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1 INTRODUCTION

We consider second order systems of differential equations of the form My"” = f(¢,y,y). In
mechanics M € R™ ™ is a constant mass matrix, y € R"” is a vector of generalized coordinates,
y' € R™ is a vector of generalized velocities, and 3" € R™ is a vector of generalized accelera-
tions. Introducing the new variables z := 3’ € R" and a := 2/ = 3" € R", these equations are
equivalent to the semi-explicit system of differential-algebraic equations (DAEs)

y,:Z7 Z,:aa O:M(Z—f(t,y,Z) (1

Assuming the mass matrix M to be invertible, the system of DAEs given by Eq. () is of
index 1 since one can obtain explicitly the relation a = M~!f(t,y,z). The generalized-a
method of Chung and Hulbert (see Ref. [2]]) for My” = f(t,y,y’) or equivalently for Eq. ()
is a non-standard implicit one-step method. One step of the method (%o, yo, 20, @a) — (t1 =
to + h, y1, 21, a1+ ) With stepsize h can be expressed as follows

h2
Y1 = Yo + hZ() -+ ? ((1 — Qﬁ)aa + 26a1+a) , (2)
21 = Zo+ h ((1 - W)Ga + 'yal-&-oz) ) (3)
(I —am)Mayio +amMa, = (1 —ay)f(ti,y1,21) + agf(to, Yo, 20), “4)

see section [2 below for a justification of the notation a,,, a1+,. The generalized-o method has
coefficients 3, v, au,, # 1, oy. For certain speficic choices of these coefficients we obtain well-
known methods:

e Newmark’s family: a,,, = 0, ay = 0;
— Trapezoidal rule: § = i, v = %;
— Stormer’s rule: =0, v = %;
e The Hilber-Hughes-Taylor o (HHT-r) method (see Refs. [3, 4]]):

0}, 527(1_4602, ’Y:%—Oé.

1
mzoa = - S e

The coefficients o, o, 3,7y of the generalized- method in Eq. @H4) are usually chosen ac-
cording to

= T oo

am— 9 « :77 =
e ! ot

1
4 2

where a = «a,,, — ay and po, € [0, 1] is a parameter controlling numerical dissipation (po, = 0

for maximal dissipation, see Ref. [2]).
In this paper we present extensions of the generalized-a method of Eqs. (21 for

e nonconstant mass matrix M (¢, y);
e holonomic constraints ¢(¢,y) = 0;
e nonholonomic constraints k(t,y,y") = 0;

e variable stepsizes h,,.
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2 ABOUT THE NOTATION a,, @144

We use the notation a,, and a;,, instead of ag and a; to emphasize the fact that these quan-
tities should not be considered as approximations to the acceleration vector a(t) at o and ¢;
respectively, but at ¢, := to + ah and t1,, :=t; + ah = tg + (1 + «)h respectively where
« := a,;, — ay. The reason is that for a solution (y(%), 2(t), a(t)) and values (yo, o) satisfying
yo — y(to) = O(h?), 29 — 2(to) = O(h?), we have

140 — a(tiye) = O(R?) when a4 — a(t,) = O(h?), (5)

whereas we only have a,,, — a(t;) = O(h) when a,, — a(ty) = O(h?) and a # 0. This can be
seen as follows. We rewrite Eq. @) as

(1 = ) @11a + Omae = (1 —ap )M f(ty, y1,21) + ap M~ fto, vo, 20)- (6)
Since a(t) = M1 f(t,y(t), 2(t)), y1 — y(t1) = O(h?), and z; — 2(t;) = O(h?) we have
M7 (b, yr, 21) = alte) + ha'(to) + O(R?), M~ f(to, yo. 20) = alty) + O(h?).
Hence, for the right-hand side of Eq. (f) we obtain
(L —ap) M~ f(tr, y1, 21) + oy M f(to, Yo, 20) = alte) + h(1 — ap)d'(to) + O(R?).  (T)
Since
a(tiva) = alty) + k(1 +a)d' (te) + O(h?), a(ts) = a(ty) + had (ty) + O(R?),
we have
(1 — am)altive) + ama(ts) = alte) + h(1 — ay, + a)d (tg) + O(h?). (8)
Thus, from Egs. (@HZH8), we obtain
(1 = am) (@120 — a(tiza)) + am(aa — a(ts)) = h(—aj + am — a)d'(te) + O(R?).  (9)
Hence, Eq. (@) is satisfied only for oo = o, — ay.

2.1 Defining a,, for the first step

The definition of a, for the first step remains. For «,, = 0, for example for the HHT-
a method, we see from Eq. (@) that taking a, = ag where Mag = f(to, Yo, 20) still leads
to the estimate a1, — a(ti1o) = O(h?). When a,, # 0 it is better to define a, such that
aq — a(ty) = O(h?), for example implicitly by

Ma'a = (1 - a)f(t0>y07 ZO) + af(tlaybzl) (10)

as proposed by Lunk and Simeon in Ref. [[7]. Nevertheless, taking a, = ay does not affect the
order of global convergence of the y and z components, see Theorem 1 below.

3
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3 NONCONSTANT MASS MATRIX M (t,y)

We consider M (t,y)y” = f(t,y,y") where M(t,y) is a nonconstant mass matrix assumed to
be invertible. These equations are equivalent to the semi-explicit system of index 1 DAEs

y =2 2Z=a 0=M(ty)a-—[f(ty,=2).
A natural extension of the generalized-o: method of Egs. (2H) is to replace Eq. @) with

(1 - am)M1+aa1+a + amMaaa - (]- - Oéf)f(tlyyla Zl) + aff(t0>y0> ZO)

where
M1+a ~ M(t1+a> y(t1+a>>> Ma ~ M(taa y(ta))‘

For example we can take explicitly
M1+a = M(tl—i-om Yo + h(l + a)20)> Ma = M(1+a)—l or M(tom Yo + haZO)
where M(11q)-1 denotes the matrix M, used at the previous time-step. Second order of
convergence is a consequence of Theorem 1 below.
4 HOLONOMIC CONSTRAINTS g(t,y) =0

We extend here the generalized-a method to systems in mechanics having holonomic con-
straints g(¢,y) = 0. More precisely we consider

M(t,y)y" = f(t,y,y',N), 0=g(t,y),

where we usually have f(t,y,9',\) = fo(t,y,¥') — g, (t,y)A. The term —g.! (¢,y)\ represents
reaction forces due to the holonomic constraints g(¢,y) = 0. The algebraic variables \ are
associated with the holonomic constraints. Differentiating 0 = ¢(¢, y) once with respect to ¢ we
obtain

0=(g(t.9))" = g:(t,y) + gy (t.9)y"-
Thus we consider systems of index 2 overdetermined differential-algebraic equations (ODAEs)
of the form

y,:Z7 Z,:CL, O:M(tay)a_f(t7y7z7)‘)7 Ozg(tvy)a O:gt(t7y>+gy(t7y>27
and we assume the matrix

|: M(t7 y) _f)\(t> Y, =, )‘)
gy(t7y> O

For f(t,y,z,\) = fo(t,y,2) — g, (t,y)A, this matrix becomes

[Mww gww}
g(ty) O

and is symmetric when M (¢,y) is symmetric. At ¢, we consider consistent initial conditions
(yOa 20, Ao, )\O)’ i-e~7

= M(to, yo)ao — f(to, Yo, 20, o),

= g(to, Yo),

= gi(to, Yo) + gy(to, Yo) 20,

9u(to, Yo) + 291y (to, Yo) 2o + Gyy(tos ¥o) (20 20) + gy (to, Yo)ao-

} 18 invertible .

o o o o
|

4
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Several extensions of the HHT-o method have been proposed. Cardona and Géradin in Ref. [[1]
analyze a direct extension of the HHT-a method to linear DAEs where it was shown that a direct
application of the HHT-a method is inconsistent and suffers from instabilities. Yen, Petzold, and
Raha in Ref. [8] propose a first order extension of the HHT-o method based on projecting the
solution of the underlying ODEs onto the constraints (including the index 1 acceleration level
constraints) after each step. More recently, second order extensions of the HHT-o method and
generalized-a method have been proposed independently by Jay and Negrut in Ref. [3] and by
Lunk and Simeon in Ref. [[7]] based on the additivity of f(¢,y,2,\) = fo(t,y, 2) + fi(t,y, N).
Here, we propose a different and more natural extension of the generalized-a method which
does not use this additive structure
h2
Y1 = Yo+ hz+ 5 (1 =28)aq + 268a114),
21 = z0+h((1—7)as +70140),
(I = am)MiyaGira + 0mMaaa = (1 —ap)f(t,y1, 21, A1) + apf(to, Yo, 20, Ao), (11)
(1 - am)Ml+aal+a + Oémj\4o¢aoz = (1 - af)f(tla Y1, 21, )\l) + aff(th Yo, 20, )\0)7
0 = g(tlv yl)u
0 = gi(ti,y1) + gy(ts, y1)z1-

For f(t,y,2,\) = fo(t,y,z) — g, (t,y)\ we can replace for example Eq. (TT) by

(1 = am)Mital(aria — Gi11a) = (1 — Oéf)gg(tb?/l)(xl — A1).
Second order of convergence is a consequence of Theorem 1 below.

5 NONHOLONOMIC CONSTRAINTS k(t,y,9') = 0

We extend here the generalized-a method to systems in mechanics having nonholonomic
constraints k(¢,y,y’) = 0. More precisely we consider

M(t,y)y" = f(t,y, v, ¢), 0=kt y,y)

where we usually have f(t,y,y',%) = fo(t,y,y) — kL (t,y,4/)¢. The term —k,(t,y,y')i
represents reaction forces due to the nonholonomic constraints k(¢,y,y’) = 0. The algebraic
variables 1) are associated respectively with the nonholonomic constraints. Hence, we consider
systems of index 2 differential-algebraic equations (DAEs) of the form

y,:ZG Z,:aa OZM(tvy)a_f(tayaZ>¢)v O:]{f(t,y,Z),
and we assume the matrix

M(t,y)  —felt,y,z,0) | ..
{ k.(t,y, 2) 0 is invertible .
For f(t,y,z,v) = fo(t,y, z) — kL (t,y, z), this matrix becomes

[ ’f]z\{t(,tz’/% . (t’Oy’ ?) ]
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and is symmetric when M (¢, y) is symmetric. At ¢y we consider consistent initial conditions
(?Jo, 20, @0, ¢0)» i-e-,

0 = M(t07y0)a0 - f(toay0720>¢0)>
0 = k(t07y0720)7
0 = ki(to, Yo, 20) + ky(to, Yo, 20) 20 + k= (to, Yo, 20)ao-

We propose the following extension of the generalized-a method:

2

h
Y1 = Yo+ hz+ B (1 —2B)aq +20a1+a),

21 = 2+ h ((1 - 7)(104 + /7a1+a> )
(1 - am)M1+aal+oz + amMaaa = (1 - af)f(t1>y1> 21, 'le) + aff(t0>y0a 205 ¢0)7
0 = k(tlayl7zl)‘

Second order of convergence is a consequence of Theorem 1 below.

6 GENERAL EXTENSION AND CONVERGENCE

We extend the generalized-a method to systems in mechanics having a nonconstant mass
matrix M (¢, y), holonomic constraints ¢(¢,y) = 0, and nonholonomic constraints & (¢, y,y’) =
0. The algebraic variables A are associated with the holonomic constraints g(t,y) = 0 and
g:(t,y) + g,(t,y)y" = 0 which result from differentiating g(¢,y) = 0 with respect to t. The
algebraic variables 1) are associated with the nonholonomic constraints k(¢,y,y’) = 0. Thus
we consider systems of index 2 overdetermined differential-algebraic equations (ODAESs) of the
form

Yy = z
M(t,y)2" = f(t,y,2,\¢),
0 = g(t,y), (12)
0 = a(t,y) +g,(t,y)2,
0 = k(t,y,2),

and we assume the matrix

M(t7y) _fA(tvyvz7)‘vw) _fw(tvyvz7)‘vw)
gy(t,y) O O is invertible . (13)
kz(ta y; Z) O O
For f(t,y,z,\,¢) = fo(t,y,2) — g, (t,y)A — kL (t,y, )¢, this matrix becomes

M(t,y) gr(t,y) kI(t,y, =)
gy(t,y) O O
k.(t,y,z) O O

and is symmetric when M (¢,y) is symmetric. At ¢, we consider consistent initial conditions
(yoa 20, Ao, )\07 wO)a i~e-’

0 = M(to,y0)ao — f(to, Yo, 20, Xos ¥o),

6
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= g(to, %),

9i(to, yo) + gy(to, ¥o)z0, 0= k(to, %o, 20),

= gu(to, o) + 29t (to, Yo)20 + gyy(to, Yo) (20, 20) + gy (to, Yo)ao,
= k(to, Yo, 20) + ky(to; Yo, 20) 20 + k= (to; Yo, 20)ao-

o O O O

Here, we propose an extension of the generalized-a method which does not use any additive
structure of f(t,y, z, A,1). We call it the generalized-«-SOI2 method (SOI2 stands for Stabi-
lized Overdetermined Index 2). One step (%o, Yo, 20, Gas Ao, Vo) — (t1, Y1, 21, A14a, A1, Y1) With
stepsize h of the generalized-a-SOI2 method for Eq. (I2) can be expressed as follows

2
Y1 = Yo+ hz+ % (1 —208)aq + 20a144) ,
Zz1 = 2+ h((1—7)aa +701+4)
21 = zo+h((1—7)as+70114), (14)
(1 = am) MiyaGira + amMaan = (1 —ay)f(t, Y1, 21, M, 1) + ay f(to, Yo, 20, Mo, o),
(1 — am) Miya@iia + amMuas = (1 —ay)f(t1,y1, 21, A1, 1) + ag f(to, Yo, 20, Aos Yo)s
0 = g(ti, ),
0 = gilt1,y1) + gyt y1)z1,
0 = k(ti,y1,21),
0 = k(ti,y1,21),

where Mo == M(ti4a,Y0 + h(1 + a)2) and M, := Mi4a)—1 or M(ts, Yo + hazg) The
auxiliary variables 21, a1, \1, %1 are just local to the current step, they are not propagated.
For f(t,y, 2, X\, ¢) = fo(t,y,2) — g, (t,y)\ — kL (t,y, 2)1 we can replace for example

(1 - Oém)M1+a51+a + o Mya, = (1 - af)f(tla Y1, 21,}:17 151) + aff(t07y07 20, Ao, 100)
by
(1= o) Misa(@rya — rea) = (1= ap)gl (b, 1) (0 — M) + (1= ap)kL (1, y1, 20) (1 — ).

From Ref. [6] we have the following convergence result:

Theorem 1. Consider the overdetermined system of DAEs given by Eq. (I2) and assumption
Eq. (I3) with consistent initial conditions (yo, 20, a0, Ao, %) at o and exact solution (y(t), z(¢),
a(t), A(t),(t)). Suppose that a, — a(ty + ah) = O(h), for example a, := ao. Then the
generalized-«-SO12 numerical approximation (y,,, zn, Gnia, An, ¥n) (See Eq. ([I4)) satisfies for
0 < h < hpax and ¢,, — to = nh < Const

Yn — y(tn) = O(R?), 2, — 2(t,) = O(h?), Gnia — a(t, + ah) = O(R* 4+ 1"h),
An = Atn) = O(h2 +71"h), b, —(t,) = O(h* +r"h)

where 7 := |, /(1 — ., )|. Moreover, if a,,, = 0 or a,, — a(ty + ah) = O(h?) then we have

e — alty +ah) = O(B2),  Ap— Alty) = O(R2), b — ¥(t,) = O(h?).
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7 VARIABLE STEPSIZES h,,

When applying the generalized-a method with variable stepsizes, the values a,, and
M, oG, o must be adjusted before each new step in order to preserve the second order of
the method. Consider a previous step starting at ¢,,_; with stepsize h,,_; and a new step start-
ing at t, = t,_1 + h,_1 with stepsize h,,. The value a,,_1,, used in the previous step is an
approximation of a(t) at ¢, 1 + ah,_1 i.e., ap_110 =~ a(t,—1 + ah,_1). The value a,, Ob-
tained in the previous step is an approximation of a(t) at ¢, 1 + (1 + a)h,_1 = t,, + ah, 1
i.e., 4y ~ a(t, + ah,_1). For the current timestep starting at ¢,, with stepsize h,, we need the
value a,,,, to be an approximation of a(t) at t,, + ahy, i.e., anio ~ a(t, + ah,). By linearly
interpolating a,,_1,, att,_ + ah,_1 and a,, att, + ah,_; and by extrapolating at ¢,, + ah,,,
an+q can be replaced by

hn
hn—l

Upta < Unta + ( - 1) (a'n-i-a - a'n—l—i-a)- (15)

A similar formula for M, ,a,, should also be used. We can replace M,, 0,1, by

hy,
hn—l

Mn—i—aan—i-a D n+aln+ta +« ( - 1) (Mn—i-aan—l—a - Mn—1+aan—l+a)' (16)

These formulas have several advantages:
e they are simple to implement;
e their computational cost is almost negligible;
e they are valid for both ODEs and DAEs;
e they preserve second order of convergence.

These modifications are not necessary to preserve the second order of convergence for the y and
z variables. However, since the cost of these modifications is negligible and they also allow sec-
ond order of convergence for the a, A, and v variables, these modifications are recommended.

8 NUMERICAL EXAMPLE

To illustrate Theorem 1 numerically we consider the following mathematical test problem

yi = 21, yé = Z9,
m Yo — e 2 } [ 2 } _ [ e (Y120 + 2y221) + €2y A1 — 12001 — 2

Y

sin(y; —e')  y1ye 2y e~ (y222/2 — 2u1 210222 + Y2 A]) — 121t} + €™
0=g(t,y) = yiy2 — 1,
0= g:(t,y) + gy (t,y)z = 210221 + 13 20,
0=Fk(t,y,2) = 112122 + 2.

We have applied the generalized-a-SOI2 method (see Eq. (I4))) with damping parameter p,, =
0.2 and variable stepsizes alternating between h/3 and 2h/3 for various values of h. Using the
modification of a,,,, of Eq. (I3) and M,, ,a, .. of Eq. (If) we observe global convergence of
order 2 at ¢, = 1 in Fig. [l Without these modifications in Fig. Plwe observe a reduction of the
order of convergence to 1 for the variables a, A, 1.
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B error of generalized-alpha-SOI2 with variable stepsizes
10 "¢ T T

107 F

[
o
&
T

|
4

errors in y,z,a,lambda, and psi
i
o
T

[
[S)
&
T

100

10 . M . M |

10

10 —
10

Figure 1: Global errors ||y, — y(tn)||2 (D), |20 — 2(tn) |2 (0), |anta — a(tn + ah)|l2 (X), [|An = AEn) |2 (+),
lton, — ¥ (tn)|l2 (*) of the generalized-a-SOI2 method (poo = 0.2) at ¢,, = 1 for a test problem with variable
stepsizes alternating between h/3 and 2h/3 with modification of a, o of Eq. () and M, 4an+o of Eq. (8.
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- error of generalized-alpha—-SOI2 with variable stepsizes
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Figure 2: Global errors ||y, — y(t,)[|2 (O), |20 — 2(tn)ll2 (0), [|@nta — altn + ah)|l2 (%), [[An — Altn)l2 (+),
ln — ¥(tn)|l2 () of the generalized-a-SOI2 method (p, = 0.2) at ¢, = 1 for a test problem with variable
stepsizes alternating between h/3 and 2h/3 without modification of a,, of Eq. (Id) and M, 4 oan+ o of Eq. (8.
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