 + τα


(α)

n∑
k=1

cα−1
n−k 〈f k−1

i

(
uk−1

i

)

−f k−1
i

(
Uk−1

i

)
, en〉 + 〈

(
rα−1
1

)n

, en〉.

Applying Cauchy-Schwarz inequality to the second term of the left-hand side of the
above equality, we deduce that

‖en‖2 − ‖en−1‖2
2

≤ τα


(α)

n∑
k=1

cα−1
n−k 〈δ2xek, en〉 + τα


(α)

n∑
k=1

cα−1
n−k 〈f k−1

i

(
uk−1

i

)

−f k−1
i

(
Uk−1

i

)
, en〉 + 〈

(
rα−1
1

)n

, en〉.
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Summing over n from 1 to K yields

‖eK‖2−‖e0‖2
2

≤ τα


(α)

K∑
n=1

n∑
k=1

cα−1
n−k 〈δ2xek, en〉 + τα


(α)

K∑
n=1

n∑
k=1

cα−1
n−k 〈f k−1

i

(
uk−1

i

)

−f k−1
i

(
Uk−1

i

)
, en〉 +

K∑
n=1

〈
(
rα−1
1

)n

, en〉. (3.3)

Let us consider the first term of the right-hand side of (3.3); we have

τα


(α)

K∑
n=1

n∑
k=1

cα−1
n−k 〈δ2xek, en〉 = − τα


(α)

K∑
n=1

n∑
k=1

cα−1
n−k 〈δxe

k, δxe
n〉

= − ταh


(α)

M∑
i=1

K∑
n=1

(
n∑

k=1

cα−1
n−k δxe

k
i

)
δxe

n
i .

According to Lemma 2.3, it is clear that the above term is negative. Then by using
the Lipschitz condition of f with respect to u, (3.3) becomes

‖eK‖2 ≤ 2Lτα


(α)

K∑
n=1

n∑
k=1

cα−1
n−k ‖ek−1‖‖en‖ + C

K∑
n=1

(τ 2 + τh2)‖en‖, (3.4)

where L is the Lipschitz constant. Assume ‖eM‖ = max
1≤k≤N

‖ek‖, then (3.4) becomes

‖eM‖ ≤ 2Lτα


(α)

M∑
n=1

n∑
k=1

cα−1
n−k ‖ek−1‖ + C(τ + h2). (3.5)

Exchanging the orders of two summations in (3.5), and noting the sequence {cα−1
n−k }

is positive and τα−1
n∑

k=1
cα−1
n−k = tα−1

n , we get

τα

M∑
n=1

n∑
k=1

cα−1
n−k ‖ek−1‖ = τ

M∑
k=1

(
τα−1

M∑
n=k

cα−1
n−k

)
‖ek−1‖ ≤ τC

M∑
k=1

‖ek−1‖.

Thus, (3.5) becomes

‖eM‖ ≤ τC

M∑
k=1

‖ek−1‖ + C
(
τ + h2

)
.

After applying the discrete Gronwall’s lemma to this inequality, we can conclude that

‖eM‖ ≤ C
(
τ + h2

)
,

and this completes the proof.

Now let us prove that the difference scheme (3.2) is unconditionally stable to the
initial values φ and ϕ, and the inhomogeneous term f in the L2-norm.
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Theorem 3.2 Suppose the grid function {Un
i |0 ≤ i ≤ M, 0 ≤ n ≤ N} is the solution

of the difference scheme (3.2), and let Un
0 = Un

M = 0. Then, for 1 ≤ K ≤ N , it holds
that

‖UK‖ ≤ C

(
‖φ‖ + ‖ϕ‖ + max

0≤k≤N
‖f k‖

)
. (3.6)

Proof Multiplying both sides of (3.2) by hUn
i and summing over 1 ≤ i ≤ M − 1,

we get

〈Un − Un−1, Un〉 = τ 〈ϕ, Un〉 + τα


(α)

n∑
k=1

cα−1
n−k 〈δ2xUk, Un〉

+ τα


(α)

n∑
k=1

cα−1
n−k 〈f k−1, Un〉.

From
〈Un − Un−1, Un〉 = ‖Un‖2 − 〈Un−1, Un〉,

and applying Cauchy-Schwarz inequality to the second term on the right-hand side,
we can obtain the following inequality

‖Un‖2 − ‖Un−1‖2
2

≤ τ 〈ϕ, Un〉 + τα


(α)

n∑
k=1

cα−1
n−k 〈δ2xUk, Un〉

+ τα


(α)

n∑
k=1

cα−1
n−k 〈f k−1, Un〉.

Adding up the above inequalities for n from 1 to K yields

‖UK‖2 − ‖U0‖2
2

≤ τ

K∑
n=1

〈ϕ, Un〉 + τα


(α)

K∑
n=1

n∑
k=1

cα−1
n−k 〈δ2xUk, Un〉

+ τα


(α)

K∑
n=1

n∑
k=1

cα−1
n−k 〈f k−1, Un〉. (3.7)

According to Lemma 2.3, it can be checked that the second term of the right-hand
side of (3.7) is negative, thus (3.7) becomes

‖UK‖2 ≤ ‖U0‖2 + 2τ
K∑

n=1

‖ϕ‖‖Un‖ + 2τα


(α)

K∑
n=1

n∑
k=1

cα−1
n−k ‖f k−1‖‖Un‖.

Using Young’s inequality, we have

‖UK‖2 ≤ ‖U0‖2 + τ

K∑
n=1

‖ϕ‖2 + τ

K∑
n=1

‖Un‖2

+ τα


(α)

K∑
n=1

n∑
k=1

cα−1
n−k ‖f k−1‖2 + τα


(α)

K∑
n=1

n∑
k=1

cα−1
n−k ‖Un‖2.
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Note that
τα−1


(α)

n∑
k=1

cα−1
n−k is bounded. Thus, for a sufficiently small τ , this inequality

becomes

‖UK‖2 ≤ C‖U0‖2 + τC

K∑
n=1

‖ϕ‖2 + ταC

K∑
n=1

n∑
k=1

cα−1
n−k ‖f k−1‖2 + τC

K−1∑
n=1

‖Un‖2.

By the discrete Gronwall’s lemma, we obtain

‖UK‖2 ≤ C‖U0‖2 + τC

K∑
n=1

‖ϕ‖2 + ταC

K∑
n=1

n∑
k=1

cα−1
n−k ‖f k−1‖2.

Due to τ
N−1∑
n=0

1 = T , we obtain

‖UK‖2 ≤ C

[
‖φ‖2 + T ‖ϕ‖2 + T α max

0≤k≤N
‖f k‖2

]
,

and this completes the proof.

4 An ADI scheme for the two-dimensional problem

4.1 Derivation of the ADI scheme

For the two-dimensional problem with � = (0, Lx) × (0, Ly) and X = (x, y), we

introduce the spatial step sizes hx = Lx

Mx
with a positive integer Mx and hy = Ly

My

with a positive integer My in x and y directions, respectively. And the spatial grids
are (xi, yj ) = (ihx, jhy), i = 0, 1, · · · , Mx, j = 0, 1, · · · , My . To discretize (2.1),
we consider (2.1) at the point (xi, yj , tn), and let un

ij = u(xi, yj , tn), ϕij = ϕ(xi, yj )

and f n
ij (u

n
ij ) = f (xi, yj , tn, u(xi, yj , tn)), then we get

∂u(xi, yj , t)

∂t
|t=tn = ϕij+0J

α−1
tn

�u(x, y, t)|x=xi ,y=yj
+0J

α−1
tn

f (xi, yj , t, u(xi, yj , t)).

In the above equation, we apply (2.2) and (2.3) of Lemma 2.2 to discretize the
first integral and the second integral in the right-hand side respectively, use (2.5) to

discretize the term ∂u(xi ,t)
∂t

, and adopt (2.6) to approximate the terms ∂2u(x,y,tn)

∂x2
and

∂2u(x,y,tn)

∂y2
in the Laplacian �, then we obtain the following linear difference equation

δtu
n
ij = ϕij + τα−1


(α)

n∑
k=1

cα−1
n−k

(
δ2x + δ2y

)
uk

ij + τα−1


(α)

n∑
k=1

cα−1
n−k f k−1

ij

(
uk−1

ij

)

+
(
Rα−1
2

)n

ij
, (4.1)

where the local truncation error is
(
Rα−1
2

)n

ij
= O

(
τ + h2x + h2y

)
.
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Multiplying (4.1) by τ , then to construct the ADI scheme and to ensure the first-

order accuracy in time, a small term τ 2α


2(α)
δ2xδ

2
yu

n
ij with 2α > 2 is added to both sides

of (4.1), and we have

un
ij − τα


(α)

[
δ2xu

n
ij + δ2yu

n
ij

]
+ τ 2α


2(α)
δ2xδ

2
yu

n
ij

= un−1
ij + τϕij + τα


(α)

n−1∑
k=1

cα−1
n−k

[
δ2xu

k
ij + δ2yu

k
ij

]

+ τα


(α)

n∑
k=1

cα−1
n−k f k−1

ij

(
uk−1

ij

)
+ τ

(
Rα−1
2

)n

ij
. (4.2)

In (4.2), omitting the small term τ
(
Rα−1
2

)n

ij
, and replacing the term un

ij with its

numerical approximation Un
ij , one can get the following direct scheme for the two-

dimensional problem (1.1),

(
1 − τα


(α)
δ2x

)(
1 − τα


(α)
δ2y

)
Un

ij

= Un−1
ij + τϕij + τα


(α)

n−1∑
k=1

cα−1
n−k

[
δ2xU

k
ij + δ2yU

k
ij

]

+ τα


(α)

n∑
k=1

cα−1
n−k f k−1

ij

(
Uk−1

ij

)
(4.3)

with initial values U0
ij = φ(xi, yj ), (xi, yj ) ∈ �, and boundary values Un

ij =
ψ(xi, yj , tn), (xi, yj ) ∈ ∂�.

Following the Peaceman-Rachford strategy, we introduce intermediate variables

U∗
ij =

(
1 − τα


(α)
δ2y

)
Un

ij . Then, the numerical solutions Un
ij can be obtained by solv-

ing two sets of independent one-dimensional linear problems. Thus, the direct ADI
scheme is presented as follows. For fixed j ∈ {1, 2, . . . , My − 1}, we solve the
following system to get {U∗

ij } for 1 ≤ i ≤ Mx − 1,
⎧⎪⎪⎨
⎪⎪⎩

(
1− τα


(α)
δ2x

)
U∗

ij =Un−1
ij +τϕij + τα


(α)

n−1∑
k=1

cα−1
n−k

[
δ2xUk

ij +δ2yUk
ij

]
+ τα


(α)

n−1∑
k=1

cα−1
n−k f k−1

ij

(
Uk−1

ij

)
,

U∗
0j =

(
1− τα


(α)
δ2y

)
Un
0j , U∗

Mxj =
(
1− τα


(α)
δ2y

)
Un

Mxj .

Once {U∗
ij } is available, we alternate the spatial direction to solve the following

system for fixed i ∈ {1, 2, . . . , Mx − 1},
⎧⎨
⎩
(
1 − τα


(α)
δ2y

)
Un

ij = U∗
ij , 1 ≤ j ≤ My − 1,

Un
i0 = ψ(xi, y0, tn), Un

iMy
= ψ(xi, yMy , tn).



Numerical Algorithms

4.2 Analysis of the ADI scheme

Now let us establish the convergence and stability results for (4.3). We first define a
grid function space

V0 = {vij | 0 ≤ i ≤ Mx, 0 ≤ j ≤ My, and vij = 0, (xi, yj ) ∈ ∂�}.
For any grid function v, w ∈ V0, we can introduce the following inner product and
norms,

〈v, w〉 = hxhy

Mx−1∑
i=1

My−1∑
j=1

vijwij , ‖v‖ = √〈v, v〉,

‖δxv‖ =

√√√√√hxhy

Mx∑
i=1

My−1∑
j=1

|δxvi,j |2, ‖δyv‖ =

√√√√√hxhy

Mx−1∑
i=1

My∑
j=1

|δyvi,j |2,

and

‖δxδyv‖ =

√√√√√hxhy

Mx∑
i=1

My∑
j=1

|δxδyvi,j |2.

Next we can prove the following convergence result for the difference
scheme (4.3).

Theorem 4.1 Suppose u(x, y, t) ∈ C
4,4,2
x,y,t (�×[0, T ]), and let u(x, y, t) be the exact

solution and {Un
ij |0 ≤ i ≤ Mx, 0 ≤ j ≤ My, 1 ≤ n ≤ N} be the solution of the

difference scheme (4.3). Then, for 1 ≤ n ≤ N , it holds that

‖Un − un‖ ≤ C
(
τ + h2x + h2y

)
.

Proof Subtracting (4.3) from (4.2), we have

en
ij + τ 2α


2(α)
δ2xδ

2
ye

n
ij = en−1

ij + τα


(α)

n∑
k=1

cα−1
n−k

(
δ2x +δ2y

)
ek
ij

+ τα


(α)

n∑
k=1

cα−1
n−k

[
f k−1

ij

(
uk−1

ij

)
−f k−1

ij

(
Uk−1

ij

)]
+
(
rα−1
2

)n

ij
,

where en
ij = un

ij − Un
ij , and

(
rα−1
2

)n

ij
is the local truncation error

(
rα−1
2

)n

ij
=

O
(
τ 2 + τh2x + τh2y

)
. Then, multiplying both sides of the above equation by hxhye

n
ij
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and summing over 1 ≤ i ≤ Mx − 1, 1 ≤ j ≤ My − 1, we have the following
result

‖en‖2 + τ 2α


2(α)
‖δxδye

n‖2 = 〈en−1, en〉 + τα


(α)

n∑
k=1

cα−1
n−k

(
δ2x + δ2y

)
〈ek, en〉

+ τα


(α)

n∑
k=1

cα−1
n−k 〈

[
f k−1

(
uk−1

)
− f k−1

(
Uk−1

)]
,

en〉 + 〈
(
rα−1
2

)n

, en〉.

Omitting the non-negative term τ 2α


2(α)
‖δxδye

n‖2, and applying Cauchy-Schwarz
inequality to the first term of the right-hand side of the above equality, we can obtain
the inequality

‖en‖2 ≤ ‖en‖2 + ‖en−1‖2
2

+ τα


(α)

n∑
k=1

cα−1
n−k 〈

(
δ2x + δ2y

)
ek, en〉

+ τα


(α)

n∑
k=1

cα−1
n−k 〈

[
f k−1

(
uk−1

)
− f k−1

(
Uk−1

)]
, en〉 + 〈

(
rα−1
2

)n

, en〉.

Summing over n from 1 to K yields

‖eK‖2 − ‖e0‖2
2

≤ τα


(α)

K∑
n=1

n∑
k=1

cα−1
n−k 〈

(
δ2x + δ2y

)
ek, en〉

+ τα


(α)

K∑
n=1

n∑
k=1

cα−1
n−k 〈

[
f k−1

(
uk−1

)
− f k−1

(
Uk−1

)]
, en〉

+
K∑

n=1

〈
(
rα−1
2

)n

, en〉. (4.4)

Let us consider the first term of the right-hand side of the above inequality, namely

τα


(α)

K∑
n=1

n∑
k=1

cα−1
n−k 〈(δ2x + δ2y)e

k, en〉

= τα


(α)

K∑
n=1

n∑
k=1

cα−1
n−k 〈δ2xek, en〉 + τα


(α)

K∑
n=1

n∑
k=1

cα−1
n−k 〈δ2yek, en〉

= − τα


(α)

K∑
n=1

n∑
k=1

cα−1
n−k 〈δxe

k, δxe
n〉 − τα


(α)

K∑
n=1

n∑
k=1

cα−1
n−k 〈δye

k, δye
n〉.

According to Lemma 2.3, the above term is negative. And after using the Lipschitz
condition of f with respect to u, (4.4) becomes

‖eK‖2 ≤ 2Lτα


(α)

K∑
n=1

n∑
k=1

cα−1
n−k ‖ek−1‖‖en‖ + C

K∑
n=1

(τ 2 + τh2x + τh2y)‖en‖,
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where L is the Lipschitz constant. Assume ‖eM‖ = max
0≤k≤N

‖ek‖, then it becomes

‖eM‖ ≤ 2Lτα


(α)

M∑
n=1

n∑
k=1

cα−1
n−k ‖ek−1‖ + C(τ + h2x + h2y).

According to the same technique as for dealing with (3.5), we can achieve

‖eM‖ ≤ C
(
τ + h2x + h2y

)
,

and the proof is completed.

Now it can be deduced that the difference scheme (4.3) is stable to the initial
values φ and ϕ, and the inhomogeneous term f in the L2-norm. The proof of the
following stability is very similar to the proofs of Theorems 3.2 and 4.1, thus we omit
it here.

Theorem 4.2 Suppose the grid function {Un
ij |0 ≤ i ≤ Mx, 0 ≤ j ≤ My, 0 ≤ n ≤

N} is the solution of difference scheme (4.3), and let Un
ij = 0 when (xi, yj ) is on ∂�.

Then, for 1 ≤ K ≤ N , it holds that

‖UK‖ ≤ C

(
‖φ‖ + ‖ϕ‖ + max

0≤k≤N
‖f k‖

)
. (4.5)

5 Fast implementations of the proposed schemes

As is known that the main time-consuming computation in schemes (3.2) and (4.3)
is to calculate the summations, which are generated from the numerical approxima-
tions by (2.2) and (2.3) for the Riemann-Liouville integral. In this section, we will
extend the idea of fast evaluation for the Caputo derivative in [14] to the fast cal-
culations of approximations (2.2) and (2.3) without losing accuracy such that the
direct schemes (3.2) and (4.3) can be fast implemented. Obviously, we can split the
Riemann-Liouville integral into the following two parts, namely

1


(β)

∫ tn

0
(tn − t)β−1f (t)dt = 1


(β)

∫ tn−1

0
(tn − t)β−1f (t)dt

+ 1


(β)

∫ tn

tn−1

(tn − t)β−1f (t)dt . (5.1)

The second term in the right-hand side of (5.1) is the local part; we can apply
the product left rectangular quadrature or the product right rectangular quadrature,
the same idea of deducing (2.2) and (2.3), to numerically approximate it. The first
term in the right-hand side of (5.1), usually called the history part, is deduced due to
the nonlocal property of the Riemann-Liouville integral. Essentially, we only need
to focus on the fast calculations of the history part for the fast implementations of
schemes (3.2) and (4.3). According to Lemma 2.6, the SOE technique can be applied
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to give a high-accuracy approximation to the power function (tn−t)β−1 in the interval
[0, tn−1], thus

1


(β)

∫ tn−1

0
(tn − t)β−1f (t)dt ≈ 1


(β)

∫ tn−1

0

Nexp∑
i=1

ωie
−si (tn−t)f (t)dt

= 1


(β)

Nexp∑
i=1

ωi

∫ tn−1

0
e−si (tn−t)f (t)dt

� 1


(β)

Nexp∑
i=1

ωiUhist,i (tn), (5.2)

where Uhist,i (tn) = ∫ tn−1
0 e−si (tn−t)f (t)dt . It is clear that Uhist,i (tn) = 0 for

n = 1. For n ≥ 2, then the following recurrence relation, which only needs O(1)
computational cost to get Uhist,i (tn), holds

Uhist,i (tn) = e−si τ

∫ tn−2

0
e−si (tn−1−t)f (t)dt +

∫ tn−1

tn−2

e−si (tn−t)f (t)dt

= e−si τUhist,i (tn−1) +
∫ tn−1

tn−2

e−si (tn−t)f (t)dt . (5.3)

For the integral term in the right-hand side of (5.3), one may use the product
trapezoidal technique to compute it, namely

∫ tn−1

tn−2

e−si (tn−t)f (t)dt ≈ (e−si τ − e−2si τ )

si
· (f (tn−2) + f (tn−1))

2
.

Based on the above derivations, the computational work for the fast calculation
of the Riemann-Liouville integral is O(Nexp) for a fixed n, while the direct cal-
culations, such as (2.2) and Lubich’s approximations ([24]), require O(n) work.
Thus, the fast implementation of scheme (3.2) by using the fast calculation to
the Riemann-Liouville integral and the fast ADI scheme have a computational
cost of O(MNNexp) and O(MxMyNNexp) respectively, while the direct scheme
(3.2) and the direct ADI scheme have a computational cost of O(MN2) and
O(MxMyN

2) respectively. Obviously, compared to the direct schemes, the fast
schemes have the significant advantage in computational efficiency when N is
large.

Remark 5.1 The SOE technique can be applied to fast calculate the approximations
for fractional derivatives and fractional integrals obtained by the idea of piecewise
approximations. Lubich’s six approximations in [24] cannot be fast evaluated by
using the SOE technique because these approximations are based on some gen-
erating functions. Additionally, if we use the product trapezoidal approximation
to discretize the Riemann-Liouville integral, however, the convergence and stabil-
ity of the deduced scheme cannot be proved (see [3, 34, 36] for examples); the
reason is that the positivity of the deduced convolution quadratic form cannot be
achieved.
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6 Numerical experiments

In this section, two numerical examples of nonlinear time fractional diffusion-wave
equations with different dimensions are presented to verify the theoretical results
and demonstrate the performance of our new schemes. One can observe that the fast
schemes have overwhelming superiorities over the direct schemes on the computa-
tional cost. All of the computations are performed by using a MATLAB(R2012a)
subroutine on a computer (Dell Optiplex 5040) with the Intel(R) Core(TM) i5-6500
CPU 3.20GHz and 4G RAM.

Example 6.1 We consider the following one-dimensional nonlinear time fractional
diffusion-wave equation

C
0 Dα

t u(x, t) = ∂2u(x, t)

∂x2
+ f (x, t, u), 0 ≤ x ≤ π, 0 < t ≤ 1,

u(x, 0) = sin(x), ut (x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = u(π, t) = 0, 0 < t ≤ 1.

The exact solution of this problem is

u(x, t) =
(
1 + tα+1

)
sin(x).

The function f (x, t, u) in the right-hand side of the above equation is

f (x, t, u) = u2 +
(

(α + 2)t + 1 + tα+1

)
sin(x) −

[
(1 + tα+1) sin(x)

]2
.

In this one-dimensional example, we use the L2-norm errors

e(τ, h) =
√√√√h

M∑
j=0

|uN
i − UN

i |2,

where uN
i and UN

i are the exact solution and the numerical solution at grid point
(xi, tN ), respectively.

Table 1 For h = π/3000, the errors and CPU times (second) for different τ , and numerical convergence
orders in time of the direct scheme (3.2) for Example 6.1

τ α = 1.3 α = 1.5 α = 1.8 CPU time

Error Order Error Order Error Order Mean ± sd

1/5 3.811e−1 2.849e−1 1.807e−1 0.52 ± 0.01

1/10 1.957e−1 0.961 1.308e−1 1.123 7.445e−2 1.279 1.61 ± 0.05

1/20 9.517e−2 1.040 5.905e−2 1.147 3.143e−2 1.244 5.82 ± 0.07

1/40 4.523e−2 1.073 2.696e−2 1.131 1.403e−2 1.164 23.04 ± 0.02

1/80 2.139e−2 1.081 1.254e−2 1.104 6.541e−3 1.101 92.39 ± 0.52

1/160 1.014e−2 1.076 5.944e−3 1.077 3.140e−3 1.059 369.54 ± 1.19
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Table 2 For h = π/3000, the errors and CPU times (second) for different τ , and numerical convergence
orders in time of the fast scheme for Example 6.1

τ α = 1.3 α = 1.5 α = 1.8 CPU time

Error Order Error Order Error Order Mean ± sd

1/5 2.796e−1 1.873e−1 1.160e−1 0.24 ± 0.01

1/10 1.295e−1 1.110 8.357e−2 1.164 5.402e−2 1.103 0.34 ± 0.02

1/20 6.175e−2 1.069 3.880e−2 1.107 2.618e−2 1.045 0.43 ± 0.01

1/40 3.027e−2 1.029 1.866e−2 1.056 1.296e−2 1.014 0.64 ± 0.01

1/80 1.436e−2 1.075 8.771e−3 1.089 6.106e−3 1.086 1.08 ± 0.01

1/160 7.226e−3 0.991 4.325e−3 1.020 2.992e−3 1.029 1.97 ± 0.02

Tables 1 and 2 are computed by the direct scheme (3.2) and the fast scheme
for Example 6.1, respectively. Specifically, we take three different values of frac-
tional index α, i.e., α = 1.3, 1.5, 1.8, and set h = π/3000, a value small enough
such that the spatial discretization errors are negligible as compared with the tem-
poral errors, and choose different time step size to observe the CPU time and to
obtain the numerical convergence orders in time. We can check that these numeri-
cal convergence orders of the direct scheme and of the fast scheme approach 1 and
are thus consistent with our theoretical analysis. The average CPU time, expressed
as the mean time (mean) ± the standard deviation (sd) for three different α, is
listed in the last column. The results of CPU time demonstrate that the fast scheme
has an overwhelming performance over the direct scheme, especially for large
integer N .

On the other hand, we check the numerical convergence orders and CPU time
in space of the direct scheme and the fast scheme in Tables 3 and 4, respectively.
Specifically, we take sufficiently small τ = 0.00025, and choose different α and
spatial step size to obtain the numerical errors, convergence orders and CPU time in
space. As expected, the spatial numerical convergence order is 2 for all scenarios.
Furthermore, one can see that the CPU time of the fast scheme is extremely less than
that’s of the direct scheme due to the small τ or the large N .

Table 3 When τ=0.00025, the errors and CPU times (second) for different h, and numerical convergence
orders in space of the direct scheme for Example 6.1

h α = 1.3 α = 1.5 α = 1.8 CPU time

Error Order Error Order Error Order Mean ± sd

π /5 6.575e−2 4.782e−2 3.158e−2 85.62 ± 0.54

π /10 1.584e−2 2.053 1.165e−2 2.037 7.762e−3 2.025 85.66 ± 0.28

π /20 3.728e−3 2.087 2.790e−3 2.062 1.864e−3 2.058 87.09 ± 0.41

π /40 9.378e−4 1.991 6.837e−4 2.029 4.611e−4 2.015 90.90 ± 0.28
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Table 4 When τ=0.00025, the errors and CPU times (second) for different h, and numerical convergence
orders in space of the fast scheme for Example 6.1

h α = 1.3 α = 1.5 α = 1.8 CPU time

Error Order Error Order Error Order Mean ± sd

π /5 6.732e−2 4.928e−2 3.286e−2 0.35 ± 0.01

π /10 1.735e−2 1.956 1.238e−2 1.993 8.123e−3 2.016 0.38 ± 0.01

π /20 4.121e−3 2.074 3.008e−3 2.041 1.922e−3 2.080 0.43 ± 0.02

π /40 1.017e−3 2.019 7.589e−4 1.987 4.897e−4 1.972 0.53 ± 0.01

Example 6.2 Let us consider the following two-dimensional nonlinear time frac-
tional diffusion-wave equation with a prescribed exact solution u(x, y, t) =(
t + tα+1

)
sin(x) sin(y), and � = (0, π) × (0, π),

l
0D

α
t u(x, y, t) = �u(x, y, t) + f (x, y, t, u), (x, y) ∈ �, 0 < t ≤ 1.

The initial conditions are u(x, y, 0) = 0, ut (x, y, 0) = sin(x) sin(y), (x, y) ∈ �, and
the boundary condition is u(x, y, t) = 0, (x, y) ∈ ∂�. The right-hand side nonlinear
driving term is constructed as

f (x, y, t, u) =
[
2
(
t + tα+1

)
+ 
(α + 2)t

]
sin(x) sin(y)

+ sin
[(

t + tα+1
)
sin(x) sin(y)

]
− sin(u).

In this example, we use the same step size h in each spatial direction, i.e., hx =
hy = h, and compute the L2 norm errors of the numerical solution,

e(τ, h) = h

√√√√√
Mx∑
i=0

My∑
j=0

|uN
ij − UN

ij |2,

Table 5 For h = π/500 and α = 1.5, the errors and CPU times for different τ , and numerical convergence
orders in time of the direct ADI scheme and the fast ADI scheme for Example 6.2

τ Direct scheme Fast scheme

Error Order CPU time Error Order CPU time

1/5 5.889e−1 10.57 3.005e−1 12.84

1/10 2.856e−1 1.044 33.07 1.424e−1 1.078 28.91

1/20 1.393e−1 1.036 115.62 6.917e−2 1.041 58.90

1/40 6.839e−2 1.026 456.48 3.179e−2 1.122 117.73

1/80 3.378e−2 1.018 1754.13 1.561e−2 1.026 239.59
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Table 6 For τ = 0.00025 and α = 1.5, the errors and CPU times for different τ , and numerical
convergence orders in space of the direct ADI scheme and the fast ADI scheme for Example 6.2

h Direct scheme Fast scheme

Error Order CPU time Error Order CPU time

π /5 3.224e−2 377.38 3.405e−2 2.17

π /10 7.103e−3 2.182 876.23 8.010e−3 2.088 5.17

π /20 1.717e−3 2.048 1872.12 1.942e−3 2.044 11.84

π /40 4.335e−4 1.986 3815.71 4.985e−4 1.962 29.35

where uN
ij and UN

ij represent the exact solution and the numerical solution at grid
point (xi, yj , tN ), respectively.

For fixed α = 1.5 (actually, the results for any 1 < α < 2 are similar), we have
checked the temporal numerical convergence orders and spatial numerical conver-
gence orders of the direct ADI scheme and the fast ADI scheme for Example 6.2 in
Tables 5 and 6, respectively. We can observe that the direct ADI scheme and the fast
ADI scheme have similar accuracies and numerical convergence orders, i.e., first-
order accuracy in time and second-order accuracy in space. However, the fast ADI
scheme has better computational performance than the direct ADI scheme.

7 Concluding remarks

In this paper, an efficient scheme and an ADI scheme are constructed for one-
dimensional and two-dimensional nonlinear time fractional diffusion-wave equations
based on their equivalent partial integro-differential equations, respectively. Fast
implementations of these two proposed schemes are achieved by using the SOE
approximation technique. The proposed direct schemes and fast schemes only require
a weak smoothness assumption in time and can be proved to be unconditionally sta-
ble and convergent with first-order accuracy in time and second-order accuracy in
space. Numerical experiments illustrate the theoretical results and show that the fast
schemes have an overwhelming better computational performance over the direct
schemes and are very suitable for long-time simulations. Furthermore, we can con-
clude that the idea of the proposed fast schemes can be extended to any numerical
methods for fractional systems which are constructed based on the piecewise approxi-
mation to fractional derivatives or fractional integrals. Finally, it should be mentioned
that the optimal convergence order of the numerical schemes based on the graded
mesh (see [7, 20, 21, 31] for examples) cannot be achieved, when these schemes
are used for solving multi-term fractional differential equations. Because the mesh
parameter of the graded mesh depends on the fractional index. However, our scheme
and its fast implement can be easily extended to solve the multi-term fractional ones.
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