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Thus computing is, or at least should be,

intimately bound up with both the source of the problem
and the use that is going to be made of the answers—

it is not a step to be taken in isolation from reality.

Richard Wesley Hamming (1973).



Résumé

Par équations différentielles algébriques on entend tout systéme d’équations de la
forme R(y',y,z)=0 ou 8R/By' n’est pas de rang maximum. La formulation de nom-
breux problémes ainsi que la modélisation d’une variété de systemes physiques menent
de facon naturelle & de telles équations.

Cette thése traite plus spécifiquement d'une classe d’équations différentielles algé-
briques, dites semi-ezplicites d’indez 3 sous forme de Hessenberg, dont divers domaines
d’application sont les suivants : les systemes mécaniques et Hamiltoniens munis de
contraintes, la dynamique moléculaire, les problemes de contréle optimal et la robotique.
Les propriétés de méthodes numériques du type Runge-Kutta sont étudiées. On fait
grand usage de structures arborescentes qui apparaissent dans le développement en
série de Taylor des solutions exacte et numérique.

Un résultat principal de cette thése est une démonstration d’une conjecture relative
3 la superconvergence des méthodes de Runge-Kutta dites en anglais stiffly accurate.
Tout aussi intéressante est la découverte d’une classe de méthodes de Runge-Kutta
partitionnées qui, lorsqu’appliquées a des systemes Hamiltoniens munis de contraintes,
permettent de préserver les contraintes et la structure symplectique du flot.




Abstract

The term differential-algebraic equations (DAE’s) comprises all systems of equa-
tions of the form R(y',y,z)=0 where dR/dy' is not of full rank. The formulation of
numerous problems and the modelling of many physical systems lead in a natural way
to such equations.

'This thesis deals more specifically with a class of DAE’s, called semi-ezplicit indez
3 DAE’s in Hessenberg form, whose various application domains are given by mechan-
ical and Hamiltonian systems with constraints, molecular dynamics, optimal control
problems, and robotics. The properties of numerical methods of Runge-Kutta type are
studied. We largely make use of tree-structures which appear in the Taylor-expansion
of the exact and numerical solutions.

A main result of this thesis is a demonstration of a conjecture related to the super-
convergence of stiffly accurate Runge-Kutta methods. Also interesting is the discovery
of a class of partitioned Runge-Kutta methods which, when applied to Hamiltonian sys-
tems with constraints, allow to preserve the constraints and the symplectic structure of
the flow.
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Summary.

The subject of this thesis deals with the Numerical Analysis of Differential- Algebraic
Equations (DAE’s). DAE’s consist in mixed systems of differential and algebraic (non-
linear) equations which cannot be explicitly or implicitly expressed as Ordinary Dif-
ferential Equations (ODE’s). It is well-known that differential equations are a natural
framework in which are modeled numerous problems in physics, in chemistry, and in
technical applications. In addition to differential equations the models often contain
implicit equations, in general purely algebraic (nonlinear) equations, in order to take
into account conservation laws, geometrical or kinematic constraints, Kirchoff’s laws,
etc. DAE’s arise typically in the following situations:

- in the motion of mechanical systems;

- in the study of constrained Hamiltonian systems, e.g., in molecular dynamics;
- in electrical circuit analysis;

- in chemical reaction kinetics;

- in the equations arising from the discretization of partial differential equations,
such as in fluid dynamics;

- in control theory, e.g., in robotics;
- in the analysis of stiff differential equations.

Although the venerable field of ODE’s is traditional in Mathematical Analysis since
Newton’s time, the systematic treatment of DAE’s has really taken wing only in the last
decade. DAE’s differ in several aspects from ODE’s and they present new analytical
and numerical difficulties. DAE’s can be characterized by the notion of index and
DAE’s with index strictly greater than 1, called higher index DAE’s, are ill-posed in the
sense that small perturbations may cause arbitrarily large changes in their solutions.
The numerical treatment of such DAE’s often leads to severe difficulties which can be
overcome by reducing the index of the problem by different techniques. Many problems
in the above-mentioned fields are formulated or lead to higher index DAE’s.

Solving exactly ODE’s or DAE’s analytically is generally an impossible task. Hence
numerical methods have been developed to approximate the solutions to these problems.
The first numerical method for the integration of ODE’s goes back to Euler’s work.
Nowadays, with the advent of computer technology, the interests in the modelling, the
analysis, the simulation, and the control of various systems have increased enormously.
Hence there is a considerable need for efficient and reliable numerical methods and soft-
ware for DAE’s. Many progresses have been made in the theoretical and numerical anal-
ysis of DAE’s (see the books [BreCamPe89], [GrMa86], [HaLuRo89a], and [HaWa91]).
For surveys on DAE’s and numerical methods see [Pe89], [Rh91a], (GrHaM391], [Pe92],
[M292], and [HaJay93]. In certain situations DAE’s can be reduced to ODE’s and are
therefore solvable by available standard ODE solvers. However, even in this case it
may be in fact advantageous to work directly with a DAE. Hence a lot of numerical
methods for ODE’s have been especially adapted to DAE’s. They comprise principally
linear multistep methods, one-leg methods, linear implicit methods, Rosenbrock meth-
ods, Runge-Kutta methods, and some extrapolation methods. Because of a certain
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connection between stiff ODE’s and DAE’s, stiffly accurate Runge-Kutta methods and
backward differentiation formulas are of great interest in the DAE framework.

The main scope of this thesis is to study the application of partitioned Runge-Kutta
(PRK) methods to semi-ezplicit indez 3 DAE’s in Hessenberg form. The emphasis is
on stifly accurate methods and we restrict ourselves to initial value problems. The
organization of this thesis is as follows:

- In Chapter I we review some fundamental notions and results related to DAE’s
and to their numerical treatment. After having described some common basic
structures of DAE’s we then discuss the important concepts of solvability and index.
Next we give some current examples of higher index DAE’s. Further we present
some available techniques to reduce the index of a problem. We then review some
common numerical methods used for the solution of DAE’s. Finally a brief overview
of the scope of this thesis and the main convergence results is given.

- In Chapter II we give theoretical results related to semi-explicit index 3 DAE’s in
Hessenberg form. After characterizing the set of consistent values and the index of
the problem, we then derive the Taylor expansion of the exact solution by means of
a “rooted-tree” type notation. In this setting the theory of B-series due to Hairer
and Wanner is extended to such problems giving birth to the new denominated
D A3-series theory.

- Chapter III deals with the application of (projected) partitioned Runge-Kutta
methods to semi-explicit index 3 DAE’s in Hessenberg form. Results about the
existence and uniqueness, the influence of perturbations, the local error, and the
global error of the numerical solution are given. A short discussion on the ap-
plication of simplified Newton iterations to the arising nonlinear system ends this
chapter.

- The next two chapters are similar to Chapter III with the addition of some nu-
merical experiments. In Chapter IV we restrict ourselves to the direct applica-
tion of pure Runge-Kutta methods to semi-explicit index 3 DAE’s in Hessenberg
form. A proof of a conjecture related to the superconvergence of stiffly accurate
Runge-Kutta methods is given, together with an application of this result to the
convergence analysis of these methods for stiff mechanical systems. In Chapter V
we mainly deal with the application of a special class of partitioned Runge-Kutta
methods to Hamiltonian systems with holonomic constraints. These methods are
superconvergent and preserve the symplectic structure of the flow and all underly-
ing constraints as well.




Chapter I. Fundamentals of DAE’s and numerical methods.

1. Introduction and notation.

The theoretical and numerical treatment of differential-algebraic equations (DAE’s )
is recent and still an open and active area of research. The systematic development of
numerical methods for the solution of DAE’s has begun with the original works of Gear
[GeT1] and Petzold [Pe82]. In this chapter we review some fundamental notions and
results related to DAE’s and to their numerical treatment. In the last section we give
a brief overview of the scope of this thesis and the main convergence results. In this
thesis we restrict ourselves to initial value problems.

The following notations are used throughout this thesis. We denote by R™ the
n-dimensional Euclidian space. Let y = (¥y,..-,¥,)T and z = (21,-++12,)T be two
vectors (i.e., elements) of R* and R™ respectively then we define the augmented vector
(y,z) eRnt™ by

(82) 1= T 2T)F = W+ rUns 2101 2m) T ERTHT (1.1)

If the mapping

Rn+m Rk
& { l (1.2)

(y7z) = @(y,z) = (Ql(:‘hz),- .o ,'Qk(y,z))T

is differentiable at (y,, z,) then the Jacobian matrix at (¥y, 2) of ® with respect to y is
given by

% 0%
—5y—1(y0,z0) K WL(yo,zo)
o® : i
®,(vo»20) == 5‘y'(y0azo) . : : g (1.3)

8%, C 88,
_ay_f(yoazo) ) 'ay_:(yo,zo)

and similarly for ®_(y,,z2,)- Higher derivatives are written as multilinear mappings.
For example, for v=(vy,...,v,)T €R™ and w=(wy,..., w,,)T €R™ the ith-component
of the expression

Qyz(y07z0)('v7w) (14)

corresponds to

n 2 528,
ZZ ay 6Zk (yO’ZO)vjwk i (1'5)

m
j=1k=1 °J

Finally, for an interval I CR we denote by C! (I,R™) the set of continuously differentiable
mappings v : I — R™.
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2. Structure and solutions of DAE’s.

In this section we review some elementary definitions related to the structure and
solutions of differential-algebraic equations (DAE’s). Implicit differential equations are
general systems of nonlinear equations

Rl(w,yp---ayn,yll"'-,y;;) =0 ’

(2.1)
Rm(z5y17-- -,yn,y'l,. ..,y;) =0,

or more succinctly

R(.’B, y7y') =0, (2.1)

where m > n, unless mentioned otherwise z is the one-dimensional variable of inte-
gration, ¥ = (v5,...,9,)7, and ¥’ = (y1,...,¥4)T = dy/dz. Throughout the following
sections the function R will be assumed to be sufficiently differentiable. Such a system
(2.1) is said to be overdetermined if m>n and autonomous if in the form

R(y,y')=0. (2.2)

The non-autonomous system (2.1) can be put in autonomous form by simply appending
the equation z'~1=0 to (2.1) and by defining y,,,, = (z,¥)-

Definition 2.1. A (classical) solution u to (2.1) on the interval I is a function u €
C1(I,R") satisfying (2.1) for all z€ 1.

If B, is regular and R(zy,Y,,¥p) = 0 then by the implicit function theorem we can
locally rewrite the system (2.1), at least formally, as a system of ordinary differential
equations (ODE’s)

y = f(=z,y) . (2.3)

In this case well-known theorems on the existence and uniqueness of a solution apply
(see, e.g., [HaNgWa93, Section 1.9] and [But87, Section 112]). However, the theoretical
and numerical analysis of such equations is not the purpose of this thesis. In this thesis
we are interested in systems (2.1) where R, is not of maximal rank n (singular if
m=n) which are designated as differential-algebraic equations (DAE’s ). Such systems
differ in several aspects from the precedent situation and they present new analytical
and numerical difficulties. In opposition to ODE’s which under reasonable assumptions
admit a unique solution for any arbitrary initial value, there is no unified existence and
uniqueness theory for general DAE’s. For example DAE’s may have solutions only for
a subset of initial values called consistent, may have multiple solutions, may present
bifurcations, may possess impasse or turning points, or may have no solution at all.
Therefore we are led to deal separately with different types of problems. A common
assumption is that the rank of R,, remains constant.

We review some basic types of DAE’. A situation which frequently occurs in
practical applications is when the system (2.1) is linear in the derivative

B(z,y)y + A(z,y) =0, (2.4)
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which is sometimes referred to as linearly implicit. Systems of the form

y' =f(:c,y, z) ’ (2 5)
0 =g($ayaz) ’
or more generally
F(m7y7 z, yl) =0 ? (2 6)

G(z,y,z) =0

where F, is regular, are called semi-ezplicit systems. The variables y and z are called
respectively the differential and algebraic variables. The general system (2.1) can be
rewritten in the semi-explicit form (2.5) by simply considering

!
=z
sk 2.7)
0 =R(z,y,z2) -
Thus semi-explicit problems can be considered as the generic case. Semi-explicit DAE’s
in Hessenberg form of size r >2 are given by

w!' = F(z,w*,»?%),

w? = F(z,w',w?,v®),

(2.8)

r—1! r—1 1.2 .3 r—1 _, .7
w = FYz,w',v’,w°,...,0" ,w"),

0 =F"(z,w')

where the product matrix F, F., - F77' is supposed to be regular in a neighbourhood
of the solution. Semi-explicit DAE’s in Hessenberg form of size 1 are given by (2.5) where
the matrix g, is supposed to be regular in a neighbourhood of the solution. There are
other important classes of DAE’s discussed in the literature (see, e.g., [BreCamPe89,
Chapter 2]), namely: linear constant DAE’s, linear time varying DAE’s, triangular
chains, etc. In the other chapters we will deal with autonomous semi-explicit DAE’s in
Hessenberg form of size 3.

3. Two key concepts: solvability and index.

Two key concepts in the analysis and classification of DAE’s are played by the
notions of solvability and index. Both of them have evolved over the years and there
are many possible refinements in their definition. Here we restrict ourselves to the
easiest and most comprehensive definitions.

3.1. Solvability.

We begin with the concept of solvability which intuitively means the existence
of a family of solutions to the DAE (2.1). Since not all initial values for y admit a
solution, we are interested in the cases where the solutions form locally an 7-dimensional
manifold. The following definition is close to the usual definitions (see [BreCamPe89,
p. 16], [PeP092], and [Po93a,c]):
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Definition 3.1. [CamGe93]. Let @ CR?"*! be a non-empty connected open set. Then
the DAE (2.1) is (locally) geometrically solvable on Q) if there exist non-empty connected
open sets ICR and ACR", and a function @ such that

1 0: IxA—IxR"
T (=2, A) o (=, 8(2,0))
2. For all A€ A, ®(-, )) is a solution to (2.1) on the interval J, i.e.,
R(z,®(z,A),®,(z,A))=0 Veel, VAeA.

is a diffeomorphism of I X A into I xR™.

3. For all z€I and A€ A we have (z,®(z,)), ®,(z,)))€.

4. If u is a solution of (2.1) on the open interval J such that (z,,u(z,),u'(z,)) €S for
some z, €I, then there exists A€ A such that u(z)=®(z, ) on INJ.
'

A value (z4,u,) is called geometrically consistent if there exists Ay € A such that
uy =B(zg, Ap)-

Remark 3.1. Bifurcations of solutions may not occur in £ under these assumptions.

It is obvious that standard ODE’s (2.3) and implicit differential equations (2.1) with
regular R, as well are geometrically solvable on R27+1, It can also be easily shown that
semi-explicit DAE’s in Hessenberg form of size r are geometrically solvable within a set
of consistent values (see Section II.1 for the size 3 case). In view of this definition it
turns out that geometric solvability implies the existence of a unique vector field on the
solution manifold Q. The reverse is also true provided the vector field is differentiable
(see [Rei92]). This has led several authors (see [Rh84], [Rei90a,b], [Rh91b], [Reidl],
[Rei92], [RaRh91], [Gr91], [M493], [RaRh94]) to characterize DAE’s to which can be
translated well-known results on vector fields on manifolds [ArV.92, Chapter 5]. In this
thesis we deal with DAE’s whose solvability is obvious or is assumed.

The local solvability of the DAE (2.1) can be proved by showing the existence of
a local state-space form which is a system of » ODE’s whose solutions are in one-to-
one correspondence with solutions of (2.1) (see Subsection 5.2). For a computational
verification of solvability see [CamGr93].

3.2. Index.

The second concept is that of indez and it provides a convenient way of classification
of DAE’s. There are many different definitions of the index. We present here the
differential indez and the perturbation indez which are common in the literature.

Generally a solution to a DAE (2.1) is known to depend on the derivatives of R.
Differentiating (2.1) k times with respect to z, we obtain the (k+1)m derivative array
equations (see [BreCamPe89, p. 32] and [CamGr93))-

R(z,y,y")
R, (z,y,¥")+R,(z,9,9" )y +R,(z,9,¥")y"

R*z,y,y,...,y¥™V) = . =0. (3.1)
da* ' 7
Ez;—kR(mayay)

Definition 3.2. [GeGupLe85], [BreCamPe89, p. 33], [CamGe93]. The differential indez
vy ; of the variable y; is the smallest integer k for which y! is uniquely determined by
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R* as a continuous function of (z,y) (supposed to be consistent). The differential indez
V4 is then defined by v; := max,_; _ ,¥4;

Thus the differential index is the minimum number of times that (2.1) must be differ-
entiated with respect to z to determine y' as a continuous function of consistent values
(z,y), i.e., to obtain an explicit ODE for y' called the underlying ODE.

It is well-known that the higher the index and the more difficulties are encountered
when numerically solving DAE’s. A convenient measure of the sensitivity of a solution
to perturbations in the equations is given by the perturbation index.

Definition 3.3. [HaLuRo89a, Definition 1.1], [HaWa91, Definition V1.5.3]. The :ith-

component has perturbation indez v, ; along a solution u on a bounded interval I passing

through u(z,) at z, if v, ; is the smallest integer such that for all functions %(z) having
a defect

R(z,(z),%'(z)) = é(z) (3.2)
there exists on I an estimate
|@;(z)—u;(2)] < C; [|@(zq)—u(z,)l|+sup || /C 5(T)dfll+y§15up ll5(j)(C)||) (3.3)
' i 0 O cer " Jao = el ]

whenever the expression on the right-hand side is sufficiently small. Here C, is a constant
which depends only on R and on the length of the interval I. The perturbation indez
v, is then defined by v, := max,_;  .v,..

Thus the perturbation index is a measure on how strong the problem may be ill-posed.
Unlike problems with perturbation index v, equal to 0 or 1, problems with perturbation
index v, > 2 are ill-posed in the sense that small perturbations may cause arbitrarily
large changes in their solutions. Their numerical treatment often leads to severe difficul-
ties which can be overcome by reducing the index of the problem to 0 or 1 by different
techniques (see Section 5).

In view of the above definitions it turns out that standard ODE’s (2.3) and implicit
differential equations (2.1) with regular R,, as well are of differential and perturbation
index 0. It can also be easily shown that semi-explicit DAE’s in Hessenberg form of size
r are of differential and perturbation index r (see Section IL.1 for the size 3 case). For

a practical computation of the differential index see [Pan88] (for linear constant DAE’s
see [BujBo93]).

Both above-defined indices are referred as standard indices. We have the relation
vy <v, (see [Ge90]), but these indices may be very different from each other. An example
of problems with v; =1 and arbitrary high v, is givenin [CamGe93]. These indices may
also vary in a neighbourhood of a solution or may not exist at all (see [CamGe93]). For
these reasons, a second class of indices referred as uniform indices has been introduced
in [CamGe93] to overcome these troubles. Such indices are defined with respect to a
class of perturbations. However, this subject is beyond the scope of this thesis and we
refer the reader to [CamGe93].

It must be stressed that in most practical applications the various indices are equal.
DAE’s with index v > 2 are called higher indez DAE’s (see [HaWa91, Section VI1.5]).
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As mentioned before such systems are much more difficult to treat than index 0 and 1
DAE’s. Nevertheless, they arise in many applications as we will see in the next section.

Notes.

For the important problem of finding consistent initial values in a general setting
we refer to [Pan88] and [LePeGe91].

The first result for an existence and uniqueness theory for nonlinear DAE’s appears
to be for gradient systems (see [TaT76))

yl :f(ya z) ’

0=V hlpy2) = KT (ws) . (34)

Most of the research has been focused on solvable DAE’s. Only a few researchers have

dealt with more general DAE’s, e.g., DAE’s presenting bifurcations, turning points, or
impasse points. For such problems we refer to [Ra89] and [RaRh92a,b].

The first definitions of index were related to linear DAE’s by means of the Weier-
strass-Kronecker canonical form for matriz pencils (see, e.g., [BreCamPe89, Section 2.3]

and [HaWa91, Section VL5]).

The first attempt to translate the theory of vector fields on manifolds to a special
class of DAE’s is due to Rheinboldt [Rh84]. This differential-geometric approach has
then been extended by Reich to the class of regular DAE’s. A regular DAE is a DAE
such that a unique vector field can be related to the solutions of the DAE (see [Rei90a,b],
[Rei91], and [Rei92]). This notion of regularity is closely related to the above-defined
geometric solvability. The geometrical indez (the degree) v, of Reich is based on the
observation that a family of v, embedded manifolds containing the solutions of the
DAE can be constructed. For further details on this approach see [Rei90a,b], [Rei91],
and [Rei92]. A general existence and uniqueness theory for (2.2) based on constant
rank assumptions for the Jacobians R, and R, is given in [RaRh91] showing that
the geometric approach is conceptually valid. Within this framework an existence and
uniqueness theory for the class of nonsingular DAE’s is given in [RaRh94].

The notion of indez-v,-tractability is a characterization of the problem in terms of
suitable projections of solutions. This index is in close relationship with the concept of
transferability which is nearly equivalent to the assumption of differential index 1. For
further details we refer to [GrM#86], [M&89], and [M&92].

For a discussion on DAE’s with discontinuities see [Ni90] and [PrBeDeSc92]. For
DAE’s with delays see [AsPe92b].
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4. Examples of higher index DAE’s.

In this section we give some current examples where higher index DAE’s arise. For
examples of DAE’s with very high index see [Cam93b)].

4.1. Mechanical and Hamiltonian systems with constraints.

Since the last decade there has been a growing interest in the modelling and sim-
ulation of mechanical systems (MS’s) (for details see [Hau89), [Sch90], [Sch93], [Bre-
CamPe89, Section 6.2}, [HaLuRo89, pp. 6-7], and [HaWa91l, pp. 483-486 & Section
VI.9])). Such problems arise in vehicle-systems simulation (see [P093c]), in aerospace
application (see [Bre83] and [Bre86]), in biomechanics (see [Ka93]), in robotics (see
[JanBru92]), etc. In the multibody system approach, a MS is described in terms of
bodies and connections. The mass is supposed to be entirely concentrated in the rigid
and elastic bodies which are coupled by massless connections. Connections like springs
and dampers are sources of applied forces acting on the bodies, whereas connections
like joints constrain the relative motion of the bodies. The use of computer algebra
programs to generate automatically the equations of motion of MS’s is nowadays cur-
rent (see [Sch90] and [Sch93]). These equations can be derived from the Lagrange-
Hamilton principle as follows: Let ¢ = (gy,--- ,q,)T be the n generalized coordinates
of the MS submitted to m < n non-redundant holonomic (position level) constraints
9.(¢)=0,...,9,,(g) =0. Here the one-dimensional variable of integration is the time ¢
and a derivative with respect to t is denoted by a dot (*). Then the motion of the MS
is described by the solution of the constrained variational problem

win [ L), dr)ir, 0=s(a) (4.1)

to

where L(q,4) = T(q,4)—U(q) L& g(q) is the Lagrangian, T(g,q) = 24T M(q)q is the
kinetic energy with M(g) the symmetrical generalized mass matriz, U(q) the potential
energy,’and A=(A,..., A,,)T the vector of generalized constraint forces coupled to the
'system and commonly called the Lagrange multipliers. A necessary condition for this
“variational problem is given by the Euler-Lagrange equations

d -
3 p (I3(g,9)-L7(e,9) =0 (4.2)
with L(q,?‘,hr):'l-/f,i)- ;‘rj(q)
leading to
q=v, (4.3a)
M(q)o =f(g,v)-GT(9)X , (4.3b)
0 =g(q) (4.3¢)

where v=(v,,...,v,)T are the n generalized velocities,

f(q, v) = Lg(q,”)—qu(q,v)” (4'4)

.is the vector of generalized ezternal forces, and G(q) := g,(g). The formulation (4.3)
is called the descriptor form and is referred in classical mechanics as the Lagrange
equations of the first kind. The importance of this formulation lies in the fact that it
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is independent of the choice of the coordinates. In order to determine the differential
index of this DAE (4.3a,b,c) we derive twice the algebraic constraints (4.3c) and we
obtain the following additional constraints

0 =G(q)v , (4.3d)
0 =g,,(9)(v,v)+G(g)? (4.3¢)

which are called respectively the velocity/acceleration level constraints. If we consider
(4.3¢) together with (4.3b) we obtain

(& %" ()= Conrom) s

and the following result can be easily shown:

Lemma 4.1. [Hau89, pp. 225-227|, [Ka93|. Under the assumptions

G(g) is of full row rank m , (4.6a)
wT M(q)w >0 Vw # 0 such that G(¢)w =0 (4.6b)
then the matriz on the lefi-hand side of (4.5) is invertible. |

Hence under these assumptions the differential index of the system (4.3a,b,¢c) is equal
to 3 and the whole system of equations (4.3a,b,¢,d, €) forms an overdetermined DAE
of differential index 1. If in addition the matrix M(q) is invertible then the system
(4.3a,b,¢) can be rewritten in Hessenberg form of size 3 and the invertibility of the
matrix in the left-hand side of (4.5) is equivalent to the invertibility of the matrix
(GM~1GT)(q)-

If the mass matrix M(q) is invertible then an alternative and equivalent formulation

to the above Lagrange formulation is given by the Hamilton formalism as follows: Let
p=(py,---,p,)T be the n generalized momenta of the system defined by

p=1L3(g,9) - (4.7)

By a Legendre transformation of the Lagrangian L(g,q) with respect to ¢ (given by
H(q,p)=pTd(q,p)—L(g, 4(g,p))) we obtain the equivalent Hamiltonian formulation

¢=H;(g,p) , (4.8a)
p= —HqT(q)p)—GT(Q)A ’ (4'8b)
0 =g(q) (4:80)

where it can also be shown that H =T4U is the total energy of the system. As previously
done, differentiating (4.8¢) twice we obtain the following additional constraints (omitting
the obvious function arguments)

0=GH, (4.8d)
0=G (BT, HI)+GHLHI ~-GH, HI ~GH;,G"X . (4.8¢)

pg P PP 4
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Remark 4.1. These equations (4.8) are not restricted to the modelling of mechanical
systems. For example such systems arise in molecular dynamics too (see [SkBiOk93]).

The following result can be easily shown:

Lemma 4.2. Under the assumptions

G(q) is of full row rank m , (4.9a)
H,(g,p) isa strictly positive definite matrix (4.9b)
then the matriz (GHLGT)(q,p) 13 invertible. m|

Remark 4.2. The second assumption (4.9b) means that we have an optical Hamiltonian
system (see [MK92, p. 140]).

Hence under these assumptions the system (4.8a,b, ¢) is in Hessenberg form of size
3, therefore of index 3, and the whole system of equations (4.8a,b,c,d,e) forms an
overdetermined DAE of index 1. The main advantage of the Hamiltonian formulation
(4.8) over the Lagrangian formulation (4.3) is that it possesses more structures. The
main property of Hamiltonian systems is that of symplecticity: in the phase space of
(g,p) given by the 2(n—m)-dimensional manifold

V = {(g,p) e R"xR™ | 0 = g(q) , 0 = G(9)H; (¢,7)} (4.10)

the flow generated by (4.8) is symplectic, i.e., the differential 2-form
n
w? = Z dg, Adp,  is preserved, (4.11)
k=1
implying that all differential 2d-forms
WAL AR for d=1,...,n (4.12)
d times

are also conserved (d = n corresponds to the 2n-form volume). This is one way of
characterizing symplectic transformations. Another specific feature of such systems is
that the Hamiltonian along a solution (g(t),p(t)) to (4.8) passing through (g9,P0) at By
remains invariant, i.e.,

H(q(t),p(t)) = H(gp,p,)  forallt. (4.13)

Hamiltonian systems also possess numerous other specific properties (see [ArV.89, Part
I1I] and [MK92}).

Notes.

The Lagrange formulation (4.3) of the motion of MS’s is not the most general one.
The following additional factors may be present in a MS model:
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- a MS may be subject to non-holonomic constraints 0 = K(q)v+k(q), e.g., in order
to model the contact of a rolling wheel on a surface [SiFiiRen91]. Such constraints
can be incorporated into the system (4.3) by addition of supplementary Lagrange
multipliers into (4.3b);

- a MS may be subject to flezibility leading to DAE models with very high indices
(see [Cam93b));

- a MS may be subject to external ezcitations u(t) due to external (actuator) dynam-
ics elements like, e.g., dampers and motors (see [SiFiiRen91]). These excitations
can be modelled by differential equations of the type

@ = d(q,v,\,u) ' (4.14)

and they enter in the generalized external forces f = f(q,v,A,u) and in the holo-
nomic constraints g =g(g,u);

- the systems (4.3) and (4.8) may be non-autonomous;

- a MS model may present discontinuities or non-differentiabilities due to, e.g., fric-
tion forces, impact, discrete time controllers, and tabulated data (see [SiFiRen91],
[Ei92], and [AnBoEiSc93)).

4.2. Singular singularly perturbed problems.

Singular perturbed problems form a particular class of stiff differential equations
containing a small parameter 0 <e <1 (see [OM74] and [HW91, Chapter VI])

¥y =f(z,y9,2), (4.15a)
ez’ =g(z,y,2) . (4.15b)

The analysis of the limit case e =0, the reduced problem

y' =f(z,y, Z) 3 '(4'160’)
0 =g(z,y,2) (4.16b)

often gives much insight into the behaviour of solutions to (4.15). Under the stability
assumption
{g.(z,y,2)w,w) < —Const-|lw|? with Const >0, (4.17)

which implies that
g,(z,y,z) 1is invertible , (4.18)

smooth solutions to (4.15) for suitable initial values are known to possess an c-expansion

y(z) =y (2)+ey’(2)+...+e" yN () +O(N )

4.19

2(z) =2°(z)+e2 (2)+. ..+ 2N (2) + O(eN T (419)
where (y°(z), 2%(z)) is solution of the reduced problem (4.16) (which is an index 1 DAE)
and (y*(z), z*(z)) are solution of index k+1 DAE’s. However, in certain situations, the
matrix g, may possess zero-eigenvalues implying that the condition (4.18) is not satis-
fied. In this case we speak of singular singularly perturbed problems. Stiff mechanical
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systems in which a strong potential 5 V/(g) forces the motion to be close to a manifold
fall into this category (see [Lu93]). A precise formulation for unconstrained systems is
as follows:

¢=v, (4.20a)
1
M(q)b =f(,v)- 5 V4 (@) (4.20)
with the assumptions (SMS) (for Stiff Mechanical Systems)

- M(q) is symmetrical and positive definite;
)
- V(q) attains a (local) minimum on an wi-dimensional -manifold V;

- in a neighbourhood of V, V(q) is strongly convex along directions non-tangential

to V.

Under these hypotheses (SMS) it can be shown that for suitable initial values smooth
solutions to (4.20) possess an e2-expansion

q(t) =¢"(t) +e* ¢ (8) +-. 42NN (1) +0(2VFE) (4.21a)
v(t) =v°(t) +ev (t) +. . 42NN (1) +O(e2VF2) (4.21b)

where (g°(t),v°(t)) is solution of an index 3 problem (4.3a,b,c) with g such that it
vanishes on V (and only there) and G(q) :=g,(q) bas full row rank m, and (g*(t),v*(%))
are solution of index 2k+3 DAE’s (see [Lu93]). A typical example of a stiff mechanical
system is given by the stiff spring pendulum (see [Lu93] and [HaLuRo89a, pp. 10-12]). It
consists of a mass point m suspended at a massless spring with a large Hooke’s constant
1/e%, 0 <e < 1. Using cartesian coordinates ¢ = (z,2z)T, the kinetic energy T and the
potential energy U of the system are given respectively by

T(9) = 2(&+), Ul = mgz+ s (Ver+z - z)2 (4.22)

2¢e?

where ¢ denotes the rest position of the spring and g the gravitational constant. The
Lagrange equations of motion (4.20) are then given by

ol = = m’i)z:—mg—%)\ (4.23)

where we have defined A by

2
N N (4.24)

For the limit case ¢ =0 (the pendulum equations), we obtain the constraint

0=+/z22+22-1¢ (4.25)

and ) has now the role of a Lagrange multiplier. It is easy to show that the so obtained
differential-algebraic system (4.23)-(4.25) is of the form (4.3a,b,c) and therefore of index
3.
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4.3. Control problems.’

In control theory a process is generally described by a system of differential equa-
tions

:'.J e f(ta yvu) (426)

where u represents a set of control parameters varying with time ¢ (see [BryHo75]). In
fact the process can be itself modelled by a DAE, but we restrict here our discussion
to the case (4.26) in order to avoid a possible confusion in the derivation below. The
control parameters u are usually chosen so that the solution satisfies some constraints

0= g(ta y’u) (4'27)

or/and minimizes some cost functional. In the first situation u is frequently absent from
(4.27) and hence the index of (4.26)-(4.27) may be very high. This is often the case in
prescribed path control problems where the goal is to adjust the control parameters u so
that the trajectory follows some prescribed path

0= g(t, y) - (4'28)

Examples of such problems with very high indices arise in robotics. In space vehicles
simulation examples of index 2 and 3 problems are given in [Bre83], [Bre86], and [Bre-
CamPe89, Section 6.3], whereas an index 5 problem is described in [Cam93b]. In the
second situation a common case is when the cost functional to be minimized is of the
form

2

J(u) = / o(7,y(1),u(r))dr . (4.29)
1o

In this case for the fixed time, fixed endpoint problem, the variational equatiohs for

(4.26)-(4.29) are given by the semi-explicit DAE (see [BryHoT75, p. 49], [BreCamPe89,

p. 6], and [HaWa9l, p. 482])

3'/ :f(ta Y, 'I.L) X (430(1.)
2= <p§(t, y,u)—ff(t,y,u)z , (4.300)
0 =pZ(t,y,u)+fI(t,y,u)z , (4.30¢)

with y(t,) =y, and 2(¢;)=0. This is a two-point DAE boundary value problem which
can also be directly obtained from the Pontryagin principle (see [PonBoGaMi62]). If
the matrix

ol (ty,u)+ fru(t,y,u)z (4.31)

is invertible then the differential index of (4.30a,b,c) is equal to 1. However, this
condition is not always satisfied. For example, consider a linear control problem

Y= Ay+Bu+f(t) (4.32)
with cost functional
J(u) = %/ ’ y(T)TCy(T)+u(f)TDu(T)dT (4.33)
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where A, B,C, and D are constant matrices with C and D symmetric and positive
semi-definite. In this situation the equations (4.30a,b,¢) read

y =Ay+Bu+£(t) , (4.34a)
3=—Cy—ATz, (4.34b)
0 =Du+BTz. (4.34¢)

If D=0 and BTCB is positive definite, then (4.34a,b,¢) is in Hessenberg form of size
3, i.e., of index 3. If BTCB =0 then the index is at least equal to 5. Both problems
belong to the class of cheap conirol problems which have been extensively studied since
the late seventies (see [Cam80] and [Cam82]).

5. Index transformation techniques.

As mentioned in Subsection 3.2, higher index DAE’s are ill-posed in the sense
that small perturbations may cause arbitrarily large changes in their solutions (see
also [GrM386], [Han90], [Ma85a,b], and [AsPe93]). Hence different techniques have
been proposed to change the index of such problems to 0 or 1 by considering another
problem possessing the same solutions as the original problem. In this section we review
some current index transformation techniques. For a stability analysis of some of these
techniques see [AsPe93].

5.1. Index reduction by differentiation.

A way of reducing the index of higher DAE’s is often to differentiate analytically the
equations and to do some algebraic manipulations until a DAE of index 0 or 1, or even
an ODE is obtained (see [Ge88] and [BreCamPe89, Subsection 2.5.3]). This approach
is natural for semi-explicit problems, especially for those in Hessenberg form of size r
where after r—1 or r differentiations of the algebraic constraints an index 1 DAE or an
explicit ODE can be obtained. The advantage of this method is that a great variety
of efficient and reliable codes are applicable to the resulting equations. However, this
approach has some drawbacks. The first one is that the structure of the original DAE
may be lost, e.g., sparsity of the system structure may be destroyed and meaningless
variables may be introduced. A second drawback is that in practice it may be very
complicated or even impossible to rewrite a DAE into an ODE. A third drawback is
that the analytical and stability properties of the resulting equations may be drastically
different from the original DAE, creating new difficulties (see [BreCamPe89, Subsection
5.4.1], [FiiLe89, Example 2.1], and [AsPe93]). A fourth drawback is that the numerical
solution generally no longer satisfies the constraints, thus giving a meaningless solution.
A way to circumvent this “drift off” phenomena is (if at all possible) to project the nu-
merical solution back to the solution manifold. This “coordinate” projection methodis in
fact recommended and can improve substantially the stability properties of the numer-
ical scheme. Different projection techniques exist, e.g., by solving certain constrained
minimization problems (see [Ei92] and [Ei93]) or by certain natural (orthogonal) pro-
jections (see [AsPe91], [AsPe92a], and Subsection II1.1.3). Within this framework see

also [GrM3s6], [Han90], [Lu91b], [Rei2], [Si92], [Si93], [A193], and [A10193].

In this setting a generalization of the projection method is often to consider the
original DAE and the differentiated constraints as a whole, i.e., as an overdetermined
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DAE (ODAE) (see [FiiLe89], [FiiLe91], and [PePo92]) of (supposed) index 1 or an
ODE with invariants (depending on the number of differentiations carried out) (see also
[Ge86] and [Sh86]). A numerical method can be applied to a certain formulation (an
ODE formulation, an index 0 or 1 formulation, or an high index formulation), and the
numerical solution can then be projected back to all underlying constraints. For certain
problems and certain numerical methods these projections are in fact quite natural (see
[AsPe91], [AsPe92a], and Subsection IIL.1.3) and may even enter in the definition of the
numerical scheme (see Chapter V).

In this context, several authors (see [Fiile89] and [FiiLe91]) have also proposed to
apply directly a numerical scheme to the ODAE system leading to an overdetermined
system of nonlinear equations which generally does not possess a solution. Nevertheless
a “pseudo-solution” can be generally defined by application of Gauss-Newton itera-
tions to the overdetermined nonlinear system. In fact this approach can sometimes
be equivalently regarded as numerically solving a state-space form (see [EiFiiLeRei90],
[EiFiYe92], and [PeP092]) or an extended DAE system possessing the same solutions
but where additional variables have been introduced (see the next paragraph).

A popular approach for reducing the index of some particular DAE’s, especially
for constrained mechanical systems, is to introduce new variables in an ODAE system
of lower index obtained by differentiation of some constraints such that they do not
alter the exact solutions and that a DAE of lower index is obtained. This approach is
sometimes referred as a constraint stabilization technique. For example the DAE system
(4.3a,b,¢) is of index 3, whereas the ODAE (4.3a, b, c, d) obtained by one differentiation
of the holonomic constraints (4.3¢) is of index 2. Now if we introduce additional variables
p=(fys-y )T in (4.3a) as follows

§g=v—-GT(q)p , (5.1a)
M(g)o =f(g,0)-GT(g)X , (5.15)
0 =g(q) , (5.1¢)
0 =G(q)v (5.1d)

then under the assumptions of Lemma 4.1 we obtain an index 2 DAE. This is the
famous GGL formulation [GeGupLe85]. It can be shown that any solution of the GGL
formulation satisfies 4 =0. This approach can be generalized to obtain an index 1 DAE
system by taking into account the acceleration level constraints (4.3¢) (see [FiiLe89] and
[FiiLe91]). In certain cases the numerical solution of a given method can be interpreted
as the “pseudo-solution” of the same numerical method applied to an ODAE, hence both
approaches may be sometimes regarded as equivalent (see [FiiLe89] and [FiiLe91]).

5.2. State-space forms.

The basic idea of the state-space form is the reduction by a certain parametrization
of the DAE to an ODE in a minimal set of independent variables. A precise definition
close to the usual definitions is as follows:

Definition 5.1. [PePo92], [Po93a,c]. Let I CR be an open interval and X CIXR™ be a
(r+1)-dimensional manifold. Then the DAE (2.1) has a local state-space form at (z,y.) €
Y if there exist an open neighbouring interval J CI of z , an open neighbourhood I' CR™
of y_, an open neighbourhood A CR™ of 0, a diffeomorphism © of the form

_{JxA—»II:=(J><I‘)ﬂE

"=z A) o (2, y=2(2,N)) , (5.2)
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and a Lipschitz continuous mapping
w:JXxA—=R" (5.3)

such that:
1. If (z4,9,) €I and if A(z) is the solution of the IVP

X = w(z,A),  Azg) = Ag with (24,,) = 0~} (29,%) (5.4)

then y(z) := ®(z, A(z)) is a solution of (2.1) satisfying y(z,)=y,-
2. I y(z) is any solution of (2.1) then for any z, € J there exists Ay € A such that
y(z)=®(z, \(z)) with A(z) the solution of the IVP (5.4).

The pair (®,w) is called a local state-space form of (2.1) at (z,,y.)- f J=1I and
M =7 then we have a global state-space form.

It is clear that if (2.1) satisfies these above assumptions then it is locally geometrically
solvable in the sense of Definition 3.1. For more details we refer to [Po93a,c] and
[RaRh94]. There are many different ways to obtain a local state-space form. In general
a local state-space form is obtained implicitly, hence a numerical method is applied in
an indirect way. In certain cases the solution of a given numerical method based on

such constructions can be interpreted as the “pseudo-solution” of the same numerical
method applied to an ODAE system (see [Po93a]).

As a first example (see [EiFiiLeRei90]) consider the ODE

¥ = f(=, Y) (5‘5)
with invariants

0 = h(z,y) - (5.6)
Let (z,,y,) be fixed and choose V(z,,y,) such that

( V(ze,ye) ) (5.7)

hy(mc’ yc)

is a square regular matrix. Then by the implicit function theorem we may find an
open neighbouring interval J of z,, an open neighbourhood I' CR™ of y., and an open
neighbourhood A CR™ of 0 such that for z € J fixed and for all A€ A the system

1= (A—V(mc,yc)(y—yc))

h(z,y) (5:8)

possesses a unique solution y = ®(z,A) €T. Therefore the inverse mapping © (5.2) is
well-defined and with the ODE

N = V(2,9 f(O(z,N)) (5.9)

a local state-space form is obtained at (z,,y.) € JxT. Numerical methods based on
such constructions are called derivative projection methods. If V(z,,y.) spans the null
space of h,(z «»Y,) then the parametrization is called a tangent space parametrizaiion.
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Another class of local state-space forms has been proposed for the equations of
motion of constrained mechanical systems (4.3). They are based upon two matrices A,

and A, such that
G(q.) G(q.)
( AT > and ( AT (5.10)

are square regular matrices with ¢, satisfying g(g.) = 0. If AT = AT spans the null
space of G(g,) then this choice corresponds to a tangent space parametrization. The
choice corresponding to a generalized coordinate partitioning consists in selecting a per-
mutation (e; ,...,e; ) of the standard basis of R™ such that the matrix formed by
columns (4,,...,1,,) of G(g.) is regular, and in taking 4, = 4, := (eim+1’ ...y€; ). For
more details we refer to [EiFiLeRei90], [PoRh90], [PoRh91], [EiFiiYe92], [YeHauPo092],
[Po93a,b,c], [RaRh93], and [Ye93]. .

For higher index linear Hessenberg DAE’s of the form

m~1

¥ =) A (a)yP+B(2)z+4(e)

k=0

0 =C(z)y+r(z)

(5.11)

where the matrices 4,(z), B(z), and C(z) depend smoothly of z, and C(z)B(z) is
regular for each z, a special class of state-space forms has been constructed in {AsPe93]
allowing a stability analysis of (5.11).

5.3. Regularization techniques.

Another approach for solving DAE’s is that of regularization (see [Han90], [Ei-
Han91], [Han91], and [AsLi93]). This technique consists in the introduction of small
parameters in the equations so that an ODE is obtained and that the initial DAE is
obtained when they vanish. In this context the penalty technique of Lotstedt [L679] and
the approach of Knorrenschild [Kno88] can be regarded as regularization techniques.
Standard ODE'’s solvers can then be applied for different small values of these param-
eters and the solution of the original DAE can then be extrapolated from the different
obtained values. However, this approach has not proved yet to be very efficient in prac-
tice. There are many difficulties which may arise. For example the small parameters
generally introduce stiffness in the equations leading to great numerical difficulties.

A somewhat similar approach referred as a stabilization technique is as follows:
instead of transforming the DAE into a regularized ODE, new parameters are introduced
into a linear combination of the original and differentiated algebraic constraints resulting
in an (supposed) index 1 DAE. For constrained mechanical systems this is the well-
known Baumgarte’s technique (see [Bau72]). These parameters are usually adjusted
such that a certain constraint manifold is locally attracting (see also [AsChRei94]).
However, a general strategy for the determination of these parameters is not possible (see
[AsChPeRei93]). A drawback is that the resulting system generally introduce artificial
stiffness depending on the choice of the parameters.
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6. Numerical methods for DAE’s.

Many different numerical methods have been proposed for solving DAE’s, ranging
from one-step to multistep methods. There are many different ways to solve a DAE
numerically. Generally a DAE possesses several equivalent formulations. At a first
stage a certain formulation of the problem must be chosen depending on certain criteria
of stability, of cost, of real-time constraints, etc. Then a numerical method is chosen
depending on these criteria and also on its properties, its reliability, its efficiency, etc.
In fact these two stages are often imbricated. All different choices have their own
advantages and drawbacks. The most frequent approach to solve DAE’s is to apply
natural extensions of ODE methods like linear multistep methods, one-leg methods,
linear implicit methods, Rosenbrock methods, Runge-Kutta methods, and extrapolation
methods. Nevertheless, specialized methods or techniques adapted to certain particular
problems exist.

Several techniques to reduce a DAE to an ODE have already been discussed in
Subsection 5.1. Once an ODE is obtained, a standard ODE solver can be applied. In
this setting a general attempt to solve general unstructured higher index solvable DAE’s
is due to Campbell (see [Cam89], [Cam93a], and [CamMo93a]). His least-squares com-
pletions method is based on the construction of an ODE by means of a least-squares
solution to the derivative array equations (3.1). The approach of local state-space forms
has already been discussed in Subsection 5.2. Once a local state-space form is obtained
from a DAE, a standard ODE method can be applied, generally in an indirect way. Since
a local parametrization in a minimal set of independent variables is used, such methods
present the advantage that they preserve all underlying constraints. Within this frame-
work, a constraint preserving version of the least-squares completions method has been
proposed without making use of an explicit knowledge of the constraints [CamMo93b].
In this section we do not discuss again the regularization techniques of Subsection 5.3.

We will now turn our interest to numerical methods applied to pure DAE’s. As
mentioned in Subsection 5.1 this may present several advantages. The direct approach
consists in embedding the original DAE into a singular perturbed problem (see (4.15)),
to apply formally an ODE method, and to consider the limit e — 0. This approach works
for certain implicit methods and may provide much insight into the numerical solution
of stiff and singular perturbed problems (see Subsection 4.2, [HaLu88], [HaLuRo88|,
[Ro88b], [HaLuRo89b], [BurPe90], and [HaWa91, Chapter VI]). For implicit Runge-
Kutta (RK ) methods directly applied to (2.1) this approach leads to the following general
formulation (see [Pe86] and [BrePe89))

-

F(z,+ch,Y, ;,Y, )=0, Y,.= yn+hzain'r:,,j :
=1
s (61)
Ynt1 =Ynth Z biY-:;,i

=1

where the a;;, b, and c; are the coefficients of the method. The RK methods satisfying

70 Vi

a,;=>o; for 1=1,...,s (6.2)

S (2

are called stiffly accurate and they are of great interest in the DAE setting. An important
class of stifly accurate RK methods is given by the Radau ITA methods. The code
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RADAUS5 of Hairer and Wanner is based on the 3-stage Radau ITA method of order 5.
It has been developed for stiff ODE’s and DAE’s of the form

My' = f(z,y) (6.3)

where M is a constant square matrix which may be singular in the DAE case (see
[HaLuRo89a, Chapter 10] and [HaWa91, Section IV.8]). For implicit linear multistep
methods (LMM’s) directly applied to (2.1) a possible formulation is given by

k k

F(z,+h, yn+1,y;z+1) =0, Zaiyn+1+i—k = hZIBiy;1.+1+i—k (6.4)
=0 1=0

where the a; and j3; are the coefficients of the method. The popular backward differ-

entiation formulas (BDF) are of great interest in the DAE framework. These methods

satisfy

B;=0 for 1=0,...,k—-1 (6.5)

and are stable provided k < 6. Such methods form the basis of the well-known code
DASSL of Petzold (see [Pe83] and [BreCamPe89, Chapter 5]) written principally for
general DAE’s (2.1) of index 0 and 1. For implicit one-leg methods (OLM’s) directly
applied to (2.1) we have

k k k
1
F(Z Bitniitiok Zﬂiyn+1+i—k7 5 Z az'yn+1+i—-k> =0, (6.6)
=0

=0 =0
where the a; and 8; are the coefficients of the method.

However, in most practical situations it is advantageous to take into account the
special structure of the DAE. This approach is called the indirect approach and we
review in this paragraph some related specialized methods. In certain cases the direct
and the indirect approach may coincide, e.g, for stifly accurate Runge-Kutta methods
or BDF schemes applied to semi-explicit index 1 problems in Hessenberg form. For
semi-explicit index 2 problems in Hessenberg form the class of half-ezplicit methods
has been proposed in [HaLuRo89a], [Hi91], [Bra92], [BraHa93a,b], [0s90], and [Os93].
Such methods are explicit in the differential part and implicit in the algebraic part.
For constrained mechanical systems special half-explicit extrapolation methods have
been proposed in [Lu9la]. For higher index DAE’s, the projection methods discussed
in Subsection 5.1 may be classified in the indirect approach. For semi-explicit index 2
problems in Hessenberg form the class of projected RK methods of Ascher and Petzold
fall into this category (see [AsPe91], [AsPe92a], and [Lu91b]) and also the extrapolation
method of Lubich (see [Lu89a]). For semi-explicit index 3 problems in Hessenberg form,
the (projected) partitioned RK methods which form the subject of this thesis also belong
to this category, excepted for the unprojected RK methods analyzed in Chapter IV
which are related to the direct approach.

It is not the purpose of this thesis to review in detail all known results concerning
the application of numerical methods to DAE’s. For classical books on the subject we
refer to [BreCamPe89), [GrM#86], [HaLuRo89a], and [HaWa91]. We give below the
main references, excepted these four mentioned books, according to certain types of
DAFE’s and to certain classes of methods.
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1. Semi-ezplicit indez 1 DAE’s in Hessenberg form: RK: [Ro88b], [Ro89]; Rosenbrock:
[Ro88a,b], [RenSte89], [RenRoSte89]; extrapolation: [DeHaZu87]; BDF: [L5Pe86];
partitioned multistep methods: [Aré93].

2. Semi-ezplicit indez 2 DAE’s in Hessenberg form: RK: [Ro88b)|, [BrePe89], [Jay93al;
projected RK: [AsPe91], [AsPe92a]; half-explicit methods: [Hi91], [Bra92], [BraHa-
93a,b]; extrapolation: [Lu89a]; BDF: [Bre83], [LoPe86], [BreEn88], [As89]; parti-
tioned multistep methods: [Aré93].

3. Semi-ezplicit indez 3 DAE’s in Hessenberg form: RK: [Ro88b], [Jay92]; collocation:
[Jay93b]; half-explicit and extrapolation methods: [Os90], [0s93]; BDF: [Bre83],
[L5Pe86], [BreEn88], [Aré93]; generalized BDF: [KeGe91].

Fully implicit indez 1 DAE’s: RK: [Pe86], [BurPe90]; BDF: [GeGuLe85].
Linear implicit DAE’s: Rosenbrock: [LuRo90}; extrapolation: [Lu89b};
Semi-ezplicit index 2 DAE’s: BDF: [GeGuLe85].

Linear constant DAE’s: RK: [BrePe89]; BDF: [GePe84].

Constrained mechanical systems: short overviews: [SiFiiRen91], [Ka93]; state-
space forms: [PoRh90], [PoRh91], [RaRh93], [YeHauPo92], [Ye93]; projection meth-
ods: [EiFiiLeRei90], [Si92], [A193], [A10193]; ODAE methods: [FiiLe89], [FiiLe91],
[Ei92], [PePo92]; RK: [Po93b,c]; extrapolation: [Lu9la]; BDF: [GeGuLe85], [Fa88];
projected BDF: [Ei92], [Ei93]; multistep methods: [Fii88], [EiFiYe92], [Po93a,c],
[AnBoEiSc93].

9. Constrained Hamiltonian systerns: Hamiltonian state-space forms: [LeRei94]; par-
titioned RK: [Rei93], [SkBiOk93], [Jay94], [LeSk94].

10. Stiff ODE’s: RK: [Ro88b,c|, [HaLu88], [HaLuRo88], [BurPe90]; Rosenbrock: [Ro-
88b], [HaLuRo89b].
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7. Scope of this thesis and summary of convergence results.

As seen in Section 4 many important problems are formulated or lead to au-
tonomous semi-ezplicit index 3 DAE’s in Hessenberg form, i.e., to

y':f(y,z) ’ z":k(y, z,u) 3 0=g(y) (7'10', b, C)

where

(9,f. k)Y 2,0) is invertible (7.2)

in a neighbourhood of the exact solution. Hence their numerical treatment is of special
interest. The scope of this thesis is to study the application of (projected) partitioned
Runge-Kutta (PRK) methods to these systems. They include pure Runge-Kutta methods
as special cases which in turn include collocation methods as well (see [Jay93b]). ‘

The analysis of the direct application of collocation methods to the considered
problems is the subject of the article [Jay93b]. The main result of this article is a
partial proof of the conjecture of [HaLuRo89a, p. 86] giving sharp convergence bounds
for stifly accurate methods, such as the Radau IIA processes. One aim of this thesis
is to show a complete proof of this conjecture for the class of stiffly accurate Runge-
Kutta methods (see Chapter IV). This result has an application in the convergence
analysis of these methods for stiff mechanical systems (see Subsection 4.2 and Section
IV.6). Another purpose of this thesis concerns the numerical treatment of Hamiltonian

__ - 5
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systems with holonomic constraints (see Subsection 4.1 and Chapter V). A specific class
of partitioned Runge-Kutta methods is proposed and analyzed in detail. These methods
are superconvergent and preserve the symplectic structure of the flow and all underlying
constraints as well.

The choice of partitioned Runge-Kutta methods is natural since they include pure
Runge-Kutta methods as special cases and since they are of special interest in the
numerical treatment of Hamiltonian systems with holonomic constraints. The major
part of this thesis deals with the indirect approach, with the exception of Chapter IV.
The main theme is the convergence analysis of the methods under consideration and
the main goal is to obtain optimal orders of convergence. We recall that the order
of convergence is equal to v if the global error is bounded by Const - h¥ uniformly
on bounded intervals for sufficiently small stepsizes h. We summarize in Table 7.1
and Table 7.2 below the optimal orders of convergence for some important (projected)
(partitioned) Runge-Kutta methods when applied to (7.1). Table 7.2 concerns the
important special situation when the function k of (7.1) is linear in u. These results
follow from Theorem II1.5.1, Theorem IV.6.1, Theorem V.4.6, [HaLuRo89a, Theorem
6.4], and [HaJay93], and they are valid for non-constant stepsizes.

Method stages order of convergence
Y z u
Lobatto IIIA-IIIB $>2 2s—2 2s-2 2s-2
Radau IIA 82>2 2s—2 8 s—1
projected Radau ITA §>2 25—2 23—-2 2s-2
Lobatto IIIC >3 2s—4  s-1 s—2
projected Lobatto IIIC s>3 2s—4 23—4 2s—4
Gauss $>5 ] s—2 s—4
projected Gauss s>2 s s s
Radau IA s>3 s—1 s—1 s-2
projected Radau IA 8>3 s—1 s—1 s—1

Table 7.1. Orders of convergence for the index 3 problem (7.1)-(7.2).

Method stages order of convergence
Y z u
Lobatto IITA-IIIB 8>2 25—-2 23-2 23-2
Radau ITA s 2s-1 s s—1
projected Radau ITA s 2s—1 28—-1 2s-1
Lobatto IIIC 8>2 2s—3 s-1 s—2
projected Lobatto IIIC $>2 2s—3 23-3 2s-3
Gauss 8>3 8 s—2 s—4
projected Gauss s s s s
Radau IA 82>2 s—1 s—1 s8-2
projected Radau IA $2>2 s—-1 s—1 s—-1

Table 7.2. Orders of convergence for the index 3 problem (7.1)-(7.2) with k linear in u.
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Chapter II. Semi-explicit index 3 DAE’s in Hessenberg form.

1. Consistency and index.

In this thesis we consider the following autonomous semi-explicit DAE’s in Hessen-
berg form of size 3

yl = f(ya z) ) Z = k(y’ zau) ’ 0= g(y) . (1'10'7 b, c)
The variable of integration will be denoted by z. From now on we suppose that the

functions f : R®xR™ — R=, k : R*"xR™xR? — R™, and g : R* — RP are sufficiently dif-
ferentiable. Differentiating once the constraint (1.1¢) we obtain the following additional

constraint
0=g,(v)y = 9,¥)f(¥,2) = (9,f) (,2) . (1.1d)
A second differentiation gives
0= (gyy(f7 f)+gyfyf+gyfzk) (y7 z,u) . - (1-16)
These additional constraints are called hidden constraints.

Definition 1.1. The values (¥, Z, %) are called consistent if they satisfy all constraints
(1.1c,d, €).

For an initial value problem related to the system (1.1), we see from the above derivation
that the initial values cannot be chosen arbitrarily but have to be consistent. We call the
(ezact) solution of (1.1) a solution passing through consistent initial values (Yos 295 %)
at z4. In order to shorten the notation we will often denote the exact solution of (1.1)

at z by ¥(z):=(y(z), z(z),u(z)) and ¥y :=(y,, 2, Ug)-

A third differentiation of (1.1c) gives (omitting the obvious function arguments)

0 =gyyy (f: fs ) +39,, (£, f, F)+39,,(f.k, £)+9, Fo (F, ) +29,f,.(f, k)

(1.1f)
+9,f fyf+9,f fk+g, 1. (k. k)+g, .k, f+g,f k. k+g,fk,u' .
From now on we suppose that the matrix
(9, f. k) (9, 2,u) is invertible (1.2)

in a neighbourhood of the exact solution. With this hypothesis a differential equation
for u' can be obtained from (1.1f)

u' =(—g,f.k,)7" (gyyy(f, £ £) 439y, (£ s F) 4394, (F.k, ) +9, £,y (F, F) (1.3)
+2gyfyz(f,k)+g,,fyfyf+gyf,,fzk+gyfzz(k,k)+gyf,kyf+gyfzkzk)

and the system (1.1a,b,c) is thus of differential index 3. The ODAE (1.1a,b,¢,d,€)
is therefore of differential index 1. The equations (1.1a,b)-(1.3) constitute the stan-
dard underlying ODE. For consistent initial values the solvability of the system (1.1) is
obvious (see also [Cam91, Theorem 1]):
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Theorem 1.1 For consistent initial values (yg, 29, o) at T, there ezists a unique solu-
tion (y(z), z(z),u(z)) to (1.1) on R.

Proof. This result follows from the ODE theory since for consistent initial values
(Yo %0 Uo) at g, (¥(2), 2(z), u(z)) is a solution to (1.1) if and only if (y(2), 2(z), u(z))
is a solution to the standard underlying ODE. O

By (1.2) we also have by the implicit function theorem that in a neighbourhood of any
fixed values (7, %, @) satisfying (1.2) and (1.1€), (1.1e) defines an implicit function for v,

i.e.,

u=G(y,z) . (1.4)

Our aim’ is now to analyze the perturbation index of the components y, z, and
u of the system (1.la,b,c). For this sake we consider a solution (y(z),2(z),u(z)) of
(1.1a,b,¢) on a bounded interval I passing through (yy,2g,%,) at z,. We also con-
sider perturbed functions (3(z), 2(z), @(z)) sufficiently close to (y(z), 2(z), u(z)) passing
through (T,, Zy, By) at ¢, and satisfying

7'(z) =f(@(2), A=) +6(z) , - (1.50)
2(2) =k(3(2), 2(2), 8(z)) +4(=) , (1.58)
0 =g((=))+6(=) - (1.5¢)
Differentiating twice (1.5¢) we obtain successively
0 = (g,f) (#(=), %)) +9,(5(2))5(=)+6'(=) (1.54)

and (omitting the obvious function arguments)
0=g,,(f, ) +a,f, f+9,f.k+20,,(f,6)+9,f,6+9,,(6,8)+g,f.n+g,6'+0" . (1.5€)

Since (1.2) holds, by the implicit function theorem we obtain the estimate

|@(2)-u(=)l < C, <Il§(m)—y(m)H+II?(:6)—Z(=E)II+II5(w)H+H5'(w)||+|Iu(=v)||+||9"(w)ll) (1.6)

provided the right-hand side is sufficiently small. We now substract (1.la,b) from
(1.5a,b), integrate from z, to z, use a Lipschitz condition for the functions f and k, and
use the estimate (1.6) for @(z)—u(z). We thus get for e(z) :=||7(z)—y(z)||+]|Z(z)—=(z)||

(@) < ee)+0; [ etnpirs [ (18IS ar) 1
We finally apply Gronwall Lemma [HaNgWa93, Exercise 1.10.2] to obtain
[9(e) —3(@) |+ |2(@) - =(=)| < (18)
G (1 -snl+12=zoll+ | (IBOI+IE el ) <

[s]

c, (n@o—yon+||’z},—zon+sup(n6(ou+ns'(<>n+nu(c)u+||0"(c)n)) :
¢er
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From these estimates the perturbation index of (1.1a,b, c.) is also equal to 3. More
refined estimates for the components y and z can in fact be obtained ([ArM.92]) by
using the techniques of [ArM.93] and [ArM.StrWe93], -

13(2) —y() |+ 2(z) —=(2)]| < (1.9)

¢
22 (|iyo—yo||+nfo—zo||+sup(ns<c)u+|| / Pz(r)u(r)drn+||o(<>||+||e'(c)||+D(<)))
¢er zo

where
D(z) = (||5(~"=)||+H5'(w)l|+Hu(w)||+||0"(w)|l) (1.10)

and

P,() :="(I=ky(9yf.k.) " 9, £2)(y(2), 2(2), u(2)) - (1.11)

Moreover, if the function k of (1.1) is linear in u we have

D(z) = (JI6(=)]1+]18'@) |+ lu@I+16"@)1)-(IB@I+1eE1) - (112)

If in addition the function k is of the form k(y, z,u)=ky(y, 2)+k,(y)u and the function
f is linear in z then we have D(z) = 0. Therefore in this last case the perturbation
index of the components y and z of (1.1la,b,c) is equal to 2, hence the perturbation
index of these components for the ODAE (1.1a,b,c,d) is equal to 1. The index-3-
tractability of (1.1a,b,c) can also be shown under lower smoothness assumptions (see
[M589]). The perturbation index of (1.1a,b,¢,d,¢) is equal to 1 because it is easy to
show that (1.1a,b, e) is of perturbation index 1 (see [HaLuRo89a, pp. 2-3] and [HaWa91,
p. 480]).

In the following sections we will develop a theory based on a “tree model” for the
Taylor expansion of the exact solution of (1.1). This theory will also be of great help in
the study of the numerical methods considered in this thesis for the solution of (1.1).

2. Derivatives of the exact solution.

The aim is now to compute the derivatives of the exact solution of (1.1) under the
assumption (1.2). In this section we omit the obvious function arguments. For the first
derivatives we have

y =f, 2=k, (2.1a,b)
and rewriting (1.3) we get L
' =(=gy Fky) 0y (F £ £)+3(—9, £.0,) T 9y (£ fo F)+3(=9, k) 7 9y (£2F, )
(=g Fou) 9, Fuy (Fr F)+2(—9y Fo k) 729, £ (Fo )+ (=9, £.K0) P9, fy fy f (2:1¢)
(=g, f k) g, fy F o+ (=9, F.k) T g, Foo (R B) (=g, foky) T 9, oKy f
+(—g,f k) g, f. R K

For the second derivatives of y and z we have

y" = fyy'+fzz' . fyf+fzk (2.2a)
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and

2" ‘—_:kyf—i—kzk-}-kuu' (2.2b)
I:kyf+kzk+ku(_gyfzku)_1gyyy(f7 f7 f)+3ku(—gyfzku)_1gyy(fyf’ f)
+3k,(—g,f.k,) 9y, (F.5, F)+E,(—g,f k) 9, Fyy ()
+2ku(_gyfzku)_lgyfyz(f7 k)ku(_gyfzku)_lgyfyfyf+ku(_gyfzku)—lgyfyfzk
+ku(_gyfzku)_lgyfzz(k’k)ku(_gyfzku)_lgyfzkyf+ku(_gyfzku)—lgyfzkzk .
We see that the derivatives of y, z, and u can be written as linear combinations of
expressions containing only derivatives of f, g, and k. Such expressions are called

elementary differentials (see the next section for a precise definition). Concerning u",
let us first compute for a constant vector v

L (~g,f.k) (23)
=(—9,.5.) 7 (9,5 (Fbu(—0, £.00) 720, £) 49, Foy (ku(—9, £.2) 0, )
+9y Foz (Ru(=9y f.5) 7 0, k) 49, £ Ry (-9, £.R.) T 0, f)
+9, k. (=g, F.k,) " 0, k) +9, F Ry, ((—yyfzku)‘lv,u')>
=(—9y foku) 7 94y (F b (—9, FoRu) 70, f)

+(=g, k)7 9, oy (y (—9, FR,) M0, )
+(=gyfoku) T 9y fon(by (—g, oF,) 0, K)
(=9, f.k) 7 0y Fuy (-9, £k 70, )
+(—gy fok) T (=9, Fku) T gy Foky (9, f2Ru) M0, k)
(=g, F. k) T gy Fokouo (—9y £ k) 10, (=9, £ Ry) T 9y (£, 1, 1))
+3(~g,f. k) g, £, (=9, F.R,) 0, (—g, F.0,) 29, (£, . 1))
+3(—g, f,k,) 9, Fokuu (—9y £k, 710, (=g, oK) 7 9, (£, F))
+(=9,Fku) T 0y Fbuo (=9, £.R0) 7105 (=0, £.00) 729, £y (£, )
+2(=g, fok) T 0y fobuu (=9, F0a) 7 0s (=9, £.R0) 7 0, £, (F,F))
(=g, k) 9y Foku (g, F.0,) Yo, (—g, Fo k) 29, £, fy F)
+(—g,f.k,) " g, F Ry (9, Fku) 0, (=9, f k) 9, £,y LK)
+(—g,F. k) g, Foky (=9, F k) 0, (=9, F k) 29, £l (R R))
+(=g,f. k) 9, F R ((—9, F2K,) M0, (<9, f k) 29, £ R, f)
(=g, F.k) 20, Fokuu (— 9, . R0) 105 (— 0, £k, g, £k )

which is a consequence of (M~1)'=—M—*M'M~! and the chain rule. We see from this

long formula that it becomes really impracticable to express u' as a linear combination

of elementary differentials (approximately five pages would be needed). This remark

also holds for the higher derivatives of y, z, and u, excepted for y™ which is given (only
for the pleasure of it) by

y" =fy (£, D) +2f, (F k) +f f 4 f fh+fo (b k) + fk f+ Rk (24)
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+fob oy (— gy Foku) " Gyyy (2 £ F) 435k (=9y F.Ru) T 9y, (£, F f)
+3fzku(_gyfzku)—lgyy(fzk7 f) +fzku(_gyfzku)_lgyfyy(f) f)
+2fzku(—gyfzku)-lgyfyz(f’ ,k)+fzku(—gyfzku);lgyfyfyf
+fzku(—gyfzku)—lgyfyfzk+fzku(—gyfzku)—lgyfzz(k’ k)
+fzku(_gyfzku)—lgyfzk'yf+fzku(_gyfzku)_lgyfzkzk :
As these expressions quickly become very complicated we introduce in the next section
a simplified representation of the elementary differentials in terms of specific trees (with
three different kinds of vertices). Such a notation will give more insight into the structure
of the elementary differentials and will be very useful when studying the order conditions
of a (partitioned) Runge-Kutta method applied to (1.1) (se¢ the next chapters). Trees
were first introduced in the context of ordinary differential equations by Butcher (see

the famous paper [But63]). The extension of this “tree model” to DAE’s of index 1 and

2 has already been made by Roche et al. in [Ro88a], [Ro88b], [Ro89], and [HaLuRo89a],
and in a different way by Kveerng in [Kv90].

3. Trees and elementary differentials.

For the elementary differentials we make the following graphical identifications:

a) f is identified with a meagre vertez and a gth order partial derivative of f with ¢
upwards leaving branches;

b) k is identified with a cross and a gth order partial derivative of k with ¢ upwards
leaving branches;

c) the expression (—g,f,k,)~1g is identified with a fat vertez and a gth order partial
derivative of g therein with ¢ upwards leaving branches;

d) the type of the vertex at the extremity of a branch indicates the variable of deriva-
tion: a meagre vertex for y, a cross for z, and a fat vertex for u.

With this representation the corresponding trees for y',z',u',y",2", and y" (see the
previous section) are given as follows

yl= PY zl: x

u'=\y+3</'+3é+ y+2o>)(+
T I ST S

y"=/ + /

z”=[+/‘+}/+3ﬁ+3f/+/>/+
SR A LY ooy T




Chapter II. Semi-explicit index 3 DAE’s in Hessenberg form 31

2N D e D WX X Xy

L5083
iﬁ&%ﬁ

Figure 3.1. Graphical representation of some derivatives of low order.

The lowest vertex of a tree is called its root. We can make the following observations:
a) the trees which enter in the derivatives of y have a meagre root;
b) the trees which enter in the.derivatives of z have a cross root;
¢) the trees which enter in the derivatives of u have a fat root;
d) the vertices over a fat vertex are meagre, because g depends exclusively on y;

e) the vertices under a fat vertex are crosses, because neither f nor g depends on «,

only k does;
f) the following trees do not appear in the derivatives of u

/\/??

Figure 3.2.

Taking the above observations into account, we can now give a recursive definition of
the trees corresponding exactly to the expressions appearing in the derivatives of the
exact solution of (1.1). We adopt the following conventions:

a) a letter ¢ denotes a tree with a meagre root, the tree consisting of the root only
(for y' = f) being 7,3

b) a letter v denotes a tree with a cross root, the tree consisting of the root only (for
z'=k) being 7,;

c) a letter u denotes a tree with a fat root.

Definition 8.1. Let DAT3=DAT3,UDAT3,UDAT3, denote the set of (differential
algebraic indez 3 or DAT3-) trees deﬁned recurswely by
a) T, EDAT3y, 7,€DAT3 ;
b) [ty st ve5e-050,), € DATS, if 4y, ... ,1, EDAT3, and vy,...v,EDATS3;
o) B i 5 SR ,vn,ul,. Uyl € DATS, if 4,...,1,, € DAT3,, v,,...v, €
DAT3 ;and uy,...u, € DAT3,;
d) [t;,-- 5], € DAT3u if t,...,t, € DAT3, and if one of the following conditions
is satisfied:
-m2>3;

-m=2 and (tl,t2)7é( y7Ty)

| )
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- m=1 and ¢, #£[[u],], with u€ DAT3,,, t, #7,, £, #[7,],, or 1, #[r,],.

Remarks 3.1.

1) Here [t),...,t,,01,. 00,00y [E10eeostmyVisee oy VnyUas oo s8],y and [t ..., ¢
represent unordered tuples.

2) From now on we consider DAT3, U{0,}, DAT3,U{0,}, and DAT3, U{0,} with
the empty trees 0, 0, and @, corresponding respectively to the maps id,, id,, and
id, defined as id (y,z2,u) =y, id,(y, 2,u) =2, and id,(y,2,u) =u. We also define

the relations 7, := [0 ], and 7, := [0,],.

3) The trees of DAT3,, DAT3,, and DAT3, are characterized respectively by a
meagre root, a cross root, and a fat root.

mlu

o

The graphical representation of D AT 3-trees is as follows:
a) 7, is represented by a meagre vertex;

b) 7, is represented by a cross;

¢) t=[t;,...,%,,91,...,9,], is obtained by connecting the roots of #,...,%,,,v,,...,v,
by m-+n branches to a new meagre vertex that becomes the root of ¢;

d) v=[t;,...,tpsV15--45Vp,Uy,-..,U,], is obtained by connecting the roots of ¢,,.. .,
by Vlse -3 Uny Uy, .« oy U, DY m+n+p branches to a new cross that becomes the root
of v;

e) u=[ty,...,%,], € DAT3, is obtained by connecting the roots of ¢,,...,t,, by m
branches to a new fat vertex that becomes the root of u.

Figure 3.3. Examples of DAT'3-trees.

?gfwg”wv

Figure 3.4. Examples of trees which are not DAT3-trees.

We are now able to give a precise definition of the elementary differentials which appear
in the derivatives of the exact solution of (1.1). By construction they are in one-to-one
correspondence with the above-defined D AT3-trees.

Definition 3.2. The elementary differentials corresponding uniquely to trees in D AT3U
{ﬂy, 0,,0,} are defined recursively as follows:

a) F(0,)=id,, F(0,)=id,, F(,)=id,, F(r,)=f, F(1,)=k;
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am+n :
b) F(t)=2o L (F(t,),...,F(t, ), F(vy),...,F(v,)

Oy™oz

1=ty )ty y,ee ., 0,), € DATS,;

o) F@):BLSZ—;;-—(’;%(F@I),...,F(tm),F(vl),...,F(vn),F(ul),...,F(up))

Ho=[t1,. sty VseeesVpyy,--n,u,], € DATI,;

*YVn?

o™g .
4) F(w)=(~g,f.k.) 5 (F(tl), y .,F(tm)) ifu=[ty,...,t,], € DATS,.
Remark 3.2. Because of the symmetry of the partial derivatives, each permutation of the
subtrees ty,... 8, 01,000, i0 @), Byy0es st gy, Uy Uysen ety in b) o0 3,00yt

in c) leads to the same expression F(t), F(v), or F(u) respectively. Therefore F is well

defined.

Ezamples 3.1.

1. The tree on the left-hand side of Fig. 3.3 corresponds to the following elementary
differential

Fus (0,52 0y (o o £ )5 (=9, £.0) 0y, . £ ) -

2. The tree on the right-hand side of Fig. 3.3 corresponds to the following elementary
differential

k'u.‘u. ((_gyfzku)—lgyyy(f’ f7 f)7 (_gyfzku)_lgyyy (fzku(_gyfzku)_lgyy‘y(f, f’ f)’ f7 f)) *

4. Labelled trees and Taylor expansion of the exact solution.

The aim of this section is to derive the Taylor expansion of the exact solution of
(1.1). By application of the Leibniz’ rule, the chain rule, and (2.3), the differentiation
with respect to z of an elementary differential (with the exact solution of (1.1) as
arguments) gives rise to a sum of new elementary differentials (see Section 2). In the
preceding section, we have established for each elementary differential a one-to-one
correspondence with a DAT3-tree. In order to know how many times a tree (or, more
precisely its corresponding elementary differential) appears in the derivatives of the exact
solution of (1.1) we also introduce the concept of monotonic labelling. We consider a first
completely ordered infinite set of indices I={i<j<k< ...} and a second completely
ordered set of three subindices J={A4 < B <C}. To each vertex of a tree we associate
as described below an index of the set I and in certain cases another subindex of the
set J. The first trees which enter in y’, z’, and u' are labelled in the following way:

' — o zl.:xl.

1 . . 3 - .
: . ‘s ic ic ‘e J- e ig ic
N ‘e :HQ;C / Q:B %Qiﬂ iﬂ@"c ;AQ:S "BQ'.Q %
V + R g + T+ .+ 4 + 7 4 o g
i i { ] - ] h I
: i y ‘ ie ;6 : . ic . ic
(1) e ¢ g ; is . g ic s is -
;A ;ﬂ ‘.ﬁ lﬂ l‘n “A ‘A
| + i + ‘ + HEOE o i + v + i

Figure 4.1. Labelled trees of the derivatives of order 1.

y =
‘a
u =
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Starting from the above labelled trees, the differentiation process can now be easily
interpreted by repeated application of the following basic operations on trees:

Differentiation process.

a) a branch with a meagre vertex is linked to a meagre vertex, a cross, or a fat vertex
(derivative of f, k, or g with respect to y and addition of the fa.ctor y' = f); the
first index of T wh;ch is not present in the original tree is associated to the new
meagre vertex;

b) a branch with a cross is linked to a meagre vertex or a cross (derivative of f or k
with respect to z and addition of the factor 2’ =k); the first index of I which is not
present in the original tree is associated to the new cross;

¢) a branch with one of the 15 trees (counted with multiplicity) which enter in u' (see
Fig. 3.1) is linked to a cross (derivative of k with respect to u and addition of the
factors which enter in u') the first index of I which is not present in the original
tree is associated to all new four vertices, and the three sub-indices 4, B, and C of
J are associated in a distinct monotonic way to the new non-fat vertices as for u'
in Fig. 4.1 (all 15 different labelled trees which enter in u' are grafted);

d) a fat vertex is splitted into two new fat vertices (one above the other) and they are
linked via three successive branches containing one new meagre vertex linked over
one cross (the new meagre vertex is attached over the lowest new fat vertex and
the cross is attached under the upper new fat vertex); the index of the original fat
vertex which has been splitted is associated to these new four vertices; the rules
a), b), and c) are then applied to the lowest new fat vertex, to the new meagre

vertex, and to the new cross (this whole procedure corresponds to the derivative of
(—g,f.k,)~! and follows from (2.3)).

These rules describe exactly how to continue the differentiation process of Section 2.
All elementary differentials of Definition 3.2 (more precisely all corresponding trees of
Definition 3.1) (counted with multiplicity) are therefore obtained in this way. We remark
that the above-defined labelling of a DAT3-tree is obviously non-decreasing from the
root upwards along each branch. The index ¢ is always associated to the root. The labels
of I indicate the order of generation of the vertices. The labels of J are introduced to
obtain the exact multiplicity of each elementary differential entering in the derivatives
of the exact solution of (1.1).

Definition 4.1. A tree w € DAT3 together with a monotonic labelling (obtained by
the above differentiation process), is called a (monotonically labelled) m.l. (differential
algebraic indez 3) DAT3-tree. The sets of m.l. DAT3-trees coming from trees in DAT3,
DAT3,, DAT3,, and DAT3,, are denoted respectively by LDAT3, LDAT3,, LDAT3,,
and LDATS,.

Remark 4.1. We have avoided an overly abstract definition of m.l. DAT3-trees. The
generalization of the definitions of [HaNgWa93, Sections I1.2 & II.15] is not straight-
forward in our situation, because not all trees with three different kinds of vertices are
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DAT3-trees.

Figure 4.2. Examples of monotonically labelled trees.
" ¥
Ezample {.1. The application of the differentiation process leading to the m.l. tree on
the right-hand side of Fig. 4.2 is given as follows

Figure 4.3.

Definition 4.2. For a tree w € DAT3, the integer coefficient a(w) indicates the number
of monotonic labellings (obtained by the above differentiation process) and we define

o(0,):=1, (0,):=1, and (0, ):=1.

Equivalently, for we DAT3U{0,,0,,0,}, following the differentiation process, we clearly
have that a(w) is equal to the number of times that its corresponding elementary
differential F(w) appears in the Taylor expansion of the exact solution of (1.1). For a
practical computation of these coefficients see Theorem 4.3 below.

In order to characterize the trees which appear in the gth derivative of the exact
solution (1.1) we introduce the following definition:

Definition 4.3. The order of a tree w € (L)DAT3 U {0, @z,@ }, denoted by o(w), is
the number of meagre vertices plus the number of crosses minus twice the number of
fat vertices. A recursive definition is:

a) 0(0,)=0, o(0,)=0, o(0,)=0, o(r,)=1, o(r,)=1;

b) o(t)=140(t;)+.. . +o(t,,)+e(vy)+- .- +el(v,)
ift?[tl,...t Viyeees ]y €(L)DAT3,;

?¥m?

c) e(v)=1+é(t1)+---+e(tm)+9(v1)+---+e(vn)+9(u1)+---+e(up)
ifo=[t,...,t,,7v,. Uy, ooy u,], €(L)DATS,;

Y m? ,n7

d) o(u)=-2+0(¢)+.. .+g(tm) fu= [ 12 tmle E(L)DATS,.
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Ezamples 4.2.
1. The order of the tree on the left-hand side of Fig 3.3 (or Fig.4.2) is equal to 5.
2. The order of the tree on the right-hand side of Fig 3.3 (or Fig.4.2) is equal to 5.

We see that the trees which enter in the first derivatives of the exact solution are of
order 1. We also observe that the new trees generated by the differentiation process and
originating from a certain tree are one order higher than this original tree. Therefore
every tree which appears in the gth derivative of the exact solution is characterized by
an order ¢. Since the differentiation process of trees generates by definition all elements
of LDATS3 and each of them exactly once, we have the following result:

Theorem 4.1. The gth derivatives at = of the ezact solution of (1.1) denoted by ¥(z)=
(y(z), z(z),u(z)) are given by

yD(e) = > Fi)(¥(=)= Y,  e®FE)(¥=), (4.10)

teLDAT3,U{0,} teDAT3,Uu{0,}
o(t)=q o(t)=q
29 (z) = > F(v)(¥(z)) = > c(v)F(v)(2(z)) ,  (4.1})
vELDAT3 u{®.} vEDAT3, u{0,}
e(v)=¢ o(v)=¢
ul(z) = 3y F(u)(¥(z)) = > o(u)F(u)(¥(z)) . (4.1¢)
wELDAT3,U{0,} u€DAT3,U{0,}
e(v)=q o(u)=q

O

Corollary 4.2. The Taylor ezpansions at z of the ezact solution of (1.1) are given by

yaih)= % }9()F( @)= Y a(t)%%F(txw», (4.2)

teLDAT3,U{0 teDAT3,U{d,
¥ y ¥

= Y reeE)= Y e o re)Ee), (@)

v€LDAT3,U{0.} ( ) v€EDAT3, u{8,} ( )

u(z+h)= > Q( )F(U)(‘I’(w))—— > }a(u) ol ),F(u)(‘I‘(Z)) +(4:2¢)

vELDAT3,U{8.} v€EDATS, U{D.
(]

The integer coefficients a(t), a(v), and a(u) can be computed recursively as follows:

Theorem 4.3.

a) For the simplest trees we have
a@,)=1  a@)=1, «0,)=1, aln)=1, ofr)=1. (4.30)
b) For a tree t€ DAT3, of the form

t=[t1,.cestiyererty,-- ,t“,vl, N
N, o’ N ” ~

my my ni Ty
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with p distinct ; EDAT3y and v distinct v; € DAT3, we have

a(t) = (o(t)—1 'Hni' (““;)mzﬂni(:((:))') : (4.3b)

=1 =

c¢) For a tree v€ DAT3, of the form

v=[t;, nstyyeeyty,, By Usee s BrseeesypeesUyylyyenylyeesy

w? * p,7 1%y Tt Tz
Nvsn, s’ - -’ A — — A =
,
mi m, ' n1 Ty P Px

with p distinct t,€ DAT3,, v distinct v; € DAT3,, and © distinct v, € DAT3,, we

have
' (Z(gt))') H_ (a((v ))'> | 13% (Z(%:))!)pk

(4.3¢)

a(v) = (e(v)—1)! H

d) For a tree uc DAT3, of the form

R T NS P )
e N, e’

ma my,

with p distinct t,€ DAT3, we have

afw) = (otw)+2) [ o (SH) ™ . (430

=1

Proof. The proof is simply a generalization to semi-explicit index 3 DAE’s in Hessen-
berg form of the results of [But63, Theorem 3] and [HaWa73, Propositions 1& 2]. For
semi-explicit index 1 and 2 DAE’s in Hessenberg form, the extension has already been
made in [Hi93].

Part a) is trivial. It is sufficient to prove part c) since we have for b)

a(t) =a([t17° . '7vv]y) - a([th' . 'avu]z) ’ (4.4)
o(t) =o([ty,---»v,]y) = o(ltys--,v,]0)

and for d)
a(u) =a([ty, - - x) tp.]'u.) = a([t;,--- aty.]z) )

o(u) =e(lty,---»t,]u) = oty --52,15) =3 -

In fact the result c) easily follows from a combinatorial argument (see [HaWa73, Propo-
sition 2])

_ o(0) - 1 I
o) =( o), ()2l (4)

i 7Q(t‘u_)1 Q(”],)a opot) Q(vu)’ 9(“1)7 EEY

(4.5)

a(vl)...a(vy)a(ul)...a(ur);l_!..._!._:...__-.__...._.,
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Ezamples 4.3.

1. There are 3 monotonic labellings of the tree on the left-hand side of Fig. 3.3. They
are given on the left-hand side of Fig. 4.2.

2. There are 40 monotonic labellings of the tree on the right-hand side of Fig. 3.3.
Two of them are given on the right-hand side of Fig. 4.2.

5. DA 3-series.

In this section we extend the concept of B-series introduced in the context of
ordinary differential equations (see [HaWa74] and [HaNgWa93, Section I1.12]) to semi-
explicit index 3 DAE’s in Hessenberg form. The extension qf this theory to DAE’s
was partially undertaken for semi-explicit index 1 and 2 DAE’s in Hessenberg form
by Roche et al. in [Ro88a], [Ro88b], [Ro89], and [HaLuRo89a], but without including
general results on the composition of such series, as they were in fact not needed for
their purposes. The present section is mainly dedicated to the proof of Theorem 5.4
which states that the series under consideration, called DA3-series, together with an
operation of composition related to the natural composition of D A3-series form a group.
This group structure on D A3-series will turn out to be a powerful tool in Section III.4
when we will derive optimal estimates for a certain projection of the local error of the
z-component of a (partitioned) Runge-Kutta method (see Theorem II1.4.3). For this
sake we will need to develop the local error of the z-component at the endpoint of the
integration interval and by the use of the composition law of D A3-series this expansion
will be obtained more easily.

This section is organized in the following way. We first give some basic definitions.
We then state an important lemma related to the differentiation of an elementary dif-
ferential whose argument is a D A3-series. The lengthy proof of this lemma requires the
introduction of a new type of trees, namely the composite LD AT 3-trees. Next we obtain
a central theorem proving that the composition of two D A3-series is again a D A3-series
with coefficients given by a certain composition of the coefficients of the two original
D A3-series. Hence we finally prove that the D A3-series with this composition law form
a group. We use the notation of the preceding sections and we illustrate the proofs and

results of this section by some examples. The techniques used in this section generalize
those used in [HaWaT4].

Definition 5.1. Let a : DAT3U{0,,0,,0,} — R be an arbitrary map. Then for any
fixed (non necessarily consistent) ¥ =(%, Z, u), the series

he(®)

DA3,(a,¥) := s a(t)——ra(t) F(t)(¥) , (5.1a)
tEDAT3,U{0,} o(t)!
DA3 . (a,¥):= Z a(v)he—(zj)'a('v)F('v)(‘I’) , (5.1b)
v€DAT3,U{0.} o(v)!
DA (al)= Y awlawFE)), (5.1¢)
wEDAT3,U{8,} o(u)!
DA3(a,¥) :=(DA3 (a,¥),DA3,(a, ¥),DA3 (a, T)) (5.1d)

are called DA3, -series, DA3 -series, DA3, -series, and D A3-series respectively.
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Remark 5.1. Usually one is only interested in truncations of these series. All subsequent
results are valid as far that f, g, and k are differentiable.

Ezamples 5.1.
1. The identity map DA3(e, ¥) = ¥ is a DA3-series with coefficients
1 ifwe{(by,@,@},
= = ¥ 5.2
e(w) { 0 else,ie.,ifweDATS. (5.2)

2. The Taylor expansion of the exact solution of (1.1) can be written in the form of a
D A3-series (see Corollary 4.2) ¥(z+7h) = DA3(p,,¥(z)) with coeficients given
by ‘ a

p,(w)=7%") for we DAT3U {0,,0.,0,} . (5.3a)

For 7=1 we define p:=p, and we obtain
p(w)=1 YweDAT3U{0,0,,0,}. (5.3b)

3. We will see later in Theorem I11.3.2 and Theorem II1.3.3 that the numerical solution
of (1.1) by a (partitioned) Runge-Kutta method can also be written as a D A3-series.

In order to distinguish the trees related to the y-, 2-, and u-component we introduce
the following definition:

Definition 5.2. For a tree we(L)DAT3U {0,,0,,0,}, the letter o(w) determines its
type as follows:

y if we(L)DAT3,U{0,},
o(w)=4 z ifwe(L)DAT3,U{0,}, (5.4)
u else, ie., if we(L)DAT3, U{0,}.

I Definition 5.3. Let we LDAT3U {0,,0,,0,} be a monotonically labelled tree and
0<j < p(w) be a fixed integer. Then we denote by s;(w) the monotonically labelled
tree containing only the first j indices of I (with possibly associated subindices from J)
in the differentiation process (described in Section 4) which leads to w. We also denote
by d;(w), the difference set of order j, the set of labelled subtrees resulting from the
removal of the first j indices of I (with possibly associated subindices from J) to w.
We define so(w) := 0,(,,) and for all j > g(w) s;(w) :=w and d;(w) := {0,(,)}. For
0,€1{0,,0.,0,} we define for all j>0 s,(0,):=0, and d;(0,):={0,}.

Remarks 5.2.
1) We trivially have that d,(w)={w}.
2) We easily see see that d,(w)={w,,...,w,} f w€ LDAT3, U LDATS,.

Ezample 5.2. Consider the m.l. tree, denoted by v, on the right-hand side of Fig. 4.2.
The trees s;(v) for j=1,...,5 are given in Fig. 4.3 (s4(v)=0,) and the difference sets
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are as follows

Mg

V’"c

d2(v)={ m s ks t}

My

m

L)={ Y, ¢} 4@ ={m} d&E={%}

Figure 5.1.

The following lemma is an essential preliminary result which will be used in the
proof of Theorem 5.3.

Lemma 5.1. Let a : DAT3U {0,,0,,0,} — R be an arbitrary map and suppose that
a(0,)=1, a(0,)=1, and a(0,)=1. Then for every tree wec LDAT3U{0,,0,,0,} and
r>o(w) we have

dr—e(w)

W(F(w)(DA?)(a,\I!)))’h_O: 3 [T aw) | Fs)(®)
T SELDAT3,(w)Y{Bo(w) }\wELe(w)(8)
a‘?(m)(-")'_—"“” e(s)=r

(5.5)

Before giving the proof of this lemma we first need some definitions and technical results.
Given a function ®(h) = (®,(h),®,(h),®,(h)) and a certain tree w € LDATS3, our
first aim is to differentiate expressions of the type F(w)(®(h)) with respect to h. In
fact the choice of the labelling of w is unimportant since the elementary differential
F(w) is independent of the labelling. However, this choice will allow a more coherent
presentation of the derivation below. Hereafter we will sometimes omit the obvious
function arguments & (k), ®,(k), &,(h) and a differentiation with respect to h will be
symbolized by a prime (').

Consider as a first example the tree ¢ = [t;,v,,v,], where {; =7, v, = [7,]2> and
v, =7, with the following labelling

«

¢
J%"‘

Figure 5.2.
By Definition 3.2 this tree corresponds to

FENB(R)) = £,2:(@, (h), @, (1) (F(2:)(B(R), Flo:)(@(R), F(v,)(2(R) - (56)

Differentiating this expression once we obtain

gd,;F(t)(‘i’(h)) =fyyzz (F(ty)s s F(v1), F(03)) + fyozz (F(t1), F (1), F(5), &)+
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fyzz (F(tl )I’F(vl)’F(v2))+fyzz (F(tl)’ F(vl)" F(v2))+ (5'7)

fyzz (F(tl)’F(vl)?F(v2)l) N
The differentiation process can be interpreted by means of an enlarged “tree model”
adapted to the present situation. A precise definition will be given below. Each time
that a factor is differentiated we graft a double-lined branch with a labelled square
vertex to obtain a new monotonically labelled tree. We also distinguish the derivatives
of &,(k), ®,(h), and &,(h) by the presence respectively of a meagre vertex, a cross, and
a fat vertex in a square vertex. Here the expressions entering in (5.7) can be represented

graphically by

n ¢ ¢ B ¢ 4 n L A
d g k .%;wn .i{/m % M
—F(@)(@(R) = \ﬂ.m INVZBRAN /AN - LN

Figure 5.3. Graphical representation of (5.7).

Continuing this process we arrive for example to the following trees entering in the 7th
derivative of (5.6) (their corresponding expression is mentioned)

fyyyzzz(F(tl),Q'g"v§;sF(vl),1$F(vZ)a§,‘) .fyyzz(F(tl), )§;,aF('”1)"’F(”2)”)

Figure 5.4.
To include more general cases, we can give the following precise definition:

Definition 5.4. Starting from a fixed labelled tree t € LDAT3,, the set of composite

LDAT3-trees of t, denoted by CLDAT3(t), can be constructed by repeated application
of the following rules:

a) a square verter containing a meagre vertez is linked via a double-lined branch to the
meagre root;

b) a square vertez containing a cross is linked via a double-lined branch to the meagre
root;

¢) a square vertez is linked via a double-lined branch to a neighbouring non-square
vertex of the meagre root if no such connection already exists;

d) a square vertez is linked via a double-lined branch to a singly-connected square
vertex, i.e., to a square vertex with no vertex laying above;

e) after application of the rules a), b), c), or d), the first index of I which is not
present in the original tree is associated to the new square vertex.

The corresponding construction for the trees in LDAT3, is similar:

Definition 5.5. Starting from a fixed labelled tree v€ LDAT3,, the set of composite
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LD AT3-trees of v, denoted by CLD AT3(v), can be constructed by repeated application
of the following rules:

a) a square vertez containing a meagre vertez is linked via a double-lined branch to the
cross root;

b) a square vertez containing a cross is linked via a double-lined branch to the cross
root;

c) a square vertez containing a fat vertez is linked via a double-lined branch to the
cross root;

d) a square vertez is linked via a double-lined branch to a neighbouring non-square
vertex of the cross root if no such connection already exists;

e) a square vertez is linked via a double-lined branch to a singly-connected square
vertex, i.e., to a square vertex with no vertex laying above;

f) after application of the rules a), b), c), d), or e), the first index of I which is not
present in the original tree is associated to the new square vertex.

However, for the trees u€ LD AT'3,, the situation is slightly more intricate. Consider
for example the tree u=[t;,1,], where ¢, =7, and t, =[7,],, with the following labelling

ic

;R\>;3

Figure 5.5.

This tree corresponds to

F(u)(®(h)) = (—g, £.k.) ™ (8(1)gy (2, () (F(2,)(@(R)), F(t)(8(R))) - (5.8)

The differentiation of this expression requires the knowledge of the derivatives of the
term (—g, f,k,)~2(®(h))v for a constant vector v similarly to (2.3). A first differentia-
tion gives

L gtk =0, Fk) o, (R, k) 0 BN+ (59)
(=95 Foku) 7 (9y Foy (Ru(—9y £2R,) 710, @)+
(—gy Foky) (g Foz (Bo (=9, £ ) 710, ®2))+
(0, .87 (0 by (=0, £.2) 0, B+
(0, £.0.) 7 (0 Rus (=0, k) o, B)+
(=0, £.k) " (0 F ko (~8, 5.k 0, 8L))

Therefore the first derivative of (5.8) is given by

d
- F(u)(3(h) = (5.10)

(—g'yfzku)_l(gyy (fzku(—gyfzku)_lgyy(F(tl)"F(t2))’Q;))_’—
(—gyfzku)_l(gyfzy (ku(—gyfzku)—lgyy(F(tl)’F(tz))’é;))-'_
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(—9y k)7 gy foo (bu(—9y 2F0) T 9,y (F (1), F(1)), 1))+
(=93 Fku) T gy Foluy ((—9y £50) T 94y (F (1), (1)), @)+
(=9, foku) 7 gy Fou (=9, F5u) T 0,y (F(t1), F (%)), 8)))+
(=9, k) gy Fobuu (9, Foku) 710, (F (1), F(2,)), )+
(=93 Foku) 7 gy (F (1), F(22), 8,)+

(_gyfzku)-lgyy(F(tl )5 F(ty))+

(=g, f.ku) 7 9, (F(2,), F(3,)) -

As previously we adopt a new “tree model”. This time we must additionnally take
formula (5.9) into account in the representation. For (5.10) we have

: + i + +
< ig g% A
i %J ‘a ‘s LANDL:
; + +

Figure 5.6. Graphical representation of (5.10).

Continuing this process we arrive for example at the following trees which enter in the
Tth derivative of (5.8) (their corresponding expression is mentioned)

(-gy Sz ku)_lgy Sz kyu(q"yl a(—gyfz ku)_lgwyy(F(ti)aF(tZ)l ’§;”§g))
(=93 Frku) " 0yy (B, Fo by (B o~y Felou) ™20y fx bun (8155 (F(82),F (12)"))))

Figure 5.7.

A refined definition of the above trees is given as follows:

Definition 5.6. Starting from a fixed labelled tree u € LDAT3,, the set of compos-
ite LDAT3-trees of u, denoted by CLDAT3(u), can be constructed by the repeated
application of the following rules:

a) a square verter containing a meagre vertez is linked via a double-lined branch to a
meagre, cross, or fat vertex having index ¢ (z only, no subindices must be present);

b) a square verter containing a cross is linked via a double-lined branch to a meagre
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c)

d)

e)

£)

g)

Chapter II. Semi-explicit index 3 DAE’s in Hessenberg form

or cross vertex having index 7 (¢ only, no subindices must be present);

a square vertez containing a fat vertez is linked via a double-lined branch to a cross
vertex having index i (i only, no subindices must be present);

a square vertez is linked via a double-lined branch to a neighbouring non-square
vertex of the upper fat vertex having index ¢ (this vertex can be considered as the
original root of the tree u) if no such connection already exists;

a square vertez is linked via a double-lined branch to a singly-connected square
vertex;

after application of the rules a), b), c), d), or e), the first index of I which is not
present in the original tree is associated to the new square vertex;

a fat vertex having index i is splitted into two new fat vertices (one above the other)
and they are linked via three successive branches containihg one new meagre vertex
linked over one cross (the new meagre vertex is attached over the lowest new fat
vertex and the cross under the upper new fat vertex); the index 4 is associated to
the new four vertices; the rules a), b), and c), together with f) are then applied
respectively to the lowest new fat vertex, to the new meagre vertex, and to the new
cross (this whole procedure corresponds to the derivative of (—g,f.k,)~1(2(h))
and follows from (5.9)).

The identification of the abovedefined composite LD AT'3-trees with expressions such as
those given in Fig. 5.4 and Fig. 5.7 is obvious. For that reason we omit to give a formal
definition of this natural correspondence similar to the correspondences developed in
Section 3. These trees possess the following features:

a)

b)

c)

d)

they are monotonically labelled as the label indicates the order of generation in the
differentiation process;

the square vertices directly linked to the vertices with label ¢ (¢ only, no subindices
must be present, this concerns only the root for the trees we LDAT3, U LDATS3))
contain in addition a meagre vertex, a cross, or a fat vertex;

the distinguished DAT3-subtrees constituted exclusively by square vertices and
double-lined branches are singly-branched;

an arbitrary number of distinguished D AT'3-subtrees can be connected to the ver-
tices with index 7; at most one distinguished DAT3-subtree can be connected to the
vertices in the neighbouring of the root of the original tree; no such distinguished
DAT3-subtrees are connected otherwise.

Definition 5.7. For two labelled (sub)trees w and W, we use the notation w CW to
express the fact that w is a subtree of W having the same root and the same labels.

Ezample 5.3.

% 9
Mg Mg I Cmﬁ m
4 Mm¢ q 4 y
r m -~ e
< d 3 t
k k

Figure 5.8.
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Definition 5.8. For a composite LD AT3-tree W we denote by D, (W), the difference
set of order 1, the set of composite subtrees resulting from the removing of the index i
(¢ only, no subindices must be present) to W.

Ezamples 5.4.

1. The composite subtrees of the difference set of order 1 of the composite tree on the
right-hand side of Fig. 5.4 are given by

K + S

n q
% % e\;" )j”
Jon 0 CHR  EXy TSN

Figure 5.9.

2. The composite subtrees of the difference set of order 1 of the composite tree on the
right-hand side of Fig. 5.7 are given by

° P
l.‘ ) m t
in . cg M kT n@Y, JBY
Figure 5.10.

Definition 5.9. The order of a composite (sub)tree W, denoted by o( W), is the number
of meagre vertices plus the number of crosses plus the number of square vertices minus
twice the number of fat vertices. The vertices contained in the square vertices are not
counted.

Ezamples 5.5.
1. The order of the composite trees in Fig. 5.7 is equal to 8.
2. The order of the composite subtree on the right-hand side of Fig. 5.9 is equal to 3.

From all previous definitions we obtain by construction:

Lemma 5.2. Let ®(h)=(2,(h), ®,(h), ®,(h)) be given then:

a) for 7, and for all r>1 we have

(7'—1) & P—_
(F(r,)(@(R)" = £(2,(h), ®.(r)"D = (5.11a)
IEE. vk (o(T2) (o(Tar)
— Z 3yM3zN (Qy(h) ¢ L ‘by(h) M,
__TeCLDAT3(ry) _ _ _
D1(T)={T1,...,TM,V1,...,VN‘}\, e(T):r Qz(h)(e(vl)), o ,@z(h)(E’(VN))) ;

b) for T, and for all r>1 we have

(F(r,)(@R)))T™V = k(3,(h), ,(h), ®,(h))"D = (5.11b)
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§M+N+PL - .
Z W(Qy(h)(d 1)),-..,¢y(h)(g( M )
VGCLDAT3(7'3)
Di(V)={T 1, ;T2 V1resVN Uty Te}, o(V)=r

&_(h)(eV)), L8 (R) V) § (BT @u(h)(g(ﬁp») :

¢c) for a fized labelled tree t€ LDAT3, of the form t=[t;,...,1,,vq,... 1V,), and for
all 7> p(t) we have

FO@EEN = Y S L (P @), (s110)
TeCLDAT3(t)

DI(T) {Tl’ 1TM;V1a ’VN}» Q(T)—T', M>m, N>n
11 CT e stm C Ty 91CV 1500020 CV

ooy (Pt ) (B(R)) eTr)=et30)) (P )($(R)) (VDI —elo)),
(F(o)(@(R))@Tm D) |

where we have defined t; := 0 form<j<M and v, :=0, for n <k <N (there-
fore we have (F(tj)(i(h))(é’(TJ -e(t) = @ (h)(é’(T:)) (F(vk)(tb(h))(e(Vk) o(v)) =
& _(h)(eVr)) for these trees).

d) for a fized labelled tree ve LDAT3, of the formv=[t,..., 8,015 s VpyUgyenny Uy,
and for all r > p(v) we have

FE@W) = Y T (P E®) e, (5114
VGCLDATs(v)

DI(V) {Tla ,TMavla aVN,UIv aUP}a Q(V)—T‘, M>m1 N2>n, P>P
tlch, 7thT~ma‘01CV1v ,Vncvn,ulcula 1upCUp

s (F () (B(R)) T30~ i) (F(, )(B(R)) KV =eos),
" ,(F(vN)(q)(h))(e(Vn)—e(vn)),(F(ul)(g(h))(e(ﬁl)—e(m)), B
- {Flup)(@(h) &Y

where we have defined t; := 0, for m < j < M, v, =0, for n <k <N, and
u; =0, forn<I<P (therefore we have (F(t; N @(R))(eTH-et) = & (h)(E’(T ),
(F(v,)(B(h))(eTr)=e(w)) = & _(R)&Vr), (F(u)(®(h))(T-e(u)) = @u(h)(e(Ux))
for these trees).

e) for a fized labelled tree ue LDAT3, of the formu=]t,,...,1,], and for all7> o(u)

we have
(F(u)((R)) T = S GO)((F(t)(@(R) AT, (5.11¢)
TUeCLDAT3(»)

Di(D)={T1,-,Tnm ,Vl,.;,VN U1 ,.;,_ij }, o(U)=r, M>m
t1CT 150005t CTom

ooy (Ftag)(B(R))@Tr)—et2) 5 (p)(&VD) & (B)VI),
q)u(h)(e(a)),.._,Qu(h)(e(ﬁp))) :
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where we have defined t; := 0, for m < j < M (therefore for these trees we
have (F(t;)(®(h))(&dTi)=e(ti) = Qy(h)(Q(Ti))). G(U) is a natural ezpression de-
pending on U and whose arguments are given here by (F(,)(®(R))(&T)—e(ta)),
...,®_(R)(&UP)) (see the two ezamples in Fig 5.7 above). O

After all these preparations we are now able to prove Lemma 5.1:

Proof of Lemma 5.1. We define (k) by
®(h) = (<I>y(h),<1>z(~h),<1>u(h)) := (DA3,(a, ¥),DA3 (a,¥),DA3,(2,%)) . (5.12)

For 0,€{0,,0,,0,} we have for all 7 >0

= > a(s)F(s)(¥) . (5.13)
seLD;%Z;:Z ru{%}

(F(0,)(®(R)))"

= &_(h)"
h=0 o(h) h=0

For 7, and all r > 1, inserting in (5.11a) the derivatives of ®,(h) and &,(h) at h=0
computed above we get

(r-1)
(Fr) @) "], _ = (5.14)
OM+N §
> W( 3 a(Ty)F(T,)(¥),- ..
TeCLDAT3(ry) T:€LDAT3,U{0,}
Dy(T)={T1, . Ts:V1y-sV v}, o(T)=r e(T1)=0(T1)
25 b, a(Tp) F(Tar)(9), %, a(V)F(V{)(¥),...
Ty ELDAT3,U{0,} VL€LDAT3.u{0,}
o(Tar)=e(Tar) e(V1)=e(V1)
> a(VN)F(VN)(\I!)) ;
VNELDAT3,U{0.}

o(Vn)=e(Vx)

The main point is that to each tuple_(-f, Tyyee s Tppy Vs e oo Vn) with Ty,..., Ty €
LDATS,, V4, o Vy € LDAT3,, D,(T) ={T,,...,Tp:V1,---, V i}, o(Ty) = o(T,),
...,0(Vy)=0(V ), there corresponds a unique m.l. tree T'=[T},..., Ty, V3,..., Vx|, €
LDAT3, and conversely. We illustrate this fact on the following example

Pa 8 P

. ka kg ke
J k

1 XV,
Figure 5.11.
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Thus using LDAT3, as a new summation set and exploiting the multilinearity of the
derivatives, we can rewnte (5.14) as

(F(r )(é(h)))(r—l)\ (5.15)
3 a(Ty)---a(Ta)a(Vh) -+ -a(Va) F(T)NT)

T=[T eesTrt Va5, Viv]y ELD ATSy

oT)=r
and the result easily follows from Remark 5.2.2 which leads to
] alw)=a(®)--aTa)a(V) -a(Vy) - (5.16)

wed 1 (T)

Similarly for 7; we obtain for all 7>1

(P @R |, _ = k(@ (), ,(h), 2, _ = (5:17)
S a(y)---a(fy)a(V) - a(Vy)a(l) - -aUp)F(V)(P) .
V=[T1,.,Tar, V1 ;}fg)’glr osUp] ELDATS,

We now assume (5.5) by induction hypothesis for all different labellings of the trees
ty9.-esty, € DAT3,, vy,...,v, € DAT3,, and u,,...,u, € DAT3,. We will show that

z?

(5.5) holds for any labellmg of the three trees t = [tl, ,tm,vl, -yV,], € DAT3,,
V=[t1yecerlimsVysenrsVUpsUs,- ] € DAT3_, and u=[t,...,%,], € DAT3,. Let us
first consider ¢ = [t;,.. ,tm,vl, v,], € DAT3, with a ﬁxed labelling and » > o(t).

In formula (5.11¢) we can make use of the 1nduct1on hypothesis for t,,...,v, and also
insert the derivatives of &, (h), ®,(k), and (k) at h=0 computed abovein (5.13). The

main point is that to each tuple (T, Ty,...,Tars Vi, -+, V) with Ty, ..., Ty € LDAT3,,
Vi VNELDATS D (T) {Tl’ TM’V ”VN}’ Q(T1)=Q(T1),...,Q(VN)=
Q(VN), andt,CcT,, ¢, CTy, ..., v, C Vn, v, CV, there corresponds a unique m.l. tree

T=I[T,,.. TM,Vl, s Vi E LDAT3 with tC T and conversely. We illustrate this
fact on the fo]lowing example

kg 4—
e \?7
i i 7y i Y
Figure 5.12.

Thus using LDAT3, as a new summation set in (5.11c) similarly to the change in
(5.14)-(5.15) and exp101t1ng the multilinearity of the derivatives, we obtain

(F)@E) | _ = (5.18)

p® ( I1 a(w))---( I a(w)) F(T)(®)

T=[T1,...,TM,V1,...,VN]3, ELDATsy weda(tl)(Tl) wed@(‘uN)(VN)
sot) (=1, o(T)=r
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and as o(T)>1 the result easily follows from

II a(z)=( 11 a(w>)---( II a(w))- (5.19)

wedg(t)(T) wedn(tl)(Tl) wede(vN)(VN)
Similarly for any labelling of v = [t;,...,%,,, 01,y VpyUys-- .,'u,p]z we obtain for all
r > g(v)
(F(o)(@(R)) | _ = (5.20)

. ( I1 a(w))'--(t 1 aw) | FE)e).

V=[T1,...,TM,V1,...,VN,Ul,...,UP]?GLDAT3; wedo(tl)(Tl) wedo(up)(Up)
30(.,,)(V)=1), Q(V)=T v

It remains to show (5.5) for any fixed labelling of v = [¢,,...,t,,], € DAT3,. This
is the most difficult part of this proof. In formula (5.11¢) we can make use of the
induction hypothesis for ¢,,...,t,, and insert the derivatives of ®,(h), ®,(k), and
®,(h) at h = 0 computed above in (5.13). The main point is that to each tuple
T, Ty, Taps Viy - s Vs Uy oo, Up) with Ty,..., Ty, € LDATS, V3,...,Vy €
LDAT3,, U,,...,Up € LDAT3,, D;(U) = {T1,..-, T2t V1,---» VN> Ups.. ., Up},
o(T,)=o(T}),..-,0(Up) =0(Up), and t, CT;, t, CTy, ..., 1, cT,,t,CT,, and
o(T,)=o(T}),-..,0(Up)=0(Up), there corresponds a unique m.l. tree U € LDAT3,

containing u and conversely. We illustrate this fact on the following example _
ia e to

e,

J in 18 i,
L AR SR A ;\VU‘ =
Figure 5.13.

Thus using LDAT3, as a new summation set in (5.11e) similarly to the change in
(5.14)-(5.15) and again exploiting the multilinearity of the derivatives, we obtain the
desired result

(F(u)(@(R)))8 | = 3 ( II a(w)) F(U)(T). (5.21)

h=0
UELDATS, wEdy(a)(U)
39(14.)(U)=u) Q(U)=7‘

O

Definition 5.10. Let a: DAT3U {0,,0,,0,} » Randb: DAT3U{0,,0,,0,} —» R
be two arbitrary maps and suppose that a (0,)=1, a,(0,)=1, and a,(0,)=1. Then
we define the composition a* b : DAT3U {0,,0,,0,} — R for each tree w by

1 e(w) o(w)
(a*b)(w) = prem) > (Z( ; )b(sj(w)) IT aw) (5.22)

labellings of w \ j=0 wed; (w)
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where the first summation is over all a(w) different labellings of w.
Here is the main consequence of Lemma 5.1 and the main result of this section:

Theorem 5.3. As above let a: DAT3U{0,,0,,0,} — R and b: DAT3U{0,,0,,0,} — \

R be two arbitrary maps and suppose that a(@ ) 1, a(0,)=1, and a((?) )= 1 Then the |
composition of the two corresponding DA3-series is again a DA3 series

DA3(b,DA3(a,¥)) = DA3(m, ¥) (5.23)
where the map m : DAT3 U {(Z)y,(l)z,(bu} — R is given by m=a xb of Definition 5.10. ‘

Proof. In order not to write similar formulas for the y-, 2-,,and u-component we also :
denote by ¢ an arbitrary subscript letter in {y, z,u}. Putting ®(h):=DA3(a,¥), we |
have |

DA3_(b, DA3(a, ¥)) = DA3,(b,3(k)) = Y. %b(w)ﬁ“(w)(@(h)). (5.24) |
wELDAT3,U{b,}

By the Leibniz’ rule we have for the gth derivative
pas, 2| _= Y (4 )be) (Fa)Em)e| . 5

eLDATs.,u{a }
0<o(w)<yg

We insert the derivatives (F(w)(@(h)))(q_e(w)) |4—o computed in Lemma 5.1, rearrange
the terms so obtained, and use the fact that ®(0)=¥ to get

DA3,,(b,<I>(h))(‘1)’h=0 (5.26)
-3 (g( ))b(w> 3 ( 11 a(w)) F(s)(2(0))
wELDAT3,U{0,} s€LDAT3,U{bs} \wEd,(w)(s)
0<o(w)<g 3o(w)(8)=w, o(s)=q
o(s)
- ¥ (Z (“)pissen T1 a(w)) F(s)(¥)
sELD;g;s:,;J{ﬁ,} i=0 w€d;(s)

o(s) o(s)
- ) (Z( Joteson T1 a(w)) Fs)(®)

s€EDAT3,U{0,} labellings of s =0 w€d;(s)
o(s)=g

= Y a(s)@*b)(s)F(s)() = DA3,(axb,¥)D|
sGDJ;(T:;»a';J{@} i

As all derivatives coincide the proof is achieved. |

The main consequence of the preceding theorem is given by the following result:

*
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Theorem 5.4. The set of mappings
G:={a:DAT3U{0,,0,,0,} — R; a(0,)= 1,a(6,) =1,a(0,) =1}

with the composition law (5.22) forms a non-commutative group.
Proof.

a) The associativity:-of the operation * is a trivial consequence of the preceding Theorem
5.3 as for an arbitrary ¥ we have

DA3(c,DA3(b,DA3(a,¥))) =DA3(c,DA3(axb,¥)) = DAB((a xb)xc,¥), (5.27a)
DA3(c,DA3(b, DA3(a, ¥))) =DA3(b *c,DA3(a,¥)) = DAB(a *(bxc),¥), (5.27b)

i.e,

DA3((axb)*c,¥) =DA3(ax(bxc),¥). (5.28)

From the linear independence of the elementary differentials (similarly to [HaNgWa93,
Exercise 11.2.4]) it follows that

((axb)*c)(w)=(a*(bxc))(w) Vwe DAT3U{0,,0,,0,}. (5.29)

b) The neutral element e of the group is trivially given by the identity map of Example
5.1.1.

c) Let a € G be given. The inverse a—! of a for the operation * can be constructed
from (5.22) inductively on the order of trees. First for 0, € {0,,0,,0,} we have 1 =
(axa-1)(0,) = a(0,)a=1(0,), therefore a~1(@_,) = 1 must hold as a consequence of
a(0,) = 1. Consider now an arbitrary tree w € DAT3. As for any labelling of w we
have o(s;(w)) < o(w)—1if j < g(w)—1, then a=!(w) can be computed from 0 =e(w) =
(a*a—1)(w) leading to

1 e(w)-1 ”
0=.(;Lm Z (Z <Q(J )) s;(w)) H a(w)) +a” (w)a((l),(w)).

labellings of w j=0 wed; (w) i

(5.30)
[m]

Remark 5.3. The non-commutativity is a trivial consequence of the non-commutativity
of the composition of B-series (see [HaNgWa93, Exercise I1.12.4]).

Another consequence of Theorem 5.3 is as follows:

Theorem 5.5. Leta: DAT3U{0,,0,,0,} — R be a DAS-series satisfying a(0,)=1,
a(0,) =1, and a(0,) = 1. Consider a, := DAT3, (a,¥), a, := DAT3,(a,¥), and
a,:=DAT3, (a,¥) with ¥=(g,%,%) consistent. Then we have

hf(a,,a,) = DAT3 (a',¥),  hk(a,,q,,a,)= DAT3 (', ), (5.31)
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with

a'(@,)=0, a'(0,)=0, a'(r,)=1, a'(r,)=1,
a'(t) =a'([ty, st VaseeesWply) = o(t)a(t,)---a(t,,)a(v,) - -a(v,) , (5.32)
a'(v) = @' ([tys-- sty VyyevrsUnathyse- 2 Vpls) =

o(v)a(ty) - - a(t,)a(vy) - a(v,)a(u, ) -+ -a(y,) ,

If in addition a(Ty)2=a([Ty]y)=a([TZ]y) is satisfied then we have
1 -~~~
ﬁ(—gyfzku)_l(y) Z, u)g(ay) = 'DAT3u(a'7ql) ? (5'33)

with a'(@,) =0 and

[ I . 1 a 1 —alllu
a (u) =a ([th i’ 7tm]'u,) - (9(u)+2)(9(u)+1) ( (tl) (tm) ([[ ]z]y)) . (5‘34)

Proof. For trees in DAT3, U {0,}, (5.32) is a simple consequence of (5.23) since for
W, = (¥g» 20, Uo) We get hf(yg,z,) =D A3, (b, ¥,) with b(r,)=1 and for all other trees
t € DAT3, U {0,} we have b(t) = 0. Similarly for trees in DAT3, U {0,}, we get
hk(yy, 29, ) = DA3,(b, ¥;) with b(r,) =1 and for all other trees v € DAT3 U {0}
we have b(v) = 0. Concerning (5.34) the proof is similar to that of [Ro88a, Theorem
(3.4)] and the ideas are identical to those used in the proof of Lemma 5.1. Denoting

®(h):=(~g,f.k,) (¥, %, ¥)g(a,) we have
Q(O) s ((—gyfzku)—lg) (57 z, E) =0,
8D(0) = ((~9,£:k.) 7 (alry)g, ) B %8) =0, (5.35)
8®(0) = ((~9,£:k.) 7 (alry 0y, (£, ) +allr,) )9, £y F+allre]y )ay £R)) (3:%:8) = 0,
and the higher derivatives ®(*)(0) for k>3 are (non-null in general) linear combinations

of the elementary differentials of order k—2. The factor 1/(g(u)+2)(e(u)+1) in (5.34)
comes from

1 A 1 hA? 1 h?

1
L _ Ll 2a®e——. P s@ gy .25
= 2(h) 3 (0)+ #(0)+ 572V O)+ .. .

32 1! 4.3 2!




Chapter III. Partitioned Runge-Kutta methods for semi-
explicit index 3 DAE’s in Hessenberg form.

1. PRK methods and related definitions.

We consider the equations (II.1.1a,b,c) and consistent initial values Vo =Yg 295 %)
at z, satisfying (I1.1.2). Instead of simply studying the application of Runge-Kutta (RK)
methods to this problem, we will consider a more general class of methods exploiting
the specific partitioning of the system (II.1.1a,b,c). These methods, called partitioned
Runge-Kutta (PRK) methods, make use of the conjunction of.two Runge-Kutta methods

as follows: . N

Definition 1.1. One step of an s-stage PRK method applied to (IL.1.1a,b,c) with initial
values W =(y,, 2, u,) at z, reads

v =Y +h ¥ bY], 5 =2+h) b2 (1.1a)
1 =1

Coe=1

where

Y/ = f(v;,2;), Z; =k, Z, U;) , 0=g(Y), (1.13)

and the internal stages are given by

8 3
Y, =y+h Y a;Y], Z;=z+h 4,7 . (1.1¢)
j=1 j=1

Remarks 1.1.

1) The existence and uniqueness of a solution to these equations is not guaranteed

without some assumptions on the coefficients (see Theorem 2.1 below and Theorem
V.4.1).

2) If the coefficients of the PRK method satisfy

(5): a,;=b, for 1=1,...,s

37 k3

then we have y; =Y, and hence g(y,)=g(¥,)=0.
3) Various definitions of the numerical u-component u, will be given further.

The coefficients of the two RK methods entering in the PRK method (1.1) can be
written in two Butcher-tableaux

¢ aq, - @ a;, G dyq a,,
C, 5 L Cs r Qg1 Qs
bl bs bl ba
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We always suppose that these two RK methods are based on the same quadrature
formula, i.e., that

bi=’b\i; c;=7¢; for t=1,...,5. (1.2)

k2

PRK methods violating these conditions will not be considered (half-ezplicit methods
are examples of such methods, see [0s90] and [0s93]). The coefficients c; enter in the
definition of PRK methods for non-autonomous problems. The hypotheses

L4

c(1): Zaijzci, for 1=1,...,8,

j=1

s
c@1): Z’a‘ij./z'ci' for i=1,...,8,
=1

imply some simplifications when deriving the order conditions for high order methods
applied to such problems (see also [HaNgWa93, p. 134)): the order conditions reduce to
those of the autonomous case considered here. For most PRK methods of interest these
assumptions are fulfilled (see Chapter V for an exception: the 2-stage Lobatto ITIA-IIIB

method which does not satisfy €(1)). PRK methods violating the assumption C(1) will
not be considered. Pure Runge-Kutta methods applied to (I1.1.1a,b,c) satisfy also in
addition to (1.2)

a,.=a,; for i=1,...,8, J=1,...,8. (1.3)

From now on we use the notation A:=(a;;); j=1> A:=(@;;)} j=, for the RK matrices,

b:= (by,...,b,)T for the weight vector, and ¢ 1= (cy,---,¢,)T for the node vector. Under
the assumptions (1.2) the two Butcher-tableaux can be rewritten more succinctly as

c|l A c| A
bT bT .
We will designate the two couples of RK coefficients by (4,b,¢), (Z,b,c) and the PRK

coefficients by (4, A,b,c). We also denote the produét matrix A:= AA. If the matrices
A and A are non-singular then we define the inverse matrices W = (w;;)f ;=1 =A™

W= (D)5 j=1 = A-1, and Q= (w;;)} =1 = ZA-1=WW. For a RK method we have
A= X, w =W,Z= A2, and Q=W?2. We will sometimes use the s-dimensional vectors
1:=(1,...,1)T and e,:=(0,...,0,1)T.

1.1. The simplifying assumptions.

The construction of high order PRK methods relies heavily on the following condi-
tions, called simplifying assumptions (see [But87, Section 34], [HaLuRo89a, pp. 15-16],
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and [HaWa91, Section IV.5]):

B(p) : Zbicf—1=% for k=1,...,p;
i=1
u k
C(g) : Zaijc.?_l:% for i=1,...,s, k=1,...,q;
Jj=1
3‘ I.C
(@) : 'dijc;?_1=% for i=1,...,s, k=1,...,3;
i=1
: b; u
‘D(r) : bier g, = L(1-¢k for j=1,..,s, k=1,...,r;
AL 1] k 7 "
=1
. ) b.
D(7) : Zbicf_l'&ij=f(l—c;?) for j=1,...,s, k=1,...,7;
=1
8 3 k
A ) ~ k-2 _ G . _ _ .
CC(Q): ;;aijaﬂcl = WD) for i=1,...,s, k=2,...,Q;
~ e b, b b,ck
) k-2, ~ _ %1 %G 19 —1....
DD(R) : ;;bici %8 = i TRy [=Lees,
. k=2,...,R;
(S): . a,; =0, for i=1,...,s.
CC(Q) and DD(R) can be rewritten
d k
~ s .
CC(Q): Zﬁilc{"_zzk(k_’_l) for 1=1,...,s, E=2,...,Q;
=1 :

= - 5, bc b,ck
. E ck-2g 21 1% il
DD(R) : 2 bc; g, E T R—1 7 R(b=1)

Remarks 1.2.

1) (S) together with B(1) leads to c, =1. Moreover, if in addition C(q) and D(r) are
satisfied then B(p) holds with p >max(g,7+1).

2) If C(q) and C(§) are satisfied then it can be easily shown that CC(Q) holds with
Q > min(g,g+1). Similarly if D(r) and 13(?) are satisfied then DE(R) holds with
R>min(7,r+1).

3) If C@(Q) is not satisfied with Q > 2 then by default we put @ :=1. Similarly if
DE(R) is not satisfied with R>2 then we put R:=1.

4) The conditions C(2) and C(2) are important to show the existence and uniqueness
of the PRK solution (see Theorem 2.1 and Theorem V.4.1).

5) If the matrix A is invertible and C(2) is satisfied then CC(2) holds if and only if
C(1) holds. This is not true if the matrix A is singular, e.g., the 2-stage Lobatto
IIIA-IIIB method satisfies C(2), CC(2), but not C(1) (see Chapter V).

6) For stiffly accurate RK methods, i.e., satisfying (§), the condition D(r) plays an

* important role, not only when estimating the local error, but also for the global
error of unprojected methods (see Chapter Iv).
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If the matrices 4 and A are invertible then we obtain the following additional
simplifying assumptions by multiplication of the above simplifying assumptions with

W, W, or §):

IC(q): Ew c k ! for 1=1,...,8, k=1,...,q;

IC(9) : Zﬁijc;?=kcf—1 for i=1,...,8, k=1,...,3;

-1 3
ID(r): Zbicfwij =Zbiwij—kbjc;°_1 for j=1,...,s, k=1,...,7;
Iﬁ(?): ‘Zbicfﬁijzf_:bi{v‘ij—kbjc?—l for 7=1,...,8, k=1,...,7;

ICC(Q) : ZZ{&ﬁwﬂszk(k—l)cf—Z for 1=1,...,8, k=2,...,Q;

j=1l1=1
IDD(R): D ) betd wuy=k z Z bie;;wy—(k—1) Z Z by, w i+
=1 j=1 i=1 j=1 =1 j=1

k(k—l)blcl— for I=1,...,8,k=2,...,R.
ICC(Q) and IDD(R) can be rewritten

IcC(Q) : Ewi,cfzk(k—l)cf_z for i=1,...,8, k=2,...,Q;

IDD(R) : byckw,, = =k, b cowy—(k=1) > b.w;+k(k—1)bcF 2
iCi Wil 1 il T p l
=1 =1

for 1=1,...,s, k=2,...,R.

We recall that we are not interested in methods violating (1.2). The above sim-
plifying assumptions will mainly be used to obtain optimal estimates concerning the
local error of PRK methods, especially for those satisfying the condition (S) which are
of special interest (see also Chapter IV and Chapter V). We give in Table 1.1 some
properties of common examples of s-stage implicit Runge-Kutta methods.

Method simplifying assumptions classical order other properties
Gauss B(2s) C(s) D(s) 2s

Radau IA B(2s—1) C(s-1) D(s) 2s—1 c1=0

Radau IIA B(2s-1) C(s) D(s-1) (S) 25—1 c.=1

Lobatto ITTA | B(2s—2) C(s) D(s—-2) (S) 2s-2 c1=0 c;=1 e;;=0
Lobatto IIIB | B(2s—2) C(s—2) D(s) 25—2 c1=0 cs=1 a;;=0
Lobatto IIIC | B(2s—-2) C(s—1) D(s—1) (S). 252 c1=0 c;=1

Table 1.1. Fully implicit Runge-Kutta methods.

#
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1.2. Computation for the u-component.

Several definitions of the numerical u-component u, are conceivable. Here we only
describe the most natural choices. The first possibility is to choose u, such that (II.1.1e)
is satisfied (see the next subsection), i.e., u; is the solution of

0 = (gyy(f’f)+gyfyf+gyfzk) (y],’zl’ul) * (1'4)
For PRK methods which satisfy ¢,=1 a second fairly good choice is often given by
u:=U, . (1.5)

Otherwise, as a third possibility, one may also formally define

—uo-{—hZa” 5w =ug+h Y bUL. (1.6)
=1

For PRK methods satisfying the assumption (S) this leads to (1.5). If the RK matrix
A is invertible we get

Uy = u’0+ Z bzwz](U uO) - R(oo)uo-l- Z bz ij ] (1‘7)
1,j=1 1,j=1
where R(00)=1—bT A—11 is the stability function at infinity of the RK method (A4, b, ¢).
Similarly a fourth possibility is to formally define

= uo—i—hz a,; U, u, = u0+h2biU£ (1.8)
=1

and if

(5): a,=2b, for :=1,...,s

we again obtain (1.5). If the RK matrix 4 is invertible we have
uy =ug+ »_ b;i;(U;~ue) = B(co)us+ Z b@;,;U; (1.9)
1,j=1 3,j=1
where R(oco)=1—bT A-11 is the stability function at infinity of the RK method (4,b,c).

Remark 1.3. A very accurate value for u, is often unnecessary (see Remark 2.1.2). For
a cheap computation one may discard the first possibility (1.4) and prefer the other
ones, especially if one wants to avoid the computation of extra derivatives such as g,, .

1.3. Construction of consistent values.

In general arbitrary initial values, as well as the numerical solution of a PRK
method, do not satisfy the constraints (II.1.1c,d,e). They can be projected onto these
constraints with the help of the procedures described below (see [HaWa91, Section VL.7,
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p. 513] [AsPe9l], [AsPe92al, and [Lu91b] for similar ideas in the context of semi-explicit
index 2 problems in Hessenberg form).

We consider here the values (1,6» v) satisfying

(9y F o ) (¥ % u) is invertible in a neighbourhood of (1,¢,v) (1.10)

and with g(n); (gyf)(n{C), and (g4,(f £)+9, 5, f +gyf,k)(nlc,V) sufficiently small. We
denote hereafter the corresponding pro jected values by (7, ¢, V).

A first projection procedure.

Firstly we d;:ﬁne 7, as the solution of the system
o ron(FEmCN,  0=9) (111a)
Then we define Z, p as the solution of the system
0= T—Ck,mGmr, 0% (g,/)(@:0) - (1.11b)
Finally we define 7 as the solution of the equation

0= (gy,,(f,f)+gyfyf+g,,f,k) (7, ) - (1.11¢)

If one wants to avoid an accurate computation of the derivatives f, and k, when
projecting 7 and (, an alternative possibility is as follows:

A second projection procedure.
We define 7, A,Z, p,and U as the solutions of the systems
0 ='f~i—77—f('fi,€+k(?7,C,V‘\')\)—k(n,C,V))'\’f(ﬂ’C) ’ 0= g(‘ﬁ) ’ (1-12‘1‘)
0 =Z—C—k(mC,V+N)+k(77,C,V) 3 0= (gyf)(?ia Z) s (1-12b)
0 = (g,,(f> )+ 8aFu T H9u5:0) (B ¢.v) - (112¢)

Another possibility whose formulation is more theoretical than practical is as fol-
lows:

A third projection procedure (see [HaLuRo89a; P- 108]).
We define 7, A,Z, p, and ¥ as the solutions of the systems
0 =Py(n,C,V)(ﬁ—n) ,  0=4g®; (1.130)
0 =P,(m¢)(E-0 0% (g, L) » (1.13b)
0 = (g45(F> )+, fyf+9,5:F) (@ ¢\7) (1.13¢)
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where P, Q,, P,, and @, are projectors defined under the condition (I1.1.2) by

S :=ku(gyfzku)_lgy ’

(1.14)
Q,:=f.5, P,=1-Q,, Q,=S5f, P :=I-Q,.

Remark 1.4. In fact this projection procedure is equivalent to the first projection pro-
cedure, because it is easy to show that

0 =P,(n,({,v)é, = 3 X such that §, = (fznku)(n,C,V))\ , (1.15)

0=P,(n,¢,v)s, — 3 p such that §, = ku‘“(n,c,u)p . (1.16)

The existence and uniqueness of a solution to the above systems follows, e.g., from
the theorem of Newton-Kantorovich (see [OrRh70, p. 421]). For example the Jacobian
of (1.11a) evaluated at =7, A=0 is given by

( I —(fzku%(n,C,V)) (1.17)

9,(n)

and is inversible by (1.10). Newton-type iterations with starting values 7(®) =g, A(0) =0
will converge to the solution.

In order to construct consistent values (7, ¢, V) independently of v, we can first
define 7 as the solution of

0 = (g,,(f, ) +9,f f+9,f.k) (n,(,P) (1.18)

and then use this value in the projection procedures.

One may also effect the above projections by replacing the arguments n,{,» by
7,¢, V. For example, instead of (1.11) one may define

0 =i—n—(£,k,)FH DN,  0=g(@), (1.19a)
0 =E—C‘ku(ﬁ7 Ea ;)P’ 9 0= (gyf)(ﬁ’ Z) ) (1'19b)
0 = (g,,(f, f)+g,f,f+9,f.k) (7, (D) . (1.19¢)

For PRK methods the above projections are recommended, because they allow to
stabilize the numerical solution as regards the influence of perturbations (see Section 2,
Section 1V.3, and Section V.4). If the assumption (S) holds then the constraint g(y)=0
is satisfied (see Remark 1.1.2: 7=n=y;,A=0 in (1.11a), (1.12a), or (1.13a)).
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2. Existence, uniqueness of the PRK solution, and’
influence of perturbations.

This section is devoted to the analysis of the solution of the nonlinear system (1.1)
with ¥, = (yo, 24, %, ) replaced by approximate h-dependent starting values (7,(,v) =
(n(R),¢(R),v(Rh)). An important result is given by Theorem 2.4 which will be useful in
Section 5 to the study of the error propagation. We first investigate the existence and
uniqueness of the PRK solution.

2.1. Existence and uniqueness.

Theorem 2.1. Let us suppose that the PRK coefficients satisfy C(2), 05(2), and that
the matriz A= AA is invertible. If we assume that

g(n)=0("), 723, (2.1a)

(9,F)(m,¢) = O(R"), K22, (2.1b)

(gyy(f’ f)+gyfyf+gyfzk)(n, C) V) . O(h) ? (2'10)

(9, f.k,)(y,2,u) is invertible in a neighbourhood of (n,¢,v) (2.1d)

then for h < h, there ezists a locally unique solution to
Y, =n+h) a;f(¥;,2;), Z;= C+h2a”k(YJ,ZJ, U,), (2.2a,b)
i=1
0 =g(Y;) (2.2¢)

fori=1,...,s, which satisfies
Y,—n=0(h), Z,—¢=0(h), U,—v=0(h). (2.3)

Remarks 2.1.

1) If the function k of (I.1.1) is linear in u then the assumptions C(2), CC(2); and
(2.1c) can be omitted. In this situation, 7>2 and x>1 are sufficient. However, if
C(2) or CC(2) is not satisfied, 7 =2 or k =1, we only have the estimate U+ = O(1).

2) The value of v in (2.1¢) only prescribes the solution of (2.2) to be close to the
manifold defined by (II.1.1.e). However, (Y;, Z;,U,) are clearly independent of v.

3) If the function k of (IL.1.1) is not linear in u then C’(Z) and the invertibility of the
matrix A show the necessity of having s >2.

Proof. A way of proving this theorem is by homotopy (see [HaLuRo89a, Theorem 6.1]).
Here we present a short proof inspired by [HaWa91, Theorem VI.7.1].

We first develop 0=¢(Y;) and (Y}, Z;) into Taylor-series

(- c)
x X 0 = g(Y;) =g(n)+g,(m)(Y;~ n)+} / 9yy n+T(Y n))df (Y;—n,Y;-n), (24)
10620 =100+ [ £, (m47(Gmm) G 7(2-0)) b - (Vi) (2

/01 f2 (77+T(Yi"'77)7c+7(zi_4))d7 (Z;-¢) -




Chapter ITII. PRK methods for semi-explicit index 3 DAE’s in Hessenberg form 61

Replacing the factors Y; —7n and Z, —( with the help of (2.2a,b), we obtain

0=g(Y;) =g(m)+h Y a;;9,(n)f(¥;, Z;)+ (2.6)

i=1
s {,’2)
%2‘ Z ;5 %k /ol/gyy (W+T(Y;j77)>d"" (f(YjaZj) ,f(YkaZk)) s » X
Jrk=1 '

£V Z) =£ .0 +h 3y [ f, (nr(Fimm) CHr(Zi=0))dr - (V3,20 (2)

8 1 -
B gy [ () Chr(Zi-0))dr k(Y. 23,1
i=1"

Inserting (2.7) into the second term of (2.6) and dividing the result by h2? we get the
system :

0 =Yi—77;hzaijf(yj,zj) ) (2-84)
i=1

0=2,—¢-h> 8,;k(Y;,2;,U,), (2.8b)
i=1

0 =59(m)+7 3 aii(a,)m, 0+ (2:80)

i=1

s i

3 ai,-ajkgy(n)/; £y (’7+T(Y}—77),C+T(Z,-—C))df-f(Yk,Zk)+
=1
J ] )
> a,ﬁ,—kgy(n)/o fz(ﬂ+T(Yj—77),C+T(Z,-—C))dT-k(Yk,Zk,Uk)+
Jyk=1

s 1 l"t) )

Z az‘jaik/O/gyy (77+;"(Y'i—77)>d7' (f(Yj’Zj) ’f(Yk’Zk)) . F 4%

Jrk=1

Taking (2.1a, b) into account, for h=0 the right-hand side of (2.8¢) with values Y, =7(0),
— . !
Z;=¢(0), and U, =v(0) reads $race ( (1-7) d7 = a/Z Y
0

5 3 0oy, (L D)@ CO)+ Y ayasuls, f, F)n(0),¢(0)+

Jk=1 Jyk=1

s (2.9)
D ai;85(9,£R)(1(0),¢(0),1(0)) -
Jok=1
By C(2) and CC(2) this expression is equal to
% (Gl 1) 40y, F 0, £.8) (2(0),(0), (0) (210)
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which vanishes by (2.1c). Hence the values ¥; =7(0), Z; = ¢(0), and U; = v(0) satisfy
(2.8) at h=0. Further, the derivative of (2.8) with respect to (Y, Z;,U,) is of the form

I+0(h)  O(h) 0
( ok) I+O(h) O(k) ) (2.11)
o)  0@1)  AAR(g,f.k)0¢{¥)+O(R)

which is invertible for k < h,. Therefore the implicit function theorem (see [OrRh70,
p. 128]) yields the existence of a locally unique solution to (2.8) and hence to (2.2).

If the function k of (IL.1.1) is linear in u then we can directly define the values U;
at h=0 such that the right-hand side of (2.8¢) vanishes. « m|

*

2.2. Influence of perturbations.
The next result is concerned with the influence of perturbations to (2.2). In practice

these perturbations may come from, e.g., round-off errors and errors in the iterative
solution of the nonlinear system (2.2).

Theorem 2.2. Let (Y;,Z,;,U;) be given by (2.2) and let us consider perturbed values
(z’Zi,ﬁi) satisfying

Y, =7+h>_ ay;f(¥;Z;)+hs; Z,=C+hy a,;k(Y;,Z;,0;)+hu; , (2.120,)
j=1 j=1
0 =g(¥,)+9; (2.12¢)
fori=1,...,s. In addition to the assumptions of Theorem 2.1 let us suppose that

1 v rrﬁ‘«v"'{ -~
l hap- 47 1o An=O@F), AC=0(K), Ti—v=0(h),

are e laee 2.13
o cmgidinegue L 5, =0O(R?),  p;=0(h), 9, = O(h®%) . (2.13)
fr.l4ag) pN exeom A
Then we have for h < hy the estimates
1
AY, = P, An+he,f,P,AC+O (R An]+ 2| ACI+ 75 1Q, A0l +IQ.ACE (2140)

h|6]+52 ul+]61])
A7, = - La,-50,8n+ PACHO(lan] +hIACI+551Q, A0l + 3 1QACP (2149

+6]l+Rll+ el
P, AZ; = P,AC+O(IQ, Al +hIP, An+ IACI+ 510, AP+ 7 QAL (2:14¢)

+R[18]|+Rllul+161]) ,

AT, = (410, Ar+ HIP, Anll+ 310, A +IP.AC + 181+l + 75101 (2149

—



Chapter III. PRK methods for semi-explicit index 3 DAE’s in Hessenberg form 63

where o; = el A=11 with e; = (0,...,0,1,0,...,0)T (the s-dimensional vector with all
components equal to 0 ezcepted the ith which is equal to 1), § = (8;,...,6,)T, ||6]] =
max, ||6;||, and similarly for p and 6. P, Q,, P,, and Q, are the projectors defined

under the condition (I1.1.2) by (1.14).

Remarks 2.2.

1) We have used the notation An=7—n, A(=({-(, Y =(Y,,...,Y,)T, AY =¥ -V,
|AY || = max; || AY;||, and similarly for the z- and u-components.

2) The missing arguments for f,, S, P,, @,, etc., are (n,¢,v) or (n,¢,G(n,()) with G
as described in (I1.1.4). Those of P, ; are (Y}, Z;,G(Y;, Z;)) or (Y, Z;,U).

3) The conditions (2.13) ensure that all O-terms in the proof below are small.

4) I g(7) = 0 = g(n) then Q,An = O(||Anlj?). Consequently, this term may be
neglected and the hypothesis An = O(h?) can be relaxed to O(h?). If we have
(9,5)(@,C)=0=(g,£)(n,{) then similarly A¢=O(h) suffices.

5) If the function k of (IL.1.1) is linear in u then the terms ||Q,An||* and 1Q,AC?
in (2.13a,b,c) are multiplied by one additional factor A. In this case An= O(h2),
A¢C=0(h), T, —v=0(1), §;= O(k), p; = O(1), and §; = O(h?) are sufficient, but
then we only have the estimate AU, =O(1).

6) The constants implied by the O-terms in (2.14) depend on bounds for certain
| derivatives of f, g, and k, but not on the constants entering in the O-terms in
I (2.1a,b) and (2.13), if h is sufficiently small.

7) It can be observed that the terms ||6]|/R2, [|8]|/A, [|6]|/k, ||6]], and [[u] are not
present in (2.14a, c).

Proof. Subtracting (2.2) from (2.12) we obtain by linearization

AY, =An+h Y a;f, (Y, Z)AY;+R Y e f,(Y;, Z;)AZ;+hé+ (2.15a)
j=1 j=1
O(h||AY |*+R]|AZ|)
AZ; =A(+R Y Gk (Y5, 2, U)AY;+h Y 8k, (Y;, 2, U)AZ;+ (2.15b)
j=1 j=1

RS Gk, (Y, Z,,U;) AU +hp,+O(R|AY [P +h||AZ| +RIAT|?)
j=1

0 =g, (Y;)AY;+6,+ O(||AY;|]*) , (2.15¢)

which can be rewritten, using tensor notation,

AY =1® An+h(A @ I){f,}AY +(A ® I){f, }RAZ +hé+ (2.16a)
O(h|AY|* +R[AZ|?)
hAZ =1 @ hAC+R2(A® I){k,}AY +h(A @ I){k,}hAZ+ (2.160)
(A ® I){k,}B* AU +h*u+O(R?|AY |* +R*|AZ|* +K*| AT |?)
0 ={g,}AY +6+O(||AY]?) (2.16¢)

P S I S
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where
{g,} :=blockdiag (gy(Yl), - ,gy(Ys)) ] (2.17a)
{f,} :=blockdiag (f,(Y1,2Z;),---,[.(¥Ys, Z,)) > (2.17b)
{k,} :=blockdiag (k, (Y3, 21, U1), - - -k (Yas Z,,U)) (2.17¢)

and similarly for {f,}, {k,} and {k.}. Inserting (2.16a) into (2.16¢) and (2.16b) into
the resulting formula leads to

~{g,HA® D{f,HA® I){k,}W*AV = (218)
{0,}[1® An+(4® I}{f.}(1® hAQ)+h(4 ® D{f,}AY +
h2(A @ {£.}(A® D{k,}AY +h(4 8 I){f.} A & I){k,}hAZ+
(A ® D){f,}h?u-+hs| +8+O(|AY |*+h|AZ|* +47 | AV|)

In accordance with (2.3) we have
9, (V3) ai; £.(Y}, Z;)8;ky (Yis 23, Ur) = @5850.(9, £ )(0: € v)+O(h) , (2.19)

thus, the left matrix of (2.19) can be written as

{9, (A& D{f, HA® I){k,} = AA® (g,f.k,)(n,,)+O(R) (2.20)

and is invertible for  sufficiently small. Putting

G,={g,}, F,=(AeD{f.H4eD™, K,=(4deD){k}44d0])™",
S:=K (G 6FK,)™'G,, (2.21)

~ _-— g —~—

Q,:=F,S, P,:=1-Q,, Q,:=SF,, P,:==1-Q,,

~ o~ — o~

we remark for example that G, =G,Q,, 5=5Q,, G, F,=G F,Q,, and F,P, =P F,.
Hence, from (2.18) and (2.16a, b) we obtain
WAU = - (440 1) (G,F.K,) G, [18 An+F,(418 hAQ)+h(A ® ){f,}AY +
W F,(AL@ I){k,}AY +hF(AZ@ D){k,}RAZ]+  (2.220)
O(||AY || +h[|AZ|*+ k2| AU || +h||8||+1? || ul| +[16]])
hAZ =(A® I)-l'[ _5(1® An)+PB,(A1® hAC)-h5(A® I){f,}AY + (2.225)
2P (AA® I){k,}AY +hP (44 ® I){kz}hAZ] +
O(|AY |2 +h||AZ||* +h?|| AU |+l ]|+ B2 ||l +6]]) »
AY =F,(1® An)+F,P,(A1® hA()+hP,(A ® I){f,}AY + (2.22¢)
h?*P,F,(AA® I){k,}AY +hP, F,(AA® I){k,}hAZ+
O(|AY |2 +R|| AZ|>+R*||AU|[* + k|| 8] +-h2 ||l +116]]) -
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The O-terms in (2.22a, b, ¢) lead to the estimate O(||Q,An||?/h2+|| P, An||2+||Q, A2+
h||P,A(||2+R||6]|+h2|| || +]|0]]). If the function k of (II.1.1) is linear in u, they can be
replaced by O(||AY |2 +R||AZ|[2+h2|AY ||-| AU||+R?(|AZ||- | AU || +R{|6]| +-R2[| ]| +16]])
yielding O(||Q, An||?/h+|| P, An|[2+h{|Q AL|*+|| P, AC|>+R|6][+h? | || +H]6]])- The term
P, An entering in P, ;AZ, leads to the estimate O(h| P, An||), because of (I® Pz’i)§(11®
P,) = O(h?) which is a consequence of Pk, =0 and g, P, =0. The estimate (2.14c) for
the perturbations § and 6 simply follows from (2.14a,b,d), (2.22b), and P,k,=0. [

We are now interested in the influence of perturbations to the numerical solution.

Theorem 2.3. In addition to the assumptzons of Theorem 2.2, including those of
Theorem 2.1, let Yy,2, and G;,Z, be given by !

Y, =n+thif(Yi,Zi) , T = n+hzb f¥, Z)+he,., , (2.23a,b)

=1

Z :C+hzbik(Yi7Zi7Ui) ’ Z = Z—}-th k(Y Zz,U )+h4u's+1 (2.23c, d)

=1
with
5s+1 = O(hz) ? Pst1 = O(h) ® (2'24)
Then we have the estimates
1
Ay, = P,An+R(00)Q, An+hf, P,AC+O (h]|An|+h*|AC + = 1|Q,An|?  (2:250)
+|IQZACII2+hl|5II+h||'5s+1||+h2||ull+||0ll> 5

PIAy, = P,Anthf,P,AC+O (R An|+ 1] AC) +51|Q, A (2.25)

=1
+lQ. A<||2+h||6||+hn«ss+1||+h2|m||+non) :

Az = —20-5Q, AntP,AC+R(00)Q,AC+O([An|+RIAC+ 75 Q,An]*  (2250)
+ 2 1QAR IS+ hllull+ bl [+ 101

PiAz = P,ACHO([[Q, Al + LB, Anl|+h AC|+ 2 @, An? (2.25d)
QA + RIS+ Al + Rl + 61

where Ay1 =7 —y, Azy =2, — 2z, R(eo) =1-bTA11, R() = 1~bTA-11, and
=bTA-1A-11. The arguments of Pl and P} are given by (y;,2,u,) with u, defined
by one of the alternatives described in Subsectzon 1.2.

Remark 2.3. Similar remarks to those in Remarks 2.2 hold.

Proof. The results of this theorem are a simple consequence of
Ay, =(1-bTA ' 1)An+(bTA ® I)AY +h6, ., , (2.26a)
Az =(1-bTA DA+ (BTAT @ )AZ 4 by, (2.265)
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and (2.14a,b). |

Finally we want to show that better estimates hold for the projected values.

Theorem 2.4. Additionnally to the assumptions of Theorem 2.3, including those of
Theorem 2.2 and Theorem 2.1, let us assume that B(2) holds and let us consider pro-

— o e

0=y, -y, — (k) (Y1 21,U1)A 0=g(®), (2-27a)
0 =§1 —§1_(fzku)(§1,21aa1)A ’ 0= 9(§1)+93+1 ’ (2-27b)
0 =2 —2z;—k,(y1, 21,01 )1t 0= (gyf)(glvﬁ%) ) (2.27¢)
0=% -2k, (9,2, %)8, 0= (gyf)(§1,?1)+0's+1 ) (2.27d)
0 = (gyy(f, f)+gyfyf+gyfzk) (gl’zl’;zl) ? (2'276)
0= (g,,(f, F)+g,fy f+9,F.k) (G1,7,8,)+0, 1, (2.27f)
with PO ‘ marche awves/
03+1 = O(h3) ’ 0;+1 . O(hz) ) 0g+1 = O(h) . (2-28)

Then we have the estimates
A%y = P,An+hf,PAC+O (] An +R2|AC+ 5 1Q,AnP+] QAR (229)
R RIS sl 412l + 00+ 10, 1)
A%, = P,AC+O(|1Q, An|+ hlLP, An| +hIACH+ 551, Al + QAL (2:290)
RSB8Pl 4 100+ 10, I+ )
£, = O ||An]|+ | PAC+hIQ.AC + 25 1@, AnlP + Q. AC? (2:290)

+ R[]+ RlI8 g |+l +Rll gy 1 1101+ 102 14 1642 1416542 II)

where AY, =Y, —,, AZ, =2, — %, AU, =8, —U,, and ©; s defined similarly to u,.

Remarks 2.4.

1) A crucial observation is that the terms ||8||/A2, ||8||/k, ||6]|/R, ||é]|, and [|x|| are not
present. The effect of the projections is to stabilize the numerical solution regarding
the influence of perturbations. The problem (II.1.1) is not ill-posed, because the
constraints (II.1.1d,e) are taken into account.

2) The above projections (2.27) correspond to the first projection procedure (1.11)
described in Subsection 1.3 which is also equivalent to the third projection proce-
dure (1.13) (see Remark 1.4). Concerning the second projection procedure (1.12),
identical results hold (see the comment at the end of the proof below).

3) If the function k of (IL.1.1) is not linear in % and if Av=v—v enters in the estimate
of Au,, then the O-terms O(h3||Av||) and O(h?||Av||) must to be added to (2.29a)
and (2.29b, c) respectively. This happens for example if for the computation of the
u-component the alternative (1.7) has been chosen with R(c0)#0.




Chapter III. PRK methods for semi-explicit index 3 DAE’s in Hessenberg form 67

4) Identical results hold for AZ, and A%, even if the y-component is not projected
onto g(y)=0.

5) If the function k of (II.1.1) is linear in u then the assumption B(2) can be omitted.

6) Similar remarks to those in Remarks 2.2 hold.

Proof. We begin with the estimate (2.28a). Analogously to the proof of Theorem 2.2
it is easy to show that

759() =559+ 1 38,00, )(m, )+ (2:30)
=1
3 ’ 1
S bapgyn) [ gy (1 (V=) (2 -0)dr - f(YnZi)+
i k=1
J ] .
Z bﬁjkgy(n)/o . (77+T(1/}—n)ac+7(zj_<)>d7'k(Yk’Zk,Uk)+
i, k=1 '
.
LY b / 0y (17w =) ) dr - (£(¥;,2) £ (Y 2)) -
Frk=1

With the help of C(1), C(1), and B(2) we get g(y; )= O(h®). We also have g(7; ) = O(h3).
From (2.27b) we can express A by

3= (/lgy (371+szku(g71,21,al)i)dr-f,ku@l,?pﬁl)) (g(zi)—g(?l)) :
0 (2.31)

Since 9(51) = Cj(h") too we get the estimate A=O(k3). We now use similar techniques
to those given in the proof of Theorem 2.2. Subtracting (2.27b) from (2.27a) we obtain
by linearization, using also ¥, —y, =O(h),

AT, =Dy +(£5, )51, 21,43 ) AN+ O(RY| Ay, | + A Az, [|+73 [ Ay ), (2:320)

0 =g, (y,)A%, +8,4, +O(Rl AT, [+ A% |I*) - (2.32b)
Inserting (2.32a) into (2.32b) gives
Al = ((_gyfzku)_lgy) (y19 Zq,Uy )Ay1+ (233(1)

C’)(h3[]Ay1]|+h3||Az1||+h3|]Au1||+||08+1||+hHA371||+||A@'1||2) ,
AY, =P, Ay, +O(®|| Ay, ||+ B3| Azy || +B° || Awy || 18,11 ||+ R AT, ||+ | AT, ||?) . (2.33b)

Depending on the definition used for the computation of the u-component, we can
estimate Awu, either by O(||Ay, ||+ ||Az,|]) or by O(||AU]||) (and possibly O(||Av|)).
Hence from (2.25a,b,c) we get the estimate (2.29a).

The formula (2.295) can be proved in a similar way. The estimates 2‘:1 -z, =0(h?),
E=0(h?), and Z, —z, =O(h) lead to

Ap = ((—g,f.k) 79, F.) (31, 20,u1 ) Az + (2.34a)
O(h?|| Ay, [|+h?[| Az, ||+ B2 || Aw, ||+ | AG |+ 16,4, | +RIAZ ||+ AZ %)
AZ, =P!Az + (2.34b)

O(R* | Ay | +1?|| Azy ||+ B2 || Ay |+ | AT, [|+ 1641 |+ RIAZ |+ AZ |17) -



68 Chapter III. PRK methods for semi-explicit index 3 DAE’s in Hessenberg form

From (2.25a, ¢,d) and the estimates for A%; and Au,; we get the result (2.29%).
The estimate (2.29¢) simply follows from (2.29a, b).

For the second projection procedure described in Section 1 we can prove identical
results (2.29) by rewriting

(Y1, 21+ k(Y15 21,9 +A)=k(y1, 21,%1)) = F(%1, z) = (2.35a)

1 1 1
/ f (yl, z1+n(f k (yy, 21,8, +T7A)dT - }‘)) dk - (/ k,(y1,21,%,+TA)dT - A) ,
0 0 o
1
k(yy, 21, +1) = k(Y15 21,u,) =/ k(Y1 215Uy HTH)ET - (2.35b)
0 e

and similarly for the “hat”-values. O

3. Taylor expansion of the PRK solution.

We consider one step of the PRK method (1.1) (always under the assumption
(1.2)) with consistent initial values ¥y =(yy,25,%g) at 2o satisfying (I1.1.2). The main
objective of this section is to calculate the Taylor h-expansion of the numerical solution
Y;,2; and to derive a result analogous to that obtained in Corollary I1.4.2 for the exact
solution of (I1.1.1).

The forthcoming analysis follows that of Chapter II concerning the exact solution
of (IL.1.1) and is similar to those given in [HaWa91, Section VI.8] and [HaLuRo89a,
Section 5] for semi-explicit index 2 DAE’s. In Definition 1.1 we substitute RY!,hZ} by
k;,£; in order to simplify the calculations below. Hence we obtain the new formulation

Y1 =Y% +Zbiki ) 2 = % +Zbiei ’ (3.1a)
=1 =1
k;=hf(Y: Z;) 5 ¢, =hk(Y;, Z,,U;) , 0=g(Y;), (3.18)
Y; =Y +Z a”k] ’ Zi = 2y +Z Ez:’f] . (3.10)
Jj=1 =1

Our aim is to compute the derivatives at =0 of y,, 2, k;,£;,Y;, Z;, and U; considered
as functions of h. Therefore the differentiations below are effected with respect to A.
From now on we suppose that this nonlinear system (3.1) possesses a unique solution
with (Y}, Z;,U,) laying in a neighbourhood of (g, z5,%,) (see Theorem 2.1 and Theorem
V.4.1). Hence for h=0 we have

Y;(0) = y,, Z(0) = z, U(0) =y, . (3.2)

For ¢>1 (3.1¢) yields

Yi(q) = Z a’ijkg'q)7 Z?I) - Zaijegﬂ (3.3)
j=1 j=]_

;_—
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and for =0 we get from (3.15)
(¢-1) (¢-1)
@0y = o[ #(Y.. 2. D(0) = o(k(Y.. Z..U.
KO0 =q(f(%2)) " |, £00 =k z0)) " | (34
The first two derivatives of f(Y, Z;) and the first derivative of k(Y,, Z,, U,) are given by
F(¥ 2)® =£,(Y,, Z)YV +£.(Y;, 2) 2 (3:50)
1Y 2)P =1, (Y, Z)Y, Y 426, (¥, Z)(VY, 200)4+ £,(Y, 2)Y P+ (3.55)
> fzz(}/;?Zz)(Z'fl)’Zz(l))-l_fz(Y;JZz)Z'EZ) ?
R(Y;, 2, U)®D =k, (Y, 2, UNYD + k(Y 2, U) 200 +5,(Y;, 2, U)UL (36)
From these above results we obtain successively for A=0 |
B (0) =(£)o (3.7a)
Yi(l)(o) = E a;;(fo » (3.8a)
j=1
£7(0) =(k), , (3.90)
Zzgl)(o) =Zaij(k)o ) (3.10a)
i=1
ED(0) =2 a;(f, o +2 ) 8;(£.k) (3.75)
j=1 j=1
Y®(0) =2E a;;a;,(fy o +2Z a;; 8 (k) (3.80)
Jrk=1 7yk=1
€2(0) =2 0k, Flo+2 Y a;5(k,k)o +2(k,)USV(0) (3.9)
j=1 7=1
ZEZ)(O) :22 @;;a:(ky fo +2Z @53, (k k) +2 Zaz‘j(ku)oU}l)(O) »  (3.100)
Jyk=1 Jyk=1 j=1
kgs)(o) =3Z a;;@;(fyy(fs F)o +3Z a;;8;,2(fy.(f k))o+ (3.7¢)
jrk=1 dke=1
3'22 aijajk(fyfyf)0+3'2z a’ijajk(fyfzk)0+
k=1 F k=1
32 @3, (f,.(k, k))o+3'22 @0, (fk,fot
Jk=1 jrk=1
322 a1._7’&_7k(fzk'yk)()_*_32 Zaz](fzku)OU](I)(o) ]
J k=1 g=lo
Y (0) =3)  a;;a;00;(fyy (£ o+3) . 05053852 fy. (F, 5))o+ (3.8¢)
Jakyi=1 Jik,l=1

——-
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5 22 a”ajkakl(f f Flo+3: ZZ a;; Jkakl(fyfzk)0+

Jrk,l=1 Jikyl=1

32 aijajkajl(fzz(k’k))0+3'22 ;85105 (f Ky ot

Fkyt=1 7y kl=1
X 33 gt yklo 8- 23 a3 (£k)0S0)
Jrk,l=1 SE=1

where the self-evident subscript 0 indicates that the arguments are given by (y,, Zg Ug)-

From the third equation of (3.16) we have for all g>1

*

‘ 0= g(¥;) @™ (3.11)
and for g=1,2,3 we get

0 =9(Y) , (3.12a)
0 =g, (Y)Y, ©(3.12b)
0 =g,, (V) (¥, YD) 49, (Y)Y . (3.12¢)

For k=0 inserting (3.2) and (3.8a,b) into (3.12) yields
0=(9)o - (3.13a)
U= E a:3(9yf)o » (3.13b)

0= Z azja’zk(gyy(faf))0+2z: a’zga’;,k(gyf f)0+22 a’zga'gk(gyf k)o : (3136) |

]’k 1 Jak 1 ],k 1

From the consistency of the initial values, the equations (3.13a,b) are satisfied for
every choice of the PRK coefficients. However, concerning (3.13c), using (gyy( £ )+

(9,fyf)o+(g,f.k)g=0 we obtain

:(ZZ @G5k — Z aij“ik) (9,f, ot
Jyk=1 7,k=1 5
(22 ;85— Z a’ija‘ik) (9,f.k)o » (3.14a)

Jrk=1 k=1
0 :< Z “ija'ik“22 aij“jk) (gyy(f7 f))o—i-
Jryk=1 7k=1
(22 a"J ik 22 azg“gk) (gyf k)o 3 (3 146)
3rk=1 J?k_
Z(Z “ij“ik—zz az’ja’jk> (95 (F1 ot
j’k=1 j,k:l

(22 'A“ia'%k—22 a‘ijajk> (9,Fyf)o - (3.14¢)

J k=1 k=1

R e LS.
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From the linear independency of the expressions (g,,(f, f))os (9,f,f)o, and (g,5.k),
which do not vanish in general, we must necessarily have that (recall that we want (3.1)
to be satisfied)

- Z a;;a;, = E ;a5 = Z a;;8 for ¢=1,...,s. (3.15)

J,k— Jrk=1 Jrk=1

Hence if the simplifying assumption C(1) is satisfied, then we see the necessity of C(2)

and CC(2) to be satisfied too. These conditions are exactly those used in Theorem 2.1
and Theorem V.4.1 to show the existence and uniqueness of the PRK solution.

Now we want to compute the values Ui(l)(O). For ¢=4 (3.11) reads

0= g(Y;)® = g,,, (Y)¥®, Y, Y430, (V) (Y, Y P) 49, (V)Y . (3.16)

Inserting the derivatives of Y, for A=0 given in (3.8) yields

0= Z a’ija’ika’il(gyyy(f’ fif))ot QZ aijaika’kl?’(gyy(fa fyf))o‘*' (3.17)

Jrkyl=1 Jk,l=1

.'LZ ;30:,85,3(9,,(f, £.5))o +3Z a;;0;405(9, Fo (F5 F))o+ X

Jik,l=1 Jik,l=1

32 “ij“jkajzz(ggfyz(fak))o+3'22 a;;0;1.05(9, fy fy Fot

Jik,l=1 Jkyl=1

3'22 ;30 811(9y fy F2K)o +3Z ;585 8;1(9, f, (K, k))o+

Jik,1=1 Joksl=1

3'22 aijajkakl(gyfzkyf)0+3'2z a;;G;,8r(9, f ey k)o+

Jok,l=1 Jik,1=1
- 1
323 a;85(9,F,ku)eUL"(0)
7k=1

By hypothesis the matrix (g, f,k,), is non-singular. Thus if the matrix A= AAdis

invertible then we can obtain the values Ui(l)(O) from the previous formula and we get

o) =L ;; wi505385105m (=0, F.B ) 040y (s o F))ot (3.18)
J, =
_lgj,kzl_ W;5055050,,3((—9, k)™ gyy(f’f ot
i2 kgl: w’JaJkaJlalm?’(( gyfzku) gyy(f’fk))
doksl=
_3%3 0350510010k (= 9y F.R0) 20, Fy (2 F))o+
k=1
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1 2 . ‘ -1
ﬁgz wijajkaklakmz((—gyfzku) gyfyz(f’ k))0+

k=1
_3 ZZ w;;a Jka'klalm((—gyfzku)_lgyfyf'yf)o+
Jyk,l=1
—3 22 wz] ]ka‘kla’lm(( gyfzk‘u.) gyf f k)o
],kl 1
_32 wzja;]ka’klakm(( gyfzku) gyfzz(k k))0+
],kl 1
3. 23 22 w'LJa’Jkaklalm(( gyfzku) gyfzkyf)o
dyk,l=1
3. 23 22 wzJa’Jka‘kla’lm(( gyfzk'u.) gyfzkyk)o 4
Jrkyi=1

This result can then be inserted into (3.10b) and (3.8¢) to give the exact expressions of
Zgz)(O) and Y-(s)(O) (these easy calculations are left to the reader).

Before giving general formulas for the derivatives of k;,¢,,Y,,Z;, and U; at h=0,
we first need the following definitions:

Definition 3.1. For each tree in (L)DAT3 U {0,,0,,0,} we define recursively the
rational numbers v by

a) 7(0,)=1, 7(0,)=1, 7(0,)=1, 7(ry)=1, 7(7.)=1;
b) ()= o(t)¥(t1) -+ - A(En)¥(v1) - ¥(vn) HE=[t1s e tn, 015 1Vn)y €(L)DAT3, 5

¢) ¥(v)= 0(@)¥(t1) - - At )Y (v1) - ¥(0R)(w1) - (1)
L O=tyyenerlyVgseeesVpaliyse--sUpl, E(L)DAT3, ;

¥ m? *2¥n?

1

) 1) =G aEm=n -

Definition 3.2. For each tree in (E)DAT3 U {0,,0,,0, } we define recursively the

expressions ®; depending on the coefficients of the matrices 4,4, and Q (4 = AA is
supposed to be invertible) by

-(En) ifu=[t;,...,tnle €(L)DAT3,

a) &,(0,)=1, &,(0,)=1, &0,)=1, &(r)=1, &(r.)=1;

b) &)= Y. a, oo Bin By - 8y, 8, (1), (tn)8,,(v1) .- 8, (v,)
;1;11,,.":#:: ft=[t, .. b, V5--- ,'vn]y €(L)DAT3, ;

-,
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) B(v)= D a4y ...0; By .8y 0, (4)... 8, (tn)X
Klyeesbm
V1o y¥n le (vl) e Qu.,,, (vn)éi(ul) s @i(up)
if'vz[tl,... by U1y ey UpyUyyeeesty], €(L)DATS, ;

¥ m?

d) @1.(“) = @ Jﬂm ;,Ll (t ) p,m (tm)
Jrllseeetim
lfu_[tlﬁ"', m]ue(L)‘DAT3u

The summation indices in b), c), and d) take their values in {1,...,s}.
We are now able to formulate a general result: )

Theorem 3.1. Under the assumptions of Theorem 2.1 (with consistent values ¥, =
(Ygs 20> Ug) Gt To), the qth derivatives for g>1 at h=0 of k;,£,,Y;, Z;, and U, satisfy

ED(0) = Y 4(1)8,F()(¥) = D et)r(®)®;()F()(L,) (3.19a)

teLDATS3, t€DATS3,
o(t)=¢ e(t)=q
0 = T 1)) FE)(T) = Y a(@)1(2)8,(2)FE)(T,) , (3.195)
vELDATS, v€DATS,
o(v)=¢ e(v)=¢

v90) = (t)z% JOF)(,) = (3.19¢)
teLDATS, =1
anea Za(t)v(t)za,J LOF((Y,)
e

z00)= > v(») Za” J(@)F(0) (L) = (3.19d)
vELDATS, i=1

e(v)=q z O’.(’U)‘)’('U)ZCL,U J(’U)F('U)(‘IIO) ?

vE(D;lTS
UP0) = > 1w wFu)(¥)= Y a(u)r(n)®(u)F()(¥,) (3.19€)
R s

where the coefficients a are those of Definition I1.4.2.

Proof. Two proofs are given. The first one is similar to that of [HaWa91, Theorem
VI1.8.6] and is long. The second one only makes use of DA3-series and is short.

A first proof. The case g=1 follows from (3.7a), (3.8a), (3.9a), (3.10a), and (3.18).

For the general case one has to make use of formulas (3.3), (3.4), and (3.11). The
total derivatives of f(Y}, Z,), k(Y;, Z;,U,), and ¢g(Y;) can be computed by Faa di Bruno’s
formula (see [HaNgWa93, Lemma 11.2.8]) leading to

(f(Yu Zi))(q—l) _ Z om+nf(Y,, Z;) (Y_(m)7 N ,Y'i(ﬂ'm), Zzgvl), o Zg"")>

Bymdz" 8
SLDAT3,,,

(3.20a)
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with p,+. .. A+, +.. 4y, =¢-1,
(g—1)
(k(YiaZi,Ui)> =

omtrtek(Y., Z.,U. > " . ©
D k(Y;, Z;,U) (K(m),._.,yi@m),zzg DLz gt uS ,,))

(3.200)

SLDAT3. ., Oy™ oz 0uP
with gy 4. ..+ +n+.o R+ K, =0—1, and
0= (g(y;.)) = 3 —5:11—;‘_(}/;(“ NN 25 )) (3.20¢)

SLDAT3.,,

with g, +...+#,, =g—1. The summations in (3.20a, b, c) are over sets of special labelled
DAT3-trees of order q. These trees are completely similar to those of LS, described in
[HaNgWa93, Definition I1.2.7] and they can be characterized more precisely as follows:

a) they are made of triangular vertices; the order of a (sub)tree is given by the number
of such vertices;

b) they have no ramifications excepted possibly at the root;
c) they are monotonically labelled trees, e.g., with the labels of I={i<j<k<...};

d) atreetisin SLDAT3,  ifitis of order g, if its root contains a meagre vertex, and
if the vertices directly linked to the root contain a meagre vertex or a cross (no fat
vertices); for a tree t=[t;,..., ¢, 01,--,V,)y, ESLDAT3, the integers p; and v;
in (3.20a) are the orders of ¢; and v; respectively;

e) atree visin SLDAT3, , ifitis of order g, if its root contains a cross, and if the
vertices directly linked to the root contain a meagre vertex, a cross, or a fat vertex;
for a tree v =[t;,...,8,, V150 3 VpyUgye-- ,'u.p]z € SLDAT3, , the integers p;, v;,
and &, in (3.20b) are the orders of ¢;, v;, and u; respectively;

f) a tree u is in SLDAT3, , if it is of order g, if its root contains a fat vertex, and

if the vertices directly linked to the root contain a meagre vertex (neither crosses,
nor fat vertices); for a tree t=[t,...,t,], € SLDAT3, , the integer p; in (3.20¢)
is the order of ..

We give below three examples of special labelled DAT3-trees (their corresponding ex-
pression is mentioned)

g PN
p
4 84
-——aygz’;uz (Y:,2:,U)(¥ D, 29 .U uM) 9(¥) #(Ye)(Y.-‘z) Y12y vy
Figure 3.1.

With these preparations we are now able to pursue the proof. The formulas (3.3) can
be inserted for =0 into (3.20a, b, c) giving for ¢>1 with the help of (3.4)

gminf - D03 S =
kgq)(O) =q Z (W>o (Z aijkgﬂ )(0), ey Z aijkg-"b )(0), (3210)
. j=1

SLDAT3,,, i=1

. SN
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3,670, 320,670)
j=

(@ /py _ gmtnirk (w1) (1m)

£20)=¢ Y ( Sy ), Z%k;‘ (0),.. Za”k]“ (0), (3.21%)

SLDATS,
Zzé“)m),...,Zz,zi"“m),
j=

j=1

Uf*l’(u),...,Uf“r)(o)) ,

0= > (g—:n%)o (Z () Zamkg“m)(ﬁ)). (3.21c)

SLDAT3, i=1

We rewrite (3.21c¢) in the form

0_(gy)02ank§q oy+ Y (g%)o (E a;;k59(0), ... Za”ky‘m)(o)).

SLDAT3. 4 i=1
m#El

(3.21¢)
In this formula we are not interested in the cases ¢ =1,2,3 which have been analyzed
before (see (3.13a,b,c)). Inserting (3.21a) (with g replaced by g—1) into the first term
of (3.21¢) gives

st AWAS . ~_
0=(g-1 Eau (900 (aymazn)o (kZajkki“ )(0),...,;ajk£§c )(0)’---)
=1 =1

SLDATS,,
+ Y ( )(Z ka§“1)(0),...> (3.22)
SLDATS3, j=1
m3#£1l

which can be rewritten

0 =(g—1) Z a;; Gy - (gyfz)oegcq—Z)(O)_i_ (3.23)
jak—
- 1)2a @ 3 (T (S 6k 00), ., 3 3,600(0), ) +
ij y/0 aymazn 7™k yr ey kR y i
SLDAT3y,4-1 0 Ne=1 k=1
(m,n)#(0,1)
3mg - (p1)
> (57), (Zasr o).
SLDATS,,q j=1
m#1l

Another insertion of (3.21b) (with ¢ replaced by g—2) into the first term of (3.23) yields

0 =(g—1)(g—2) ) a;;@; - (9,F.)0 X (3.24)

Jrk=1
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am+n+pk . 1 . - ~ vi K
Z (W) (2 akzkgﬂ )(0)’ SRR Z a'kleg )(0), ceey U}E 1)(0), . -)-i-
SLDATS, q-2 y v e \1=1 =1

(- 1)2% EOND S famic 1y (Zajkki““(o»...,;ajkei"”(m,...)+

SLDATSy,q-1 0 ‘p=1
(m,n)#(0,1)

amg - (#1)
> (22 (Seko
SLDAT3.,q4 0 Ni=1
m#1

which can be rewritten

0=(g-1)(a-2) ai;8; - (g, Fku ) ULV (0)+ (3.25)
Jik=1

(g—1)(¢—2) Z a;;85 - (9yf )0 ¥

Jrk=1

——Bm-l'n-i-pk 1 [} K
2 (8ym8z"6up> (Z aklk(“ )(0)’ Z klzg )(0)’ ) UIE 1)(0)’ . ) +
0

SLDATS, 42 =1
(m,n,p)#(0,0,1)

amtn s
(- 1)Za,, ) (aymazf,,)o (et

50, )+

SLDAT3y,4-1 k=1
(m,m)#(0,1)
> (57), (oo
SLDATS, 4
m#1

As the matrices (gy f.k,), and A = AA are supposed to be regular then we can extract
the values Ui(q_s)(O) for ¢>4 from this formula, yielding

U(0) = (3.26)
—————-(q 1)(g—2) Z w;8ik 8 * ((_gyfzk-u,)_lg fz) X
@2 | 2 s oF)a
gmtntok :
A S (p1) = p(v1) (k1)
Z (aymaznaup)o (Z_ a’lmkm1 (0)""7 Z_ a’lmeml (0)""’Ul (0),)+
SLDATS,,,q_z =1 m=1

(man,P)'f‘(o ,0,1)

(q 1)szga’ﬂe (( gy.fzk-u,) gy)o

gmtnf (b1) ~_ (m)
2 <3ym3z")o (,z_;a“k (©):-- ;“"‘z‘ (O )

(g— 1)(q 2)

SLDAT3,4-1
(msn)'_)é(o’l)
1 i —f omg - (w1)
T AN 9) wij(_gyfzku)o Z (— Zajkkk (0),...) .
(¢-1)(¢-2) = sipats, 2™ /o i3
m#1l

—
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From the formulas (3.3), (3.4), (3.21a,b), and (3.26) we obtain, by induction on ¢ and
exploiting the multilinearity of the derivatives, the following results

ED0) = 3 Bn()@.()F()(T,) , (3.27a)
e

£20) = Y Bloyy(v)®,(0) F(v)(E,) , (3.276)
ey

0= Y 80 'r(t)zaw SOFR)(T,) (3.27¢)
t€DATS3,
o(t)=q ;

zZ00) = Eﬂ(vh(v)za” ()F()(L,) , (3.27d)
iy

UP0) = Y Blu)y(w)®,(u)F(u)(Z,) (3.27¢)
=1

where the integer coeflicients 8 count the number of times that each elementary differen-
tial appears. It only remains to show that these coeflicients are equal to the coefficients
a of Definition 11.4.2. The important fact is that these coefficients 3 are independent of
the choice of the PRK method. The trick is now as follows: we consider a RK method
(aij ='dij) with an invertible matrix 4, e.g., a Gauss method, satisfying C(n) with 5
arbitrary high (we do not use the letter ¢ in order to avoid a possible confusion). From
[HaLuRo89a, Lemma 6.3] (see also Theorem 4.2 part a)) the internal stages of this
method are known to satisfy (we point out that the order conditions described in the
next section cannot be used at this point)

Yey(zgtesh) = OB, Zz(zgte;h) = O(R7), Usw(zgtesh) = O(R"™) (3.28)

where (y(z), z(z),u(z)) is the exact solution of (II.1.1) passing through (y,, z,,%,) at
z,. On the other hand one can easily show with the help of C(7), as in the proof of
Theorem 4.2 below, that the coefficients of this method satisfy the following relations

(1) Za” ®.(t) =¢f o(t) for all t € DAT3, such that o(t) <7, (3.29q)

v(v) Z a;;®.(v) _Ce( 2 for all v € DATS, such that p(v) <n—-1, (3.29b)

y(u)®,;(u) =cf(u) for all w € DAT3, such that p(u) <n-2. (3.29¢)
Hence if 7> g+2 holds for this method then we get from (3.27¢, d, e)

Y{20) =< S BF(E)(T,) (3.300)
ey

ZP0) =ct Y B0)F(v)(T,) (3.308)
ety
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UP0) =c? 3 Bw)F(u)(¥,) - (3.30¢)
=

Concerning the derivatives of the exact solution, from Theorem 11.4.1 we have

y(zy+c;h)? i =c ) o) F()(T,) 5 (3.31a)
t€DATS,
e(t)=¢

2zyteh)P|  =ct > a(v)F(v)(T,) (3.31b)
h=0  eDaTs,
e(v)=q

u(zg+eh) @) =c Y a(w)F(u)(¥,) - (3.31c)
=0 'u.E(D‘)ATS,,
e{u)=q

Using the estimates (3.29) for n>g+2, we deduce that the above derivatives (3.30) and
(3.31) must coincide. Thus from the linear independency of the elementary differentials
(similarly to [HaNgWa93, Exercise 11.2.4]) we get the desired result 3=c. An alternative
way of showing this result is by application of similar arguments used in the proof of
Lemma I1.5.1. We do not write all the details. For example in (3.21a), to each tuple
(T, Ty, -y Trgs Vise-os V) with T € SLDATS,, Ty,..., Ty € LDAT3,, V,...,Vy €
LDAT3_, D\(T)=A{Ty,-- s TparsVis--o» Vit o(T)=0(Ty), .- e(Vy)=0o(V n), there
corresponds a unique m.l. tree T=[T},...,Tpp, V3, -+ o, Vnl, ELDATS, and conversely.
We illustrate this fact on the following example

Ja 8 Je ka ks e

Ty XV
Figure 3.2.
Each m.l. tree appears exactly once, thus we get the desired result.

A second proof. By Theorem I1.5.5 the expressions k;,Y; are DA3,-series, £,,Z, are
DA3 _-series, and U; are DA3, -series

k; =DA3y(kia‘I’o) ’ Y, = DA3y(Yi,\I’0) )

?

3.32

Z; =DA3,(L;, ¥,) , Z; = DA3,(Z;,%,) , U, = DA3,(U;, %) , ( )
with coefficients satisfying

k(0,)=0, Y;0,)=1, Ly0,)=0, Z0,)=1, uU;0,)=1, (3.33)

and

k,(t) =o(t)Y;(t;) - Y, (t,)Z;(v1) - Zi(v,)

<_—
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Y,(t) = Z a;;k;(1)

L;(v) _Q(v)Yz’(tl) Y ()2 (vy) - Zy(0,)Us () - Uylyy,) (3.34)

Z,(v)= Zaz’ij(”) )

0=Y,(t,)---Y;(t,)—(o(u)+2)(e(z)+1) Z a;;d;, Up(u),

Jk=1

fort=[t;,..., 80,01,y V], EDAT3,, v=[t1,.. . 0,015, Vg Uy, .., U], € DATS,,

Y Ym?? Y m? T ¥no
and u=[t,,...,t,],€DAT3,. ,*, O
For the numerical solution y,, z,, an easy application of the preceding theorem yields:
Theorem 3.2. Under the assumptions of Theorem 2.1 (with consistent values ¥ =

(Yg» 29> Ug) 0t z), the qth derivatives for ¢>1 at h=0 of the numerical solution y,, z,
satisfy

w20 = Y 7(t)2b (OF()(T,) = Za(t)‘r(t)zb (DF()(T,), (3.35a)

teLDATS, =1 teDATS, =1
o(t)=¢g e(t)=q
£20)= Y 1) Zb (FE)(T)= 3 a(v)‘)’(v)Zb (v)F(v)(T,) . (3.35h)
vELDATS, =1 2€DATS,
e(v)=¢ e(v)=g

Hence the Taylor ezpansions at z, are given by

he
¥ =Yt >, e ),7(75)26 {(OF()(¥, )— (3.36a)
teLDATS, i=1
t€DATS,
he
5 =5+ ) o(o ),‘Y(v)zbﬁz(v)ﬁ’(v)(‘l’ )— (3.360)
vELDATS,
2t ) a(v) ),‘Y(v) ZME(V)F (2)(Ts) -
" veDATS,
Proof. From (3.1a) we get for ¢>1
%(0) = Z bk(0), 570 = Z bLi(0) (3.37)
Thus the statement of this theorem is an immediate consequence of (3.19a,b). |

In the same way, for the u-component we easily obtain:
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Theorem 3.3. Under the assumptions of Theorem 2.1 (with consistent values ¥y =
(Yg» 295 Up) @t o), the gth derivatives for ¢>1 at h=0 of u, given by the choice (1.7)
satisfy

W20 = Y (u>§j byw;;® ;(u)F(u)(¥y) = (3.38)
u€ELDAT3, i,j=1
“elwr=g T a3 by ) F)(T,) -
e b

Hence the Taylor expansion at z, is given by
he(w) 2

ol :u0+ Z (u)z bz ij (u)F(u)(‘I’O) = (339)

7
|
w€LDAT3., ( ) 1,7=1

he( ) 2
u0+ Z a(u ('U,)Z bz 1_7@]('“ F(u)(‘I’O)
u€DATS3, 1,5=1
For the choice (1.9) the coefficients w;; have to be replaced by ©;;. a

4. Local error and order conditions.

In this section we first give necessary and sufficient conditions for a PRK method
to attain a certain order in the local error. With the help of the simplifying assumptions
introduced in Section 1, we then show optimal estimates for the local error of methods
satisfying the simplifying assumption {5). In this section we suppose that the matrix

A=AA is invertible and that the nonlinear system (1.1) possesses a unique solution.

Definition 4.1. The local error of one step of a PRK method (1.1) with consistent
initial values ¥y =(y,, 2,4, ) at , is given by

dyp(2) = y1—y(@gth) , 624(z0) = z1—2(2o+h) , Sup(z,) = uy—u(zo+h) (4.1)
where ¥(z)=(y(z), z(z),u(z)) is the exact solution of (IL.1.1).

A comparison of Theorem 3.2 with Corollary I1.4.2 gives:

Theorem, 4.1. For the PRK method (1.1) with an invertible matrizc A= AA we have

Syn(zo) = O(R*™) = Zb i(t) = )

for all t € DAT3, such that o(t) < p ,

(4.2a)

8z, (zo) = O(R"T?) Z b,8,(v) =

- - (v) (4.2b)

for all v € DAT3, such that p(v) < v

b____*
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where the coefficients v and ®, are given in Definition 3.1 and Definition 3.2 respectively.
For the definition of u, given by (1.7) we have

Suy(zg) = O(B™) sz w8 ;(u) = (1u) (4.2¢)

,j=1
for all w € DAT3, such that p(u) < & .

For the choice (1.9) the coefficients w,; have to be replaced by ;. O

Applying repeatedly the definition of ®; in Definition 3.2 we get the following
algorithm: A

Formation of the left-hand side of the order condition for a given tree.
To each vertex we associate one distinct summation index, excepted for a fat root

to which three distinct indices are associated. The left-hand side of the order condition
is then a sum over all present indices of a product with factors:

1) b, if “s” 1s associated to a meagre root or a cross root;

2) byww;,  if “4,5,k” are associated to a fat oot (for the choice (1.7));

3) a;; if “3” is associated to a meagre vertex laying directly above “:”;
4) a;; if “5” is associated to a cross laying directly above “i”;

“ ”

5) if “5” is associated to a fat vertex laying directly a.bove

For the choice (1.9) the factor w;; in 2) has to be replaced by @;;. If the condition C(1)
is satisfied then for a terminal meagre vertex, the factor ¢;; in 3) can be changed into
¢;. Similarly if the condition 5(1) is satisfied then for a terminal cross the factor @;; in
4) can be changed into c;.

The coeflicients 4 of Definition 3.1 entering in the right-hand side of the order
conditions can be computed in a similar way.

Ezample 4.1. We suppose that C(1) is satisfied. The order condition of the tree on the
right-hand side of Fig. I1.3.3 is then given by

3

1 1 1 \7!
3
Z bw tkcka’klalm mncn=(5'ﬁ'5—.2‘3'2'ﬁ) =24.
i,J,k,l,m,n=1

As Q=(AA)~* =WW this expression can be reduced to

E bzw” 1kck =24 .
3,5,k=1

This simplified order condition is also exactly that corresponding to the tree situated
on the left of the considered tree in Fig. I1.3.3.

The simplification shown in the above example can be applied systematically lead-
ing to the following result:
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Lemma 4.2. If a DAT3-tree possesses a strict subtree of one of the following forms
[u],], withuw € DATS,, ([¢],], witht € DAT3,, [[v],], withv € DAT3,

then its order condition is equivalent to that of a tree of the same order, but with fewer
fat vertices. O

Consequently trees satisfying the above assumption need not to be considered for the
construction of PRK methods.
For the important special case where the function k of (I.1.1) is linear in u, i.e.,

!c(y,z,u)zko(y,z)—}-ku(y,z)u . (4.3)

the order conditions of trees possessing a subtree of the form

[tl,...,tm,'vl,...,'vn,ul,...,up]z with p>2,

need not to be considered too, because their corresponding elementary differential van-
ishes identically (since k,, =0). An important class of problems satisfying (4.3) are
constrained mechanical and Hamiltonian systems in index 3 formulation (see Subsec-
tion 1.4.1).

" The simplifying assumptions introduced in Section 1 are of great importance in the
study of the local error. They allow to reduce the order condition of a given tree to
other order conditions corresponding to “simpler” trees. From now on we adopt the
conventions that a square vertez stands for a meagre vertex, a cross, or a fat vertex,
and a triangular vertez for a meagre vertex or a cross.

Hereafter ¢,; and ¢; stand for arbitrary expressions. From the simplifying assump-
tion C(q), we have '

. 1
Ebigoijajlc;‘ 1= % Zbicpijc? for k=1,...,q. (4.4)

Hence in Fig. 4.1 the order condition of the tree on the left-hand side is implied by that
of the tree on the right-hand side.

k-1

Figure 4.1. Reduction by C (9)-

Similarly we have from c (9)

-~~~ — 1 -~
Zbigaijajlcf 1= % Z bigaijc? for k=1,...,7. (4.5)

| \
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Figure 4.2. Reduction by C(3).

From ICC(Q) we get

Z bigoi.,-a‘.:ﬂcfc =k(k-1) Z bigoz-jc;‘?'z for k=2,...,Q. (4.6)

Figure 4.3. Reduction by IC@(Q).

For the simplifying assumption D(r) we have

Db a0 = : D biej =D bicie; for k=1,...,r.  (47) il
) i

Hence in Fig. 4.4 the order condition of the tree on the left-hand side is implied by those
of the two trees on the right-hand side.

T T T S i T .

AP — ond

Figure 4.4. Reduction by D(r).

Similarly we have from D(7)

Zbicf_lﬁijgoj _ 1 ijcpj — ijcftpj for k=1,...,7. (4.8)
k
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Figure 4.5. Reduction by D(7).

If ID(1) (or equivalently D(1)) and (S) are satisfied then I DE(R) can be rewritten

IDD(R): ) bk d_szw,ﬁk(k 1)bck—2 —k$,,
i=1

i=1

for 1=1,...,s, k=2,...,R,

where §; is the lth-component of the vector e, =(0,...,0,1)T,i.e., §,=0if [#s, else
§,,=1. From IDD(R)-D(7)-(S) (7>1) we get the relation

o 1
Zbici 1G4 ctwp; = (m903+n(n 1)21710 - (4.9)
(metn)mbn—1) 3 bl

for 1<m<7and m+n<R.

For m+n=1 and n <1, the terms (m+n)(m+n—1) 3. b, ™ 2p, and n(n—1) 3" b,c] "¢,
in (4.9) have to be respectively removed. Hence the order condition of the tree on the
left-hand side is implied by those of the trees on the right-hand side.

; nyz f‘[ miay 2
n-2
-~ min-2 a
and ... @ and % and

Figure 4.6. Reduction by IDD(R)- D(7)-(8) (F>1).

We clearly see that the three above reductions allow to reduce the order condition

corresponding to a certain tree to other order conditions corresponding to trees with a
smaller height which is defined as follows:

Definition 4.2. The height of a tree we (L)DAT3 U {0,,0,,0,}, denoted by H(w), is

defined recursively as follows:
a) H(0,)=0, H(0,)=0, H(0,)=0, H(r,)=1, H(r)=1
b) H(t)=1+max(H(t)s- o Hlt)s H(oy), . H(0,))

Rieo . . -gaebu - e . . I
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ifi=[t;,... 80,01, .-, 0,], E(L)DAT3,;
c) H(v)=1+max(H(t,),..., H(t,), H(vy),..., H(v,), H(uy),. .., H(u,))
Ho={t, sty ViseeesVpsty,e. o u,], €(L)DATS,;
d) H(u)=1+4+max(H(t,),...,H(t,,)) ifu=[ty,...,t,,].€(L)DATS,.
Ezamples 4.2.
1. The height of the tree on the left-hand side of Fig. I1.3.3 (or Fig.4.2) is equal to 6.
2. That of the tree on the right-hand side of Fig. I1.3.3 (or Fig.4.2) is equal to 3.

Here is the main result of this section:

Theorem 4.3. I

a) Let us suppose that the PRK method satisfies B(p), C’(q), C(q), with ¢> 2 and
§>1, and that the matriz A= AA is invertible. Then we have

5yn () =O(RTIPOTHITYY | P (24 h)Gy, (z,) = ORI (4104)
62, (2g) =O(RPREA1DIL) | P (2, +h)82,(z,) = ORI+ (4.105)
buy(zg) =O(hmin(P’q_2’?—1)+1) (for the choice (1.7) or (1.9)) (4.10¢)

where P, (z), P,(z) are the projectors (1.14) evaluated at ¥(z)=(y(z), 2(z),u(z)),
the ezact solution of (IL.1.1) at =.

b) Moreover, if in addition CC(Q), D(r), D(7), DD(R), and (S) hold, then we obtain
(i C(l} et ﬂ,u 1«#1&!"« CC(Z))
6y, (o) =O(R**Y),  with (4.11a)
k =min(p,2q+2,29+2,9+r+1, q+r+1 2Q0-1,Q+7,Q+R) , s,
P,(zy+R)bz,(2,) =O(REHY),  with e, ficre (a118) X |
£ =min(p,2¢+2,24+2,¢+7r+1,3+7+1,2Q -2,Q+7,Q+R) .
qri‘fz’ (fff-r«rz_ X i
Remark 4.1. If the function k of (I.1.1) is linear in u then the assumptions ¢>2 and
g>1 can be omitted. The estimates (4.11) change to

qtite arrez x
k = min(p,2¢+2,29+2,9+7r+1,7+7+1,2Q,Q+7,Q+R) , (4.11%a)
¢ = min(p, 2¢+2,2¢+2,¢+7+1,3+7+1,2Q—1,Q+7,Q+R) . (4.11'0)  y |

qrite, Freve

Proof. The results of part a) can be obtained as in the proof of [HaLuRo89a, Lemma
6.3] or alternatively with the same techniques used in the demonstration of part b).

Part b) remains to be demonstrated and we first deal with the estimate (4.11a).
The proof of this result is by application of the simplifying assumptions (as described
above) to the order conditions of D AT3, -trees of order less than k:

- We first apply repeatedly the three reductions given by C(q), €(§), and ICC (@);
- We then apply repeatedly the reduction given by IDD(R)-D(7)-(S) (F>1);
- We finally apply repeatedly the two reductions given by D(r) and ﬁ(?)

[ 4

;
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The value of k follows from the “first worse” order conditions which cannot be
reduced with simplifying assumptions. These order conditions correspond to the “first
worse” trees which are of the following forms (their corresponding order is mentioned)

2q+3 - 2Q 2Q0+1
Q+] )

A o
¥

mam?\umf‘i ;?ﬁ . Ra
i r”b i}:ﬁ

N/" &}

(’"—r{13 11;"’3

L Qtrv 2 } 2
pot G AT
wﬂ]

3
3

A
R+ER+1 | grenny, melard
Figure 4.7. The “first worse” trees for the y-component.

An easy calculation shows that ¢-+g+3>min(2¢+3,23+3), ¢+Q+2>min(2¢+3,2Q),
and §+Q+2 > min(2§+3,2Q). After the above reductions, all order conditions that
remain to be satisfied are those corresponding to the “bushy” trees (of order less than

e é
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k). They are given by 35_, b;ci™! = 1/5 (with j <k) and by B(p) they are obviously

satisfied. This achieves the proof for the estimate (4.11a).

However, the second estimate (4.115) is much more difficult to prove. The results
on DA3-series of Section II.5 will be used in a crucial way. The first idea is to develop
the local error of the z-component, not at z,, but at z,+h. We get the DA3_-series

zy—2z(zy+h) = DA3 (a,‘I’(zo—i—h))—z(zo—I—h)

= Z a('v) o0 )'a('v)F v)(¥(zo+h)) -

vEDATS,

(4.12)

The coefficients a(v) remain to be found. From Theorem 3. 2 the Taylor expansion of
z, can be written in a DA3,-series

2, = DA3,(®,¥(z,)) (4.13)

where ®(v) =~(v)®(v) with ®(0,)=1 and for a tree v€ DAT3, ®(v)=3._, b;®;(v).
On the other hand with the help of Example I1.5.1.2 and formula (11.5.23) we have

2, = DA3_(a, U(zy+h)) = DA3,(a, DA3,(p, ¥(z,))) = DA3,(p xa,¥(z,)) . (4.14)

Hence the relation pxa = ® holds. Since by Theorem I1.5.4 the D A3-series with the
composition law given by * of Definition 11.5.10 form a group, we get a=p~1%®. As
p—1! is simply given by p_, of Example I1.5.1.2, we obtain

a(®) =p_y*B(o) = ——< 3 %:) (9("’))§(s @) ] pos@) (4.15)
=p_, = =5 p p P, :

labellings of » \ j=0 wed;(v)

Because of

H p_,(w) = H (_1)e(w) - (_l)zwed,-(v) el«) - (_l)e(v)-—j - (_1)9(v)+j (4.16)

wed; (v) wed;(v)

and
o(»)
0=(1-1)¢™ = Z( 1)1( (”)> (4.17)

we arrive at

o(o e(v)
a@):%(-l 3 (Z( 1)1(9( )) (7(sj(v))§(sj(v))~l)) . (418)

labellings of v \ j=0

The main idea is to show that for all trees v € DAT3_ which are not of the form [u],
with v € DAT3,_, i.e., for which F(v) # k,F(u), we have a(v) =0 if g(v) < £ (with
£ given by (4.11b)). This will give the desired result since the remaining trees are of
higher order or satisfy v=[u], with u€ DAT3,, implying that P,F(v)=P,k, F(u)=0.

Now we consider a tree v € DAT3_, v # [u], with u € DAT3,, satisfying o(v) < 4.
We can suppose that g(v) > min(p,q,3+1)+1, because we already know by (4.105)
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that a(v)=0 for all trees v of order g(v) <min(p,q,g+1). We first recursively simplify
the terms v(s;(v))®(s;(v))—1 in (4.18) by repeated application of the three reductions

given by C(q), é(q), and IO@(Q). The order conditions reduced by IDﬁ(R)-ﬁ(?)—(S)

(¥>1), D(r), and D(7) to those of the bushy trees can also be eliminated. But a linear
combination of various terms of the form

e(v)—m
IO EIL GAe) [CCALICARRY (4.19)

=0 2 vl)

remains, where m = p(v,) = o(u)+1, ®(v;) = ;_, b;ci®;(u) with u € DATS3, satisfying
o(x)> min(Q—1,q,§+1), o(v;) =m+1, and ¥(v;) =7(vy)(m+1)/m. In general several
trees u exist which are not.reducible by C(q), C(3), and ICC(Q). The coefficients
p,(v;) count the number of times that its multiplicand in (4.19) appears in the sum
(4.18) after reduction by C(q), C(3), and I CC(Q). For u fixed we have the relations

o (v;) = (™1} 7)1, (vy) which are related to the number of labellings of v. The term
corresponding to =0 can be isolated in (4.19) giving

e(gm (a0 (8 (o0 0-1)  + o
o) () (02 00)-1)
Since we have the relation (see (4.17))
1=— g(gm(—1)’ (9 (”)l—m) , (4.21)
(4.20) can be rewritten

(57 (40 (rowe 1) |

It is easy to show that

(") ) - (™) () =G oo, n) 02

hence (4.20) can finally be rewritten

m(vo)g(jz):;m(—l)m“( elv) )(v(vo)(@<vl)—<1><vo>)+—’—). (4.24)

l, o(v)—-m-1Il, m m1

S,
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Now we will show that the expressions v(v, )(®(v;)—®(v,)) +1/(m+1) in (4.24) vanish.
With the help of IDD(R)-ID(1)-(S) we obtain for [>2

1(30) (2(2)~8(20)) +

8 s l
= (@) (Z biciwi; @ D biwij‘t"j) il

t,j=1" 3,5=1

2,J=1 3=

i s
=7(v0)( (- I)Zb cz = )+_l-{——l (4.25)

where ¢, =Y} (t,):--a;; @, (t;)if v is of the form [t,,...,t,],. For

il J1yeeesda=1 JJl .71
[=1 we have

7(v0) (B(v;) —8(v,)) + —— +1 = “7(”0)‘Ps+m_+1 (4.26)
Since I4+m(<{€) <k we have (for [>2)
—2 1
25 T G i T toy) il
and by (5)
S S 4.28
Yo = (mt1n(o,) (4.28)

because these relations correspond to order conditions of DAT3, -trees of order less than
k which are satisfied as shown before. Inserting these relations into (4.25) gives

¥(vo) (B(v;) —B(vy)) + l+l 0 forl=1,...,0(v)—m, (4.29)

which finally implies that a(v) = 0. The value of £ in (4.11b) follows from the “first
worse” order conditions which cannot be reduced with simplifying assumptions. These
order conditions correspond to the “first worse” trees which are of the following forms

_
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(their corresponding order is mentioned)

q q

p+1 2g+3
W Q+ Q+l

2q9+3 2Q-1
bq\(y@{ﬂ q G+l

Va
r..

@17ty Ry

g+7+2 Q+R+1 pain {age? 8

Figure 4.8. The “first worse” trees for the z-component.

Because of

g+Q+1=g+1+Q—1/2+1/2>2min(¢+1,Q—1/2)+1/2= min(2¢42,2Q-1)+1/2; (4.30)

we get g+Q-+1>min(2¢+3,2Q). We also have G+Q-+#> min(2¢+3,2Q) and as previously
g+G+3>min(2g+3,2G+3) is verified. This achieves the proof of the estimate (4.11b). O

Ezample 4.3. We illustrate the proof of a(v) =0 for the tree v on the right-hand side
of Fig. 11.3.3. This tree possesses 40 monotonic labellings (see Example 11.4.3.2) and a
tedious calculation shows that

o(v) )
Z ‘ Z(—l)j (Q(v)) (7(sj(v))¢(sj(v)) - 1) = (4.31)

labellings of v \ j=90 J

- J
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40(3) (1-1— 1)—40( ) ( 36, -1) +22( ) ( Y biw; - )

18(;) ( Ebzw”cja]kck ) ( ) (12 szchJw,kci—1> -

12(2) ( szw” Q;xCr— ) - 8(2) (—-Zbiwijcjajk’ciklwlmcfn—J) —
12(:) ( Zbiwijcﬁwikckak,cl——l) +18( ) ( szw,] zkcka,klc,—l) +
12 (i) (18 Z biwijc;’fwikckakl'dlmwmnci—1) +

10(2) ( szwucjajkaklwlmcfn—l) -

( ) (242171(.0” zkckaklalm mnc137. 1) :

If we suppose that C(3), C(2), and ICC(4) are satisfied, this expression reduces to
o) (Sh1) () G het) #15(3) ()
5(5) (+t-1) = 22(5) ((Xmet-1) - 5(3) (s wt-1) -
12( ) (3Zbicf—1) +18( ) (43 bict-1) +12( ) (43 biet-1) +
o (Dt ) o) (Evemt) . m

If we also assume that B(4) holds, it only remains the last two terms which can be
) rewritten as in (4.24) '

z.ﬁ*w -10 T 4'( (E:bzczw”c_7 sz iy J) 4+1) . (4.33)

If we suppose that I 13(1) and (5) are satisfied then we finally obtain 0.

The results of the preceding theorem part b) show that the PRK methods sat-
isfying the simplifying assumption (5) are of great interest. For such methods the
numerical solution y, lies on the manifold g(y) =0 and the local error of the z- and
u-components can be greatly improved if the numerical solution is projected onto the
manifolds (g, f)(y,2)=0 and (g,,(f, f)+9,f,f+9,f.k)(y,z,u) =0 (see Subsection 1.3).
These projections are even recommended (see Remark 2.4.1).

Theorem 4.4.

a) Let us suppose that the assumptions of Theorem 4.3 part a) are satisfied, then the
local error of the projected values Yy, z;, %, given by (2.27a,c,€) satisfies

3-?;}:(30) = §; ~y(z,+h) = O(R*), 3-;}:(5'3 ) := 7 —z(zg+h) = O(R")
5uh(:c0) = U, —u(zy+h) = O(A*T) (4.34)

_
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where
b= min(P, q+1, q+1)’ v= m-in(P7 q, q+1) . (4'35)

b) Moreover, if in addition the assumptions of Theorem 4.3 part b) are satisfied, then
we obtain qritz, qrrve
p =min(p, 2¢+2,2¢+2,9+7+1, §+7+1,2Q-1,Q+7,Q+R) ,
v = min(p, 2¢—2, 2§, g+7+1,§+7+1,Q+7, Q+R) .
q +Fi1, gree7

(4.36)

Remarks 4.2.
1) Identical results hold for the second projection procedure (1.12) (see Remark 2.4.2).
2) If the function k of (I1.1.1) is linear in u then the values of 4 and v in (4.36) change
to qrire ., Jtriz
p = min(p, 2¢+2,2§+2,¢+7+1,7+7+1,2Q,Q+7,Q+ R) ,
v =min(p,2g—1,24+1,¢+r+1,§+7+1, Q+7, Q+ ) .
q rrt2, q"-r' 12

(4.36")

Proof. The results of part a) are a direct consequence of (4.10).

Concerning part b), similarly to the proof of [HaWa91, Theorem V1.7.2], we split
§z,(z,) according to
82;, (o) = P16zy(20)+Q:624(2) (4-37)
where P} and Q; are evaluated at (y,,z;,u,). From (2.27¢) we obtain
Plbz,(zo) = PL62,(2g) =P, (2o +h)éz,(20)+ (4.38)
O(H&h(wo)ll : (Il5yh(fvo)||+l|52h($o)ll+||5uh(zo)l|)) :
We also have
0 =(g,f)(¥1,%)— (9, F N y(zo+h), 2(z4 +R))

0y ) (¥15 205 (20)+ O (634 (20)]| 162420 - 182 (201 +Bza o)1)
(4.39)
which yields

Q:82,(20) = O ([l6un (o) [ +1824(20)l - [82(zo)[+823 20 - (4.40)
The above results lead to
52n(20) =Pu(z0+1)62,(20) + O (11835 (20| + 1822 o) + 118 (20) | - 62 (20) 1+ (441)
182120l - [824(2o) | +1[EZa(20)I?) -

Hence with the help of the estimates given in Theorem 4.3, we obtain the desired result
for the z-component. For the u-component the result simply follows from

un (z0) = O([16ya (o) | +1EZ, (o)) - (4.42)

O

———é
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5. Convergence of projected PRK methods.

In this section we give estimates for the global error of projected PRK methods, i.e.,
of PRK methods for which a projection procedure of Subsection 1.3 is applied to all
components after every step. The following theorem is one of the main results of this
chapter.

Theorem 5.1. Consider the differential-algebraic system (11.1.1) with consistent initial
values ¥ =(y,, 29, %g) at Ty, @ PRK method (1.1) satisfying the hypotheses of Theorem
4.4, and a projection procedure of Subsection 1.3. Then for x,—zy =nh < Const, the

global error of the projected values ,,%,, %, after n steps satisfies

I—y(2,) = O(R"),  Z—z(e,) = O(R"),  @—ulg,) = O(h") (5.1)

where the value of v is given in Theorem 4.4.

Remarks 5.1.
1) The theorem remains valid in the case of variable stepsizes with h=max; h,.

2) For the y- and z-components, (5.1) holds even if the numerical u-component is
not defined with the help of (g,,(f, f)+9,f,f+9,f.k)y,2z,u) =0 (see Remark
2.1.2). In this case the estimate (5.1) for the u-component can be recovered if such
a projection is performed for the last step.

3) In contrast with [HaLuRo89a, Theorem 6.4], |R(o0)| <1 and |R(c0)| <1 are not
supposed.

Proof. We denote two neighbouring projected PRK solutions by {7,,,%Z,}, {7,,Z,} and
their difference by Ay, =Y,—79,,, Az, =%, —Z%,. We suppose for the moment that

|F—y(2, )l < Coh? , [[Z,—2(2, )| < Cob s Ay, ]| < C1B°, [|Az, || < C1 A2 (5.2)
(this will be justified below). Because of ¢(3,) = 0 = ¢(%,) and (g, f)(7,,Z,) =0 =
(9,f)(Un» Z,), Remark 2.2.4 holds, implying that

(@)2 Ay, = O(||Ay, %) = O(R*||(P,),Ay,ll) , (5-3a)
(Q.)nAz, = O(|Ay, | +]A2,]%) = O(I(P,) Ayl + A2 (P,) Az, ) . (5.3D)

Theorem 2.4 can be applied with §=0,6,,, =0, p=0,p,,,=0,0=0,0,,.,=0,60,, ,=0,
and 8, ; =0 yielding

(Py)n+1Ayn+1 Z(Py)nAyn+ 0 (h”(Py)nAyn“+h”(Pz)nAan) ? (5'3C)
(Pz)n+1Azn+1 =(Pz)nAzﬁ+ O (h”(Py)nAyn”+h“(Pz)nAzn”) : (53d)

In (5.3) (P,)n: (@,)ns (P)n, and (Q,),, are evaluated at (¥,,%,,8,). These estimates
(5.3) lead to “
801 <C (IR, o Agoll +I(PJorzl) (5.40)
A2, <O (I(B,)oAtoll +1(P)eAz]) - (5.48
Hence the result (5.1) follows from standard techniques (see [HaLuRo89a, Fig. 4.1, p. 36]
or [HaNgWa93, Fig. I1.3.2, p. 160]). The assumption (5.2) is justified by induction on

n provided the constants C, and C, are chosen sufficiently large and A is sufficiently
small. a

L——_
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6. Solution of the nonlinear system by simplified Newton iterations.

At each step of the application of a PRK method we have to solve a nonlinear
system of the form (2.2a,b,¢) which can be rewritten as follows

0=H¥(Y,Z) = Y—]1®17—h(A®I)F(Y, Z), (6.1a)
0=H*(Y,2,U)= Z-1®{-h(A’1)K(Y, Z,U) , (6.1b)
0 =H*(Y) = —hG(Y) (6.1¢)
where
1 Y, Z, U, (Y1, %))
ﬂ:(f),Y= , Z = , U= , F(Y,Z2)= R
1 Ys Zs Us f(Ys’ Zs)
k(Y, 2, U,) 9(¥1).
K(Y,2,U) = ; , em=| : |. (6.2)
k(Ys’Z.ﬂUs) g(Ys)

With the simplified Jacobian matrix

I —hA ® fz(n) () o
0 I —hAQk,(n, () | (6.3)
—hI® g,(n) 0 O 9

the simplified Newton iterations read
Y+ — y LAYy (R) Zk+1) — gk A Z(F) U+ = g Ay (6.4)

where, after application of a block-Gauss elimination, we have

g AUO =((AD) 8le, k) (0, 60) (H D) +rIBg,MEY(Y P, Z0) (8.50)
1,7/, .
/1? +R(A®(g,£,)(m, ) H* (YW, 20, UM)) |

CAZ® = _ gy ®, 25 UR) L (A ® ky(n,¢,v))AUP) (6.5b)
J AY® = — gy (Y™, 20)+h(4 ® £,(n,¢))AZP . (6-5¢)

With starting values Yi(o) =n+he;f(n,{)+O(h?), ZEO) =({+O(h), and Ui(o) =v+0O(h),
every simplified Newton iteration improves the approximation by a factor A in the norm
lly||+&]|lz]|+h2||u]. For more details on this subject we refer to [HaLuRo89a, Section 7]

(for index 1 problems see [Kv92]).

i = S I 0‘\/‘\1. Fos(ibi Ii &’;
M ik } k
a%‘“- _HY(Y",? ,u”vmu”)

-

pr® - H (Y, a2 )

B | L., .. 3



Chapter IV. Convergence of Runge-Kutta methods for semi-
explicit index 3 DAE’s in Hessenberg form.

1. Introduction.

This chapter presents optimal convergence results for stifly accurate RK methods
when applied (direct approach, see Section 1.6) to semi-explicit index 3 DAE’s in Hes-
senberg form (see Chapter II). For solving such problems an index reduction is usually
possible by differentiating the constraints, although some difficulties may occur (see
Subsection 1.5.1). However, for multibody systems containing very stiff springs, i.e.,
whose Hooke’s constant 1/e? is very large, the numerical solution behaves like that for
the limit problem (¢ —0) which is of index 3 (see [HaLuRo89a, pp. 10-12], [Lu93], and
Subsection 1.4.2). In this situation an index reduction is not applicable and the conver-
gence behaviour for the index 3 case (direct approach) must be studied. This remark
remains valid for the equations of motion of very stiff mechanical systems in which a
large potential forces the motion to be close to a manifold (see Subsection 1.4.2).

Non-optimal orders of convergence of RK methods for semi-explicit index 3 DAE’s
in Hessenberg form have been demonstrated in [HaLuRo89a, Section 6] and sharper
estimates have been numerically observed and hypothesized (see [HaLuRo89a, pp. 18-19
& 86]). The main result of this chapter (Theorem 6.1 below) is a proof of the conjecture
of [HaLuRo89a, p. 86], giving sharp convergence bounds for stifly accurate RK methods,
such as the Lobatto IIIC and Radau ITA schemes. This result has an application in
the convergence analysis of these methods when applied to stiff mechanical systems.
Furthermore it extends the results of [Jay93b] for collocation methods to general RK
methods, but with completely different techniques.

In this chapter we again consider semi-explicit index 3 DAE’s in Hessenberg form
(see Chapter II)

y' =f(y,2) , z"_‘k(ya z,u) , 0=g(y) (1.1a,b,¢)

where the initial values (yg, 25,2, ) at z, are assumed to be consistent, i.e., they satisfy
0=g(y), (1.1¢)

0=(9,f) @) , (1.1)

0= (g,,(f, F)+g,f,f+9,1.%) (y,2u) . (L.1e)

We suppose that
(9,f.k,)(y,2,u) is invertible (1.2)

in a vicinity of the exact solution (indez 3 assumption).

The application (direct approach) of Runge-Kutta methods to (1.1a,b,c) is pre-
sented in Section 2. Existence and uniqueness of the RK solution, and influence of
perturbations are studied in Section 3. Section 4 deals with the calculation of expres-
sions encountered in the preceding section and involving the RK coefficients. Estimates
of the local error and of certain associated projections are then given in Section 5. With
the help of the results contained in the previous sections, a global convergence theorem
is presented in Section 6 proving the conjecture of [HaLuRo89a, p. 86]. An application
of this result to the convergence analysis of certain RK methods for stiff mechanical
systems is given. Finally, Section 7 includes some numerical experiments illustrating
the theoretical results.
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2. RK methods for semi-explicit index 3 DAE’s in Hessenberg form.

Definition 2.1. One step of an s-stage Rungg-Kutta (RK) method applied to (1.1a,b,¢)
¥ (direct approach) reads (see Section 1.6, [BrePe89, p. 75], and [HaLuRo89a, p. 71])

Y = y0+hzbiy;l' ) %4 = zo+thiZ£ ) u; = “o'*‘hzbiUz! (2.1a)
i=1 =1

i=1
where
Yi' = f(Yi,Zi) ’ Zz! = k(sz Zi, Ui) ’ 0= g(Yz) ? (Z.Ib)
and the internal stages are given by .
8 ’ 8 8
Yi = y0+hz ain;-' ) Zi = zo+h2aijZ; . Ui = ’u.o-i—hZazJU; . (2.1C)
j=1 =1 j=1

We are interested in RK methods satisfying the hypotheses

(I):  the RK matrix 4 is invertible ;
(S): the method is stiffly accurate, ie., a,; =b, fori=1,...,s.

Remarks 2.1. The following results can be easily proved.
1) (S) implies that y, =Y, g(y,)=9(Y,)=0, 2, =Z,, and », =U, in (2.1).
2) (I) and (S) imply that R(co)=0 where R is the stability function of the RK method
(see [HaWa91, Proposition IV.3.8]).

In the following sections we will use the notations C := diag(c,,...,¢,) and 1:=
(1,...,1)T (with s components).

3. Existence, uniqueness of the RK solution, and
influence of perturbations.

This section is devoted to the analysis of the solution of the nonlinear system
(2.1) with (¥, 29, ) replaced by approximate h-dependent starting values (7,(,v) =
(n(h),¢(R),v(Rh)). An important result is given by Theorem 3.4 which will be useful in
Section 6 to the study of the error propagation. We first investigate the existence and
uniqueness of the RK solution.

Theorem 3.1. [HaLuRo89a, Theorem 6.1). Let us suppose that

g(n)=0("), 723, (3.1a)
(9,F)(m:¢) = O(R") , K22, (3.1b)
(9yy (> F) 9, F+9,f.E)(n, ¢, v) = O(R) , (3.1¢)
(gyfzku)(y,z,u) is invertible in a neighbourhood of (n,¢(,v) , (3.1d)

s -
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and that C(2) and (I) are fulfilled. Then for h < h, there ezists a locally unique solution

to
Y; =n+hiaijf(l’},Zj) , Z, =C+hiaijk(Yj,Zj,Uj) ! (3.2a,b)
= =
T 0 =¢(Y;) J (3:2¢)
fori=1,...,s, which satisfies
Y;-n=0(k), Z,-(=0(h), Ui—v=0(h). (3.3)
;
Remarks 3.1. ‘

1) If the function k of (1.1) is linear in u then the assumptions C(2) and (3.1¢) can
be omitted. In this situation, 7>2 and £ >1 are sufficient. However, if C(2) is not
satisfied, 7=2 or k=1, we only have the estimate U;,—v = O(1) (for more details
see Theorem I11.2.1, Lemma 3.3, and [HaLuRo89a, p. 74]).

2) The value of v in (3.1c) only prescribes the solution of (3.2) to be close to the
manifold defined by (1.1e). However, (Y}, Z;,U;) are clearly independent of v.

3) If the function k of (1.1) is not linear in u then C(2) and (I) show the necessity of
having s >2.

Proof. By a simple application of Theorem II1.2.1 with A= A. An alternative proof is
given in [HaLuRo89a, Theorem 6.1]. O

The next result, a more complete and precise formulation of [HaLuRo89a, Theo-
rem 6.2], is concerned with the influence of perturbations to (3.2). This is a simple

application of Theorem II1.2.2 with A= A.

Theorem 3.2. Let (Y;,Z,,U;) be given by (3.2) and let us consider perturbed values
(?ia Zi, ﬁz) satisfying ;

Y, =7+ a;f(Y;,2))+hs;,  Z,=0+h> a;;k(Y;,Z;,0;)+hy; , (3.4a,b)
7j=1 i=1
0 =g(¥,)+6; (3.4¢)

&

fori=1,...,s. In addition to the assumptions of Theorem 3.1 let us suppose that

An= O(h3) ’ A¢ =O(h2) ) ﬁi—y = O(h) ’ (3 5)
§; =0k, p=0(h), 6;=0(h). '
Then we have for h < h, the estimates
1
AY; = PyAn+hciszzAC+0(hHAnll+h2|IACll+pIIQyA7l||2+|IQzACI|2 (3.6a)

A8 +h2ul+110]])

‘ |
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AZ, = ~Lo,.50,An+ P,AC+O(lAn +HlACI+751Q, A0+ EIQA (360

1
H8l+hllul+5 161 5
1 1
P, AZ; = P.AC+O(||Q, An|l +l P, Anll+ IS¢+ 55 1Qu AP+ Z11Q.AL - (3:6¢)
61+ Allul+16])

AU, = 0( L 10, Arl+ 1P, A+ £IQACIHIPAC+ 181+ sl +55101) - (369

where o; = el A=11 with e; = (0,...,0,1,0,. .,0)T (the s-dimensional vector with all
components equal to 0 ezcepted the zth whzch is equal to 1),,5 = (85,.--,8,)T, ||6]| =
max, ||§;]|, and similarly for p and 9. P, Q,, P, , and Q, are projectors deﬁned under

the condztwn (1.2) by
S =k, (9,f.*,) "9y > 5
Q, =f.5, P, :=1-Q,, Q,:=Sf,, P,:=1-Q,. '

O

Our next aim in Theorem 3.4 is to show that the estimates (3.6a, ¢) can be improved
for i=s. The following lemma will be useful in the proof of this theorem.

Lemma 3.3. Besides the hypotheses of Theorem 3.1, let us suppose further that C(q)
holds. Then the solution (Y;-,Zi, Ui) of (3.2) satisfies

Y, =7+ Z () + 0", (3.8a)
Z, 4+Z 7,6, 0)+ORY) (3.8b)
n=1
»
U, =+ i’i"T’iDPU(‘ﬁ, (,75)+0O(R*11) (3.8¢)

=1
where A\ = min(7,x+1,q), ¥ = min(7 —2,K,9— 1), p = min(t—3,k—2,9— 2), and
D,Y,D.,Z, D,U are functions composed with derivatives of f, g, and k. (n,(, U) are
consistent values close to (n,¢,v) but constructed independently of v. They are umquely
determmed by the equations (1.1c,d,e), Py(n,(,v* Y7—n)=0, and P,(n,(,v* )(C ¢)=0
with v*:=G(n,)-

Proof. We find Q,(n,¢,v*)(1—n) = O(k7) and Q,(n,{,v* ) —¢) = O(hmin(T, ‘)) We

define (y(z),z(az),u(z)) the solution of (1.1) with initial values y(zo) =7, z(z,)= ¢, and
u(zy)=7. The exact solution at z,+c;h satisfies (3.4) with 6;=0 and

he yla+D) gt +1
5 = v, )(q+1 Zaw &) +O(h*!) = O(h?) , (3.90)
ht (a+1) N +1
b=y 20 (4 =30yl +O(TH) = O(hY) (3.95)
j=1

— >

w
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The difference from the numerical solution (3.2) can thus be estimated with Theorem

3.2, yielding
1Y, — y(zy+c;R)|| =O(hmin(7'+1,n+2,q+1)) : (3.10a)
1Z; = 2(zo+c;R)|| =O(RRR(T=Lr1D) (3.100)
|U; — u(zg +¢;R)|| =O(R=RT—2r—1a=1)) | (3.10¢)
m|

Here is the main result of this section.

Theorem 8.4. In addition to the assumptions of Theorem 3.2 and Lemma 3.3, in-
cluding those of Theorem 3.1, let us suppose that B(1), D(r), and (S) hold. Then we

have
AY, =P, An+hf,P,AC+O (k|| An]|+h?] PAC|+R™2]Q A (3.11a)
5 1@, Anlf? +1|Q,ACI-+lI8]|+A2|u]l+]6]
Bz I%y 2N z pll+ell)
hP, ,AZ, =hP,AC+O(R|Q,An||+h2| P, An| + | PAC|+A™2]Q AL (3.11)
1
+ 25 1@y Anl*+ QAL+ -6+ R+l )
1
hQ.AZ, = —o-5Q, An+O(hl|Anl|+ R | AC] + -5 1Q, Anl*+]Q, A (3.11¢)

+h[8]}+h? |ul + 6

where o =bT A—21, m=min(7 -3, k—2,¢—2, max(r ~1,0)), n=min(7—3,£—2,¢—2,7).
P,Q, P, Q,, S, and f, are evaluated at (n,¢,v*) with v* defined as in Lemma 3.3.
The arguments of P, , and Q, , are (Y,,Z,,G(Y,,Z,)) or (Y,,2,,U,).

z,8

Remarks 3.2.
1) If the function k of (1.1) is linear in u, then m=min(r-2,k—1, ¢—1, max(r—1,0)),
n=min(7—2,k—1,¢g—1,r). Remark II1.2.2.5 also holds here.
2) The important results consist in the splitting of A( according to the projections
P, and @, and in the h-exponents in front of ||@Q,A(]| in (3.11a,b).
3) It must be stressed that m and n satisfy 0<m<n<m+1.

4) In the proof the missing arguments for f,, P, P,, etc., are (7,(,7) defined in
Lemma 3.3. At the end of the proof a final estimate shows that they can be
replaced by (7, {, v*).

5) Remark II1.2.2.6 is also valid here for almost all constants entering in the O-
expressions of (3.11). The exceptions are the constants implied by the O-terms in
(3.11a,d) O(R™*+2||Q,A(||) and O(h"+2|Q,A(||) which depend on those of (3.1a, b)
if m or n>1. Nevertheless, this will not affect the proof of Theorem 6.1 (see Section
6) where Theorem 3.4 will be applied.

Proof. We resume the proof of Theorem 3.2 (see Theorem II1.2.2) with the help of
Lemma 3.3, using the same notations and definitions, except for

¢,={g,}, F.:=(AeD{f}A48D™, K, :=(4@I {401,

_
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S, :=K,(G,F.K,)"'G, , (3.12)
Qy,A:_zFZSA’ Py,A:=I—Qy,A’ QZ,A:ZSAFZ’ PZ,A:=I_QZ,A'

Because of
AY; =(ef ® I)AY ? Pz,sAZs = (e’f ® Pz,s)AZ I Qz,sAZs = (631 ® QZ,S)AZ ’ (3'13)

(3.11) is a simple consequence of (3.6a,b,c) with the exception of the h-exponents in
front of ||@Q_,A(]| in (3.11a,b) which remain to be shown. They will be computed with
similar techniques used in the proof of [Jay93a, Theorem 4.4].

The formulas coming from (II1.2.22b,c) read here
RAZ =(A® 1) [ -S,(18 An)+P, 5(41@ RAQ)—hS,(A®I){f,}AY  (3.4a)
+h?P, J(A®I)*{k,}AY +hP, ,(A® I)z{kz}hAZ]
+O(||AY ||*+RIAZ|+R*| AU +&|16]|+ 22| ]| +]I6]]) »
AY =P, ,(1® An)+F_ P, ,(A1® hA()+hP, 4(A® I){f,}AY (3.140)
+R?P, ,F,(A®I)*{k,}AY +hP, ,F,(A® I)*{k,}hAZ
+O(|AY | +R||AZ|? +R?||AU||? +R|8]|+B*|[ ]| + 161])

and they can be rewritten

I-hS—h’T =V (3.15)
hAZ .

+0( 2511, AnP 112, Al + QAL+ PACI+ 6] +A7 1]+ o]

where the matrices S, T, and the vector V are given by

( Py,A(A®I){fy} Py,AFz(A®I)2{kz} ) (3 16
_(AeD S A0} (AeD-P,aaelpky) %

P AF(A®INFk} O
T = ) (3.16b)
<(A ® )P, ,(A®I)*{k,} 0)
B ( P, ,(1® An)+F,P, ,(AL1® hA() ) -
“\aeDn-t [_sA(n ® An)+P, 4(A1® hAg)] ' (3.16¢)

Weput K, ,:=I®k,(7, & V) corresponding to K, with (Y}, Z;,U,) replaced by (7, ¢, v).
By the use of A( = P,A(+Q,A(, @, =5Q,, Q@2=@Q,, and P, ,K, =0,V can be
estimated by

(3.17a)

16 P,An+A1® hf,P,A¢+O(h| An||+2][ P,AC])
V=wW+

~A-1® Q,An+1® hP,AC+O(h| An||+ k2| P,AC|)

@
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where we have isolated in W the terms including Q,A(

( _Fsz,A(Ku_Ku,O)(A]]' ® h(gyfzku)—lgyszzAC)
_(A ® I)—IPZ,A(Ku_Ku,O)(Aﬂ ® h(gyfzku)_lgyszzAC)

) : (3.170)

Computing the inverse of the left matrix in (3.15) by means of the series of Von Neumann
we arrive at

AY "
(hAZ> =Y (hS+RT)*W (3.18)
0

Q:
1@ P, An+Al @ hf, P, A(+O(h| Anl|+k%|| P AL +R™+2[Q, AL])
—A711® Q,An+1® kP, A(+O(k| An||+ k2| P, A +A"+2[|Q_A(])

1
+ 055 1@, AmIP + 11, A +]1Q,AC|+ Al A + b8+ A% ] + ]

Our next aim is to develop at the point (7, Z , V) the expression involving S, T, and
W in (3.18) into h-powers. By the use of Lemma 3.3, the expressions G, F,, K, {f,},
{k,}; and {k,} can be expanded, e.g.,

g k
F, =Y h*AC*AT @ BAO(h™) = IQ fAPACAT & (f,.(f, )+ fuulds D)+ (3.19)
k=0

where the B, are functions compound with derivatives of f, g and k and evaluated at

(77,¢, 7). In order to develop (G, F,K,)"! we first consider

G, F.K,=I1®(g,f.k,)+ Y hHITHC'ACTAT A’C* A7) @ D
0<i+j+k<w

ijk+0(h“’+1) (3.20)

where w =y (w =7 if k is linear in u because k,(y, z,%) is independent of u) and the

D, are other expressions like the B, evaluated at (7, Z ,U). By using once again the
series of Von Neumann we obtain

(G F,K,)' =I®(g,f.k,)" (3.21)
s Z plel+1B8l+18] (H Ca‘AC’B‘A—lAZC‘S‘A_Z) ® Eaﬁ6+o(hw+1)
0<]e|+|B]+]6|<w =1
where the E ;s are other expressions like the B, evaluated at (7, Z, v), a=(ay,...,a,),
B=(By,...,8,), and §=(6,,...,6,) are multi-indices in N. The norm of a multi-index
k=(Ky,...,K,) € N is defined by |x|:= > _, x;. Hence, we are now able to develop

the sum containing @,A( in (3.18).

In order to show (3.11a), we carefully examine only two representative terms, as
the others can be treated similarly. We first consider

H:=—(ef @ )F,P, ,(K,~K,,)(A1® h(g,f,k,) " g,f,Q,A() (3.22)

¥x

‘ ; |
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which is simply a constituent of W and it appears in AY, when o =0 in the sum of
(3.18). By expanding H into h-powers we arrive at

H=hY hC,-K,QAL+OR™?|Q.A(]) (3.23)
1<|o{<m
- o:=(c,8,8,v)

where a,8,6,v are multi-indices, the K, are of the same type as the D,;, and the
coeflicients C, are given by

C, =eTAC" AT A2 C"2 A2 (HC“*‘AC"*A‘IAZC'S‘A‘2> X (3.24)
=1 "
C? AC** A~ A0 A2 ALl
N, mmm—
A-AC AT

with v >0. If D(r) is satisfied with 7>1 then in accordance with Theorem 4.1 below,
these coefficients vanish for |o]|+1= |a|+|8|+|é|+|v|+1 < 7. For r =0, we have H =
O(h2||Q_A(]|) as a consequence of K,—K, , =O(h). We thus get H=0(h™*2|Q,A(]]).

Assuming that m >3, we now consider a second expression involving @ ,A( which
enters in the computation of AY,, coming from h2S52W in (3.18),

J = —hz(ez ® I)Fsz,A(A ® I)z{kz}(A ® I)_IPz,A(A ® I)z{kz}x (3'25)
(AQI)'P, s(K,— K, )(A1® h(g,f.k,) " 9,f.Q.A() .

As seen above we get

J=h Y RD,-L,Q Al +O(R™?)Q,ALl) (3.26)
1<jo|<m—2
o:=(,8,6,€,8,K,X,5,9,V)

where the L are other expressions like the D,;; and evaluated at (7, ¢, 7). The coeffi-
cients D are given by

D, =eTAC" A x (3.27)
AZCv2 A2 (H C“‘ACﬁ‘A'lAZC‘S‘A"") C"*AC™"* AT A2C" A x
i=1 -
= A-AC¥sATY
A%Ce A2 (H CS‘AC"*‘A“lAzC"*’A‘2> C*"AC**A71A2C" A! x
=1
- A-ACY AT
APCT0 A2 (H crACH A‘1A20”*'A‘2> CYAC™ AT 420" A2 A1
= A-AC"= AT

with v, >0, and according to Theorem 4.1 they vanish if |¢|+3 < r. Therefore, J can
be estimated by O(h™12||Q,A(||) too. All other remaining terms can be treated in a
similar way, so that (3.11a) results.

!

R e S
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The h-exponent in front of Q,A( in (3.11b) remains to be proved. We use the
same techniques as above to estimate AY,. The main difference is that we expand some
specific terms in the matrix products involving S and T (3.18) into h-powers not at
the point (7, ¢, v) but at (Y, Z,,G(Y,,Z,)). Such an expansion concerns only the first
factors of these matrix products which are equal to K. From Lemma 3.3 we easily get

A
1—c™)h™
y;: :}’;— Z (——;—;!—)—DmY(Y;, Zs’G(Y37Zs))+O(h>‘+1) ? (3’280')
m=1
% (1—cf)r™ y+1
2,=2,- “= D 2(Y,,2,,G(Y,, 2,)) +O(K™) , (3.280)
n=1

1

E (1-&)he
Ui :G(Ys’ Zs)— Z -—?;_DPU(Y.N Zs? G(Ys’ Za))+o(h#+1) ’ (3.286)
p=1 )

We rewrite an expression entering in the vector W (see (3.176)) in the form
P o(K,—K,0J(A®I) =P, 4(A®I)(A® D) (K,~K,,)(A®]). (3.29)

The above expression (A ® I)~1(K,—K, ,)(A ® I) can be expanded leading to

(A (K,—K, ) (A®I) =) h*AC*A 9 K, , (3.30)

k=1

where the K,  are other expressions like the B;. To end the proof, the arguments

are similar to those used when estimating AY,. The only problem could arise from
coefficients of the form eTA-1(I-C*)---1, or eTA~1C¥-..1, with k>1. But these
coefficients do not appear, because of the premultiplication with P, , and the fact that

P(Y,,Z,,G(Y,,Z,))K,,=0 with K, ;:= K (Y,,Z,,G(Y,,Z,)). Without such a pre-
multiplication these coefficients appear in AZ, coming from, e.g., the expansion of

(s @A @I)I® K, ,)(G,F.K,)" - (1®h(g,f.k,) " 9,£.Q.AC) . (3.31)

O

4. Properties of the RK coefficients.

The following theorem deals with the valuation of expressions encountered in the
demonstration of Theorem 3.4.

Theorem 4.1. Let us assume that the conditions B(1), D(r), (I), and (S) hold. For
a fized o € N\{0}, let us consider a multi-indez v=(vy,...,v,) satisfying v;>1 and let
a>0. If |v|<r then we have

e
efC ( M,.) 1=elC*M,---M,1=0 (4.1)
=1

1=

_ﬂ
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where the matrices M, are of the form
Av,', Aag Cl/iA—a';, Ao‘,' (I__CV;)A—O’,'—I (42)

with o; € {0,1,2} and it is supposed that M,= AC”e A~1.

Remark. In the proof we adopt the convention that if a null factor multiplies a term of
the form bTC—™ with m>1, then this expression has to be omitted. For example (4.3)
with k=0 reads bTA—1=¢T —0-bTC-1=e¢T.

Proof. In this proof k& and ! denote two non-negative integers. Assuming that k <r,
the multiplication of (§) and D(r) with A~? leads to

o

pTC*A™ = eT—kbTCF 1. (4.3)

(S), D(r), and (4.3) together imply that

I(1-1) (k+14+1)(E+1)
T~k l 2 T bT -2 T ~k+1-1
b*CPAC'A™" =¢; +_——E 1 C ] " C (4.4)

provided k+1<r-—1. Similarly, if k+I<r we get
bTC*(I-CY A2 = 1T +k(k—1)bT C* 2 — (k+1)(k+1-1)bT C*+1~2 (4.5)

and for k+!<r—1 we have

—1)(1—2
bTCkA(I—Cl)A_s =2l€z1+ 'l-(i—l;l'_)lf(:l{_leCl—s (4.6)

+h(k—1)sTC*2 — (k+1+1)(k+1)(k+1-1) pTOkti-2

k+1

A repeated application of (S), D(r), (4.3)-(4.6) to (4.1) shows that this expression is a
linear combination of terms 8TC*A—11 with 1<k <r. They all vanish because of

BTCE A1 = T1-RBT O = 1-k3 =0 (4.7)
which is a consequence of (4.3) and B(r) (Remark IIL.1.2.1 applies). =

‘T
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5. Local error.

We consider one step of a RK method (2.1) with consistent initial values (y,, 2,5, %)
at z, and we want to give estimates for the local error.

Theorem 5.1.
a) Let us suppose that the RK method satisfies (I), B(p), and C(q) with ¢>2. Then

we have
Sy (zo) =O(R™RPOTYY | P, (2q+h)by,(z,) = O(R™HPETVHY) - (5.14)
62,(2) =O(h7) , P, (2o +h)6z,(z,) = O(R™=(POH) | (5.15)
buy (zy) =O(hmin(Pg—2)+1) (5.1¢)

where P,(z), P,(z) are the projectors (3.7) evaluated at (y(z), z(z), u(z)), the ezact
solution of (1.1) at z.

b) Moreover, if in addition D(r) and (S) hold, then we obtain

Sy, (zo) =O(R**?), with k=min(p,2¢—1,¢+7),  (5.2)
P, (zy+h)bz,(zo) =O(R*t?) ,  with £=min(p,2¢—2,q+7) . (5.3)

Remark. If the function k of (1.1) is linear in u, then, in (5.2) and (5.3) we have
k=min(p, 2q,q+7) , {=min(p,2q-1,q+7), (5.2")—(5.3")
and the condition ¢>2 can be omitted.

Proof. By a simple application of Theorem I11.4.3 part b) with ¢g=g=@Q and r=7=R.
a

6. Convergence results.
OP M' 2 ck“. ’h/
We present here the main result 4nd we partly follow [HaLuRo89a, pp. 78-82]. The- Ve
orem 6.1 proves the conjecture, based on numerical experiments, stated in [HaLuRo89a,
p. 86].

Theorem 6.1. Let us consider the differential-algebraic system (1.la,b,c) of index 3
with consistent initial values (y,, z9,uy) at 2, and the RK method (2.1). Let us assume
that the RK coefficients satisfy B(p), C(q) with ¢ > 2, D(r), (I), and (S). Then for
¢, —zo=nh< Const, the global error satisfies

Yn—y(z,) = ORPREH2440) - 5 —(2,) = O(RY),

| (6.1)
P,(2,)(z,—#(z,)) = O(h™=(P2-2047) oy _y(a,) = O(hT) .

Remarks 6.1.
1) If in addition the function k of (1.1) is linear in u, we get

—
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yu—y(e,) =O(EmREA1E)

. 6.1
P,(2,) (20— 2(z,)) =O(hm2@21447) g

and the assumption C(2) can be omitted. In the proof in this case we have m =
min(g—1,max(r —1,0)), n = min(g—1,7), k and £ are given by (5.2')-(5.3'), and the
terms ||(Q,),Az,|? in (6.2b, ¢, d) have to be replaced by A||(Q,),,Az,||*. In the situation
of ¢g=1, the proof given in [HaLuRo89a, Theorem 6.4] requires slight modifications.

2) The theorem remains valid in the case of variable stepsizes with A =max; h;.

Proof. In a first step, we can show that global convergence of order g for the (y, 2)-
components occurs (see [HaLuRo89a, Theorem 6.4]).

b}

In the second step, we use once again the techniques of the previous step. We
denote two neighbouring RK solutions by {%,,%,}, {7,,7,} and their difference by
Ay, =Y, ~Tn, Az, =Z,—7%,. We assume that Ay, =O(he+!) and Az, =O(het?) (see
[HaLuRo89a, Formula (6.28)]). Because of g(¥,) =0 = ¢(9,,) Remark I11.2.2.4 holds,

implying that
(Qy)nAyn . O(”Aynllz) . O(hq+1“(Py)nAyn”) ° (6.2(1)
By the use of the results of the first step, Theorem 3.4 can be applied with §=0, u =0,
and 8=0, yielding
(Py)n+1 Ayn+1 =(Py)nAyn+h(fz)n(Pz)nAzn (6'2b) . ,
+0 (R]|(P,)n Ayl + R [[(P)n Az, |+ A2 (Q.)n B2, | +(Q2)n A2, [1%)
h(Pz)n+1Azn+1 :h(Pz)nAzn (6'26)
+0 (B|(P,) Ay, | +A*[|(P,) n Az, |+ 2™ [(Q,)n Az, | +1(Q.)n A2, %)
h(Qz)n+1Azn+1 =O (h”(Py)nAyn”+h2”Azn”+||(Qz)nAzn“2) (6‘2d) ‘
where m = min(g —2, max(r—1,0)), n =min(¢—2,7) and (Py)n, (Qy)n, (P,) s (Q)ns
(f,), are evaluated at (9,,Z,,4%). We define u} := G(7,,%,) with G as described in
(II.1.4). This choice of @ does not influence the values (y,,%,,) (see Remark 3.1.2) and

simplifies the proof. The estimates (6.2) lead to (by induction or similarly to the proof
of [0s93, Theorem 3.3))

Ay, || <C (”(Py)oAyo“+”(Pz)oAzo“+hn+1H(Qz)oAzo”) ) (6.3a)
h[(P,)nAz, |l SC (RII(P,)oAys | +R[(P,)o A% ||+ *2[|(Q,)0A% ) » (6.3b)
h(Q.)nAz, ]| SC (AlI(P,)o&yol|+hI(P,)e Azl +R2[(Q,)eAzll) - (6.3¢)

Hence it follows from standard techniques (see [HaLuRo89a, Fig. 4.1, p. 36] or [HaNg-
Wa93, Fig. I1.3.2, p. 160]) that

Yo—¥(2,) = O(RPHEEEEN) P (2,) (2, 2(2,)) = O(RPR(HETD) (6.4)

where k and £ are given in (5.2)-(5.3). O

The estimates (6.1)-(6.1') gives us more insight into the structure of the global
error for the z-component. If the numerical solution is projected onto the manifold

v_
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(9, )(y,2) =0, then the accuracy of the z-component can be impro{redr;‘ SMS can be

done similarly as described in Subsection II1.1.3, but here theoretically 6uly at the end ¥
of the integration process. We thus obtain:

Corollary 6.2. Under the assumptions of Theorem 6.1, let Z,,, ., be the solution of

?n =zn+ku(yn’zn7un)lu'n7 0 = (gyf)(yn7?n) (6'5)

where (y,,2,,%,) i$ the numerical solution (2.1) after n steps. Then we get

O(hwin(p.2¢=1,9+7))  if k is linear in u ,
z,—z(z,) = (6.6)

O(hmin(p,2q—2a’J+7‘)) else .

Moreover, if we define @,, as the solution together with y,, and Z, of (1.1e), we have

—~

un—u(zn) e

(f)(hmin(p,zq—l,q+7‘)) if k is Lnear in u ,
(6.7)

o(hmin(p,2q——2,q+7‘)) else .

O

The problem (1.1) is not ill-posed if all constraints (1.1c,d,e) are taken into account
: r and not only (1.1¢) since it is of index 1 (see Section IL1). It is in fact preferable to
effect the projection (6.5) after every step, because the numerical solution is sta iliz%lh biss
as concerns the influence of perturbations (see formulas (3.6c) and (3.113)). Hewever; X
a very accurate approximation of the u-component of the solution may be unnecessary
(see Remark 3.1.2), therefore the projection onto the manifold (1.1e) can be omitted.
This remark is important if one wants to avoid the computation of extra derivatives
such as g,,. For stiffly accurate RK methods a fairly good choice is often given by
s = Ul e
Corollary 6.3. For the s-stage (s > 3) Lobatto IIIC method applied to the index 3 ,
system (1.la,b,c), the global error satisfies ‘

| Un=Y(2,) = O(R*7%),  P,(2,)(2,—2(z,)) = O(R*™*) ,

| 2,—2(2,) = O(R°TY),  Z,—z(z,) = O(*™*), (6.8)
un_u(mn) s O(hs_z) ’ an_u(zn) = 0(h28_4) ’

Moreover, if k is linear in v we have (s>2)

Yn—y(2,) = O(*7°),  P,(2,)(2,—2(2,)) = O(R**),

Za—a(e,) = OR*), &, —u(z,) = O(K>~?) . St |

Proof. The proof is obtained by putting p=2s—2, g=s—1, r=s—1 in (6.1)-(6.1"),
(6.6), and (6.7). a

The next result provides an alternative proof of [Jay93b, Corollary 2.3] demon-
strated with completely different techniques.

_—_—4‘
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Corollary 6.4. For the s-stage (s>2) Radau ITA method applied to the indez 3 system
(1.1a,b,c), the global error satisfies

yn—y(zn) iy O(h23—2) ? Pz(zn)(zn_z(mn)) = O(h2s-—2) 9
2a—2(z,) = O(h*),  Z,—z(z,) = O(h*7%), (6.9)
un—u("cn) = O(hs_l) ’ ﬂn_u(mn) = O(hzs-z) e

Moreover, if k is linear in u we have (s>1)

yn—y(wn_) = O(h*7Y),  Pz,)(z—2(z,) = O(R* ),

~ 2s—1 ~ 281 (6'91)
zn_z(mn) 5 O(h ° ) ’ un—u(zn) = O(h sr" ) .

Proof. The proof is obtained by putting p=2s—1, ¢=s,r=s—11in (6.1)-(6.1"), (6.6),
and (6.7). O

Remark 6.2. For a constant-stepsize application of the implicit Euler method (s =1)
with k linear in u, it can be shown that u, —u(z, ) =0O(h) for n>2 (see [BreEn88] and
[HaLuRo89a, p. 90]).

An application of Theorem 6.2 concerns the convergence analysis of Runge-Kutta
methods when applied to stiff mechanical systems (see Subsection 1.4.2). The following
theorem is due to Lubich:

Theorem 6.5. [Lu93, Theorem 3.1]. Let us consider a stiff mechanical system (1.4.20)
satisfying the assumptions (SMS) (see Subsection 1.4.2) and a RK method satisfying the
hypotheses (I), C(g), |R(o0)| < 1, and

A has no eigenvalues on the imaginary azis and |R(iw)| <1 YweR\{0}. (6.10)
Let us suppose that the ezact solution (g¢(t),v¢(t)) of (1.4.20) with initial values (g§,v§)

is smooth. Then for 0<e <h<hy, with hy sufficiently small but independent of ¢, there
ezists a unique RK solution of the stiff system (1.4.20), whose error satisfies

¢—q(t,) = qg—qo(tn)-}—O(eth—z) , ve—v°(t,) = v:'—'vo(tn)+0(sth"2) (6.11)
uniformly for t; <t, <T. Here (g%,v0) and (¢°(t),v°(t)) denote the RK and ezact
solution respectivelyf of an indez 3 DAE (1.4.3a,b,c), where the initial values (qg,\ﬁg)

are the coefficients of €% in the e?-ezpansion of (g5,vs). Therefore, for RK methods
satisfying in addition the hypotheses of Theorem 6.1 (k is linear in u) we have

¢S —q°(t,) = O(R™nP2a—1aF7) 4 2pa2) v —vi(t,) = O(h?+e*hi7?) . (6.12)

(]
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7. Numerical experiments.

The global convergence results of Section 6 have been confirmed by numerical tests.
As a first example, consider the following index 3 problem

-~

y'1 = 2122125 Y = —y1y2z22 ’
21 = (Y1Yp+2125)u zy = "ylygz;u , (7.1)

0= ylyzzz_]- ’

which is of the form (1.1a,b,¢) with k linear in u. For the consistent initial values
Yo=1(1,1)T, z;=(1,1)T, and u, =1 the exact solution is given by

n)=5k) =%, p@) =zk)=e*,  u)=c. (7.2)

In Fig. 7.1 the global errors at z_ 4 =0.1 for the Lobatto IIIC methods (s=2,3,4,5,6)
applied to (7.1) are plotted as functions of h (the stepsizes have been chosen alternatively
as h/3 and 2k/3). Since we have used logarithmic scales, the curves appear as straight
lines of slope k£ whenever the leading term of the error is O(h*). This behaviour is
indicated in the figures.

19 —3(z,)ll |2n —2(2,)l [l —u(z,)ll
| 1 | 1aol ] | | 1q0] | I 1 a0l
h GE‘EE'EEE-E woE |b M o | M o
// iy hz M 0-0E | R? M 10-1
3 3 ‘
h3 10-15 h . 10-15 h 10-15
4
- 10-20 h4 10720 h 10-20 I
5 5
& =g [P 1028 1028 | |
h7 hg 10-30 10-30 10-30 ;Ij :
|
”Pz(zn)(zn_z(wn))” H?n_z(wn)” ”an_u(zn)”
1 | | 140 | | 1 1aal | | | 1al
h E,E_E-E-E'E'E'E' 105E |k 10- h 105
M 100 // 1010 M’M 1010
h3 10—15 g h3 10-15 h3 10—15 E
10-20 é h 10-20 10-20 g
5 — 5 5 -y
h 1025 : 1072 h 105
he kS ooE | B RS osfE | B R =

Figure 7.1. Global errors of the Lobatto IIIC methods (s=2:0;3:4; 4:X; 5:0; 6:4).

The second example is a slight modification of problem (7.1) where the equation
for 2} has been replaced by 2z}, = —y, y2z3u2, so that k becomes nonlinear in . With the
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same consistent initial values defined previously, the exact solution is identical to (7.2).
The Radau ITA methods (s=2,3,4,5) have been applied to this modified problem and
in Fig. 7.2 the global errors at z,,4=0.1 are plotted.

“yn_y(mn)“ ”zn—z(wn)“ ”un—u(zn)”
! I ! o ! | i s eal ! 1 [ ool
B 10% 107 107 e [p 10°% 102 10t ] R 102 20t 1
10 B_EE’E'BEEE 1075 h M 10
2 EEEEE—BE’E' wroE B2 / o |2 M B
‘// 10-15 E ' 10-15 h? 10-15
h* o= Ly o | 1020
= B8 b4
g 1028 E 10-25 10-25
6 =
il 10-301- 10730 1050
“Pz(zn)(zn_z(zn))” ”?n—z(mn)“ ”an_u(zn)”
1 I | e I ! 1 a0 1 ! L .n0
R 103 107 100 i [B 108 102 10 1 e h 107 102 1000 1 °
10 105 105
hz E&EEEEEE 10_10 g h2 B‘E—B’E‘EE‘BE 10_10 § h2 E—E‘E‘E—E—E‘a‘a 10_10 é
' 10-15 E 1015 § 10715 E
h4 10—20 g h4 . 10—20 g h4 10—20 §
10-25 § 1025 § 10725 §
6 — 6 — 6 =
h hs 10-30 — h h8 10-30 — h hs 10-30 —

Figure 7.2. Global errors of the Radau IIA methods (s=2:0;3:4; 4:x; 5:0).

The observed orders of convergence match the theoretical results, showing clearly the
importance of the projections described in Section 6 in order to improve the accuracy
of the (z,u)-components.

As a last experiment we have applied the 3-stage Radau ITA method to the stiff
spring pendulum equations (1.4.23)-(1.4.24) with ¢ =0.001 and the initial values

2(0)=1-3¢*4+0(?), 2(0)=0, v,(0)=0(*), wv,(0)=0 (7.3)

chosen such that the exact solution is smooth, i.e., does not include highly oscillatory
terms (see [HaLuRo89a, p. 119] and [HaJay93]). This allows the use of stepsizes which
are significantly larger than . Fig. 7.3 shows the global errors as a function of h. We
see that the errors behave like O(h?), O(h),O(h5) for the components A, v,, and z
respectively. The errors for z,v, behave similarly to those for z,v, and are not plotted.
This experiment confirms the results predicted by Theorem 6.5.

-
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103 A

i
10 i;
L L 1 1 L 'l L.l l 1 1 1 1 L L 1 ]
102 h 101 100

Figure 7.3. Global errors of the 3-stage Radau ITA method
applied to (I1.4.23)-(1.4.24).




Chapter V. Symplectic partitioned Runge-Kutta methods for

constrained Hamiltonian systems.

1. Introduction to Hamiltonian systems.

Hamiltonian problems arise in a lot of applications where dissipative forces can
be neglected, such as mechanical systems, astronomy, electrodynamics, molecular dy-
namics, plasma physics, fluid dynamics, etc. The Hamiltonian system of differential
equations associated to the Hamiltonian H(q,p) (a real function supposed sufficiently
smooth) is given by

g=Hl(g,p), p=—HT(q:p) (1.1)

where ¢ =(g1,...,q")T € R are the generalized coordinates and p=(p,...,p")T €R™
the generalized momenta. The flow generated in the phase space R® xR™ of (g,p) by
these equations (1.1) is known to be symplectic, i.e., the differential 2-form

w? = Z dg® A dp* is preserved, (1.2)
k=1

implying that all differential 2d-forms

WAL AW for d=1,...,n (1.3)
LR e

d times

are also conserved (d=n corresponds to the 2n-form volume). Another specific feature
of such systems is that the Hamiltonian along a solution (g(t),p(t)) to (1.1) passing
through (gq,p,) at t, remains invariant, i.e.,

H(q(),p(t)) = H(qg,p)  for all . (1.4)

Hamiltonian systems also possess numerous other specific properties (see [ArV.89, Part
I11] and [MK92]). Unfortunately, most of numerical methods applied to (1.1) do not
maintain the above two properties (1.2) and (1.4). Various authors ([SS88], [La88],
[Sur89], [Y090], [Sun92], [Sun93], [AbSS93] among others) have identified or constructed
symplectic schemes, i.e., methods maintaining (1.2). For an overview on symplectic
integrators we refer to [SS92) and [HaNgWa93, Section I1.16].

In this chapter we consider Hamiltonian systems with holonomic constraints (see
Subsection 1.4.1). Such problems form a particular class of semi-explicit index 3 DAE’s
in Hessenberg form. We present a very eflicient class of PRK methods for the solution
of these problems. It consists of the couples of s-stage Lobatto IIIA and Lobatto IIIB
methods. These methods combine three attractive properties:

- symplecticity, such as seen with the RK methods Gauss and Lobatto IIIS (see
[Sun92], [Sun93], and [Cha90]);

- the fact that the numerical solution can be naturally projected onto the manifolds
where the exact solution lies (see [AsPe91], [AsPe92b|, [HaWa91, Section VI.7],
[LeSk94], and Subsection II1.1.3 for similar ideas), without loss of symplecticity;

-

*
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- superconvergence, a property shared by stiffly accurate (projected) (P)RK methods
(see Chapters III and IV).

The importance of symplecticity in numerical integration, especially for long-time com-
putations, is nowadays underlined by a sort of “backward analysis” by interpreting the
numerical solution as the ezact solution of a nearby perturbed Hamiltonian system (see
[SS92]). In [Ha94] Hairer proved recently the general result that all symplectic methods
whose numerical solution is a (partitioned) P-series possess this property. An extension
of this result to Hamiltonian systems with holonomic constraints and the numerical
methods treated in this chapter is likely. This fact is corroborated by the numerical
observations of Section 6.

A typical example of a constrained Hamiltonian system is,given by the pendulum
equations. Using the cartesian coordinates g=(z, z)T for the description of the position
of the pendulum, the holonomic constraint on the length £ of the rod of the pendulum

is
0=+z24+22-1. (1.5)

The kinetic energy T' and the potential energy U of the system are given respectively
by

T(q) = Z(&*+#),  Ulg) = mgs (1.6)

where g is the gravitational constant. The Lagrangian of the system is L(g, §)=T(4)—
U(q) and the generalized momenta are p= (pz,pz)T:Lg'(q, g) leading to

p, = m&, p, =mz . (1.7)
The Hamiltonian H =T+4U can be expressed by
1
H(g,p) = 5~ (pi+52) +mgz, (18)
and the Hamilton equations of motion become
. P, . D, . z . z
& =2, i=2, P, =—-£—)\, P, =—mg—z)\ 5 (1.9)

One differentiation of (1.5) implies that

0==zp,+2p,, (1.10)
and another one permits to obtain
A= : (-1— (p2+p2) —mgz) : (1.11)
£ \m’

Thus the differential-algebraic system (1.9)-(1.5) is of differential index 3.

This chapter is organized in six sections. In Section 2 we give some basi¢ defini-
tions and results related to symplectic PRK methods. Section 3 deals with Hamiltonian
systems with holonomic constraints and the application of PRK methods. Section 4
concentrates on the application of a class of PRK methods to semi-explicit index 3
DAE’s in Hessenberg form. Existence and uniqueness of the PRK solution, influence
of perturbations, estimates of the local error, and global convergence are studied. Con-
vergence results for the specific family of Lobatto IIIA-IIIB schemes are then stated
in Section 5. Finally, Section 6 includes some numerical experiments illustrating the
theoretical results.
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2. Symplectic PRK methods for Hamiltonian systems.

Hamiltonian systems (1.1) are intrinsically splitted in two parts, therefore the use
of partitioned Runge-Kutta (PRK) methods is very natural.

Definition 2.1. One step of an s-stage PRK method applied to (1.1), with stepsize h ‘
and initial values (g,,p,) at , reads

4 =% +h2 bik; , P = Po+hz’l;,;ei (2.1a) '

i=1 i=1
where B o ‘
k;=H,(Q;,F;) » £, =-H](Q;P), (2.18) ]

and the internal stages are given by

=1 =1

For a PRK method the symplecticity condition (1.2) is expressed by
Z dg* A dp* = Z dgk A dpk | (2.2)
k=1 k=1

and symplectic PRK schemes can be characterized as follows:

Theorem 2.1. If the coefficients of an s-stage PRK method (2.1) satisfy )

.= b, for i=1,...,s, _ (2.3a)
271 J It 177

b
b.G..+b.a;;—bb:=0 for i=1,...,8, j=1,...,5, (2.3b) ’

then the PRK method is symplectic.

If the PRK method is irreducible, then the conditions (2.3) are also necessary for
symplecticity. ]

Remarks 2.1.

1) For separable Hamiltonians H(q,p) = T(p)+U(q), the first condition (2.3a) can be
omitted (see [AbSS93]).

2) For a proof of the sufficiency of the conditions (2.3) see [SS88], [La88], [Sur89], and
[Sun92].

3) For irreducible PRK methods, i.e., methods without equivalent stages (see [But87,
Section 383], [Ha94, Section 4] or the definition of S-irreducibility in [HaWa91,
p. 200]), a way of showing the necessity of (2.3) is to extend the characterization
of canonical B-series of [CalSS93] to (partitioned) P-series (see [Ha94, Lemma
11)) and to apply the proof of [Ha94, Theorem 5]. For separable Hamiltonians an
alternative proof of the necessity of (2.3b) is given in [AbSS93].

s N
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Definition 2.2. The local error of a PRK method (2.1) is defined by

6qn(to) = a1 —a(to+h) , 6pn(ty) = Py — (2o +h) (2.4)
where (g(t), p(t)) is the exact solution of (1.1) passing through (g,,p,) at 2,.

Cons1denng the elegant W-transformation of Hairer and Wanner (see [HaWa91, Section
IV.5]), it is possible to construct high order symplectic PRK methods starting from
known RK methods as follows:

Theorem 2.2. [Sun92]. Suppose that a RK method with coefficients a,;, b; #0, and
distinct c;, satisfies the szmplzfymg assumptions B(p), C(q), and D(r). Then the PRK
method (2.1) with coefficients b —b » Ci=c¢;, and @yi= bj(l—a;,.i/bi) is symplectic and
satisfies

éqs(to) = 0(”’“) ; 8py(tg) = O(R™TY) (25)
with an order n=min(p,29+2,2r+2,q+r+1). O

Remarks 2.2.

1) With the help of the W-transformation it can be shown that the RK method
(A,b,c) satisfies C(r) and D(q) (see [HaWa91, Section IV.5] and [Sun92]).

2) The simplifying assumptions C(1) and D(1) (which is equivalent to C(1) by the
symplecticity conditions (2.3)) ensure here that c;, = Z;_l a;; and ¢; = =) =1 @;;
respectively. This implies some simplifications When deriving the order conditions
of PRK methods applied to non-autonomous problems: in this case the order con-
ditions reduce to those of the autonomous case (see also [HaNgWa93, p. 134]). An
example of a RK method violating one of these assumptions is given by the 2-stage
Lobatto IITA method, namely the trapezoidal rule, which satisfies B(2), C(2), but
not D(1). Another example consists in its symplectically associated method, the
2-stage Lobatto IIIB method, which satisfies B(2), D(2), but not C(1).

3) The symplecticity conditions (2.3), acting as simplifying assumptions, introduce a
reduction of the number of order conditions (see [AbSS93}).

Examples of symplectic PRK methods are given in [Sun92]. In this chapter we focus
our attention on PRK methods adapted to the situation where holonomic constraints are
encountered. In this context the couples of s-stage Lobatto IITA methods for (A,,¢)
and Lobatto IIIB methods for (Z, b,c) turn out to be of main interest. These PRK
methods satisfy the simplifying assumptiéns B(2s—-2), C(s), D(s-2), 5’(5—2), and ﬁ(s)
Concerning the coeflicients of these methods, the weights ¢, of Lobatto quadratures are
given by ¢; =0, ¢, = 1, and the remaining ¢; for : = 2,...,s—1 are the roots of the
polynomial of degree s—2 P§1_,21 )(2:1:—1) where

1,1 1 d- s—1
( )(y) Const - W21 dgo=2 ((y —-1) ) (2.6)

is a Jacobi polynomial. The coefficients bj =a,; and a;; can be computed for example

by the use of C(s), and the coefficients @,; as in Theorem 2.2 or with the help of D(s).
The Butcher-tableaux of the 2- and 3-stage Lobatto IIIA-IIIB methods are given below
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in Tables 2.1 and 2.2 respectively. For separable Hamiltonians the 2-stage method can
be applied explicitly.

4

0 0 0 o | 172 0
1| 12 1/2 1| 1/2 0
L2 12 |12 12

Table 2.1. Coefficients of the 2-stage Lobatto IIIA-IIIB method of order 2.

0 0 0 0 o | 1/6 -1/ 0
1/2 | 5/24 1/3  —1/24 1/2 | 1/6 1/3 0
1 1/6 2/3 1/6 1 1/6 5/6 0

1/6 2/3 1/6 1/6 2/3 1/6

Table 2.2. Coefficients of the 3-stage Lobatto IITA-ITIB method of order 4.

The coefficients of the 4-stage Lobatto IITA-IIIB method can be found in [HaWa91,
p. 80]. We list also below the weights c; of the 11-stage Lobatto method of order 20

1 1 1 1
¢, =0, 02=§_52, c3=§—53, c4=§—64, 65:‘2“55a c6=—2-,

1 1 1
=+6,, Cg=§+53’ C1o='2’+527 =1,

¢q =§+55, € =3

1 /1 1 /1
by :5&(_”“‘“1)‘*"13’ 63 = ‘2'\/5(—”—‘11)"“13 J

1 /1 1 /1 | -
o, =§1/ §(u+az)+asa b5 = 5\/ 5(’“—‘12)""13 ] (2.7)

9
a, =Vv—4a, a,=+/v-40, a3 = 15 a=d,-d,, B=d,+d,,

1 1 1080 96912
d, == d, — _\/ 2_4 _ 109 _ 909l
1=3(et0), dy=gy/(etofi—de, e =Frar = Sas00ea1

u—\/z_; v = $2 cos i cos(i> +——720 c= 3
=V U E goge T\ 3 O 2 61377 < Va2

Due to their symmetry, Lobatto schemes are often used for the solution of boundary
value problems (see [As85] and [AsMaRu88]). The analysis of the application of Lobatto
ITIA methods to semi-explicit index 2 DAE’s in Hessenberg form is given in [Jay93a).

9
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3. Hamiltonian systems with holonomic constraints and PRK methods.

Mechanical systems where dissipative forces can be neglected are Hamiltonian sys-
tems (see Subsection 1.4.1). Their Hamiltonian is of the form H =T+U where T repre-
sents the kinetic energy and U the potential energy. Usually the equations of motion are
not written with an Hamiltonian formalism, but in an Euler-Lagrange formulation (see
also [HaWa91, Sections VI.5 & VL.9]). Our aim here is to study Hamiltonian systems
with m <n holonomsic constraints g?(¢)=0 (:=1,...,m) (see Subsection 1.4.1, [Cho92,
Chapter 2], and [ArV.89, Section 17]). A Lagrange-type variational principle exists if
the constraints are holonomic (see [Cho92, Subsection 4.2.2]). Applying this principle

to H(g,p)=H(q,p)+ATg(q), we arrive at

g= Hg‘(q,P) ’ p= —H;T(q,p)—GT(q))\ ) 0_.:';: g(q) (3.]_a,b, c)

where G(gq) = g,(g)- The variables A\? (i = 1,...,m) are the Lagrange multipliers.
Differentiating (3.1c) twice similarly to the example given in Section 1, we obtain the
following additional constraints (omitting the obvious function arguments)

0=GH, , 0=G,(H],H)+GHLH —-GH_ HT ~GHLGTX. (3.1d,¢)
Initial values for the problem (3.1a,b,c) have to be consistent, i.e., they must satisfy
(3.1¢,d, ). From now on we suppose that G is of full row rank m and that we have an
optical Hamiltonian system (see [MK92, p. 140]), meaning that H,, is a strictly positive
definite matrix. From these hypotheses it follows that the matrix GHI G7 is invertible
(see Lemma 1.4.2), hence we get from (3.1¢)

Ma,p) = (GELGT) ™ (¢ (BT, BY)+GHL BT ~GHL HT) (4,p) (3.15)
thus the original system (3.1a,b,¢) is a semi-explicit index 3 DAE in Hessenberg form.
This explicit relation (3.1f) for A introduced in (3.1%) defines the standard under-
lying ODE (3.1a,b) which is not an Hamiltonian system in general. All equations
(3.1a,b,c,d, e) form an ODAE of index 1 (see Section II.1). A standard analysis shows
that on the 2(n—m)-dimensional manifold

V ={(¢,p) ER"XR™ | 0=g(q) , 0= G(q)H (q,p)} , (3.2)

the flow generated by the equations (3.1) is symplectic (see also [HaNgWa93, Section
1.14]).

Disregarding the property (1.4), the ideal properties for a numerical method would
be to be symplectic, to have a numerical solution remaining on the manifold V', and to
have a high order of convergence occuring with a minimal computational work. The
Gauss methods applied to (3.1a,b,c) are symplectic, but they have the disadvantages
that the numerical solution does not satisfy the constraints (3.1¢,d, e) and that a poor
(or even no) convergence occurs (see [HaJay93]). Even if projections are effected they
are not superconvergent and the symplecticity property is destroyed. To our knowl-
edge the Rattle algorithm, a method of order 2 due to Andersen (see [And83]) and
based on the Verlet method, is the only known symplectic method preserving the con-
straints which has been proposed in the literature for separable Hamiltonians of the form
H(q,p)=3pTM-1p+U(q) with M a constant positive definite matrix (see [LeSk94] and
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[SkBlOk93]) For such Hamiltonians two different approaches have also been derived
in [LeRei94]. The first one is the reduction of (3.1a,b, ¢) to an Hamiltonian state-space
form via a parametrization of the constraints (3. 1c) The second one is the construc-
tion of an unconstrained Hamiltonian system which preserves the constraint manifold
V and whose flow reduces to the flow of (3.1) along this manifold. We also mention
the investigation by Reich on constrained Hamiltonian systems in [Rei93] where high
order symplectic methods preserving the constraints are constructed by composition of
a first order method (see also [Y090]). For short-time computations, a non-symplectic
alternative is to integrate the standard underlying ODE and to project frequently the
numerical solution onto the manifolds (3.1c,d, €) (see also [AsPe93]).

Here we turn our interest to PRK methods (see Section IIL1).

Definition 3.1. The application of an s-stage PRK method to the equations (3.1a,b,¢)

reads .
9 = q0+hzbz i b = Po+h23i£i (3.3(1)
i=1 =1
where
_ gT _ T T _
k= H,(Q: F) , ¢, =—H](Q;,P)-GT(Q)A;, 0=9(Q;), (3.3b)

and the internal stages are given by
'_q0+hza’u o —Po+h2% i (3.3¢)

Remark. The existence and uniqueness of a solution to these equations is not guaranteed
without some assumptions on the coefficients (see Theorem 4.1 below and Theorem

IIL.2.1).

Let us start by supposing that we have a locally unique solution to this system (3.3). Our
aim now is to check the symplect1c1ty condition (2.2) for PRK methods with coefficients
satisfying (2.3). Without any surprise we have the following result:

Theorem 3.1. If the coefficients of the PRK method (3.3) satisfy (2.3) and if (¢;,p,)
are uniquely determined then the numerical flow (qy,p,)— (g1, p,) is symplectic.

Proof. This proof is inspired by the calculations of [SS88], [SS92], and [HaNgWa93,
Theorem 11.16.6]. We neglect the equations 0=g(Q);) for the moment. Using (3.3a) and
the bilinearity of the wedge product “A” we compute for k=1,...,n

dg® A dp*—dgk AdpE = h Z b,dk* A dpk+h Z b;dge A de¥ +R? Z b;b;dkF AdLE . (3.4)
=1 j=1 z,j=1
We then replace the differentials dg¥, dpf with the help of (3.3¢) and we obtain
dgf A dp'f—dqff A dp§ = (35)

th dk’“/\dP"-}-th dQ¥ A dth—h? Z(ba +b,0;,—b.b;)dkE A de .

2 Z] 7 J'L
,j=1

@
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4 d
Aniaﬂwggshowsthat “"j/‘ Z Z ‘5 (a)al@ /\al@

Az k= 37 9" ER
dek /\de+Z ko A dek ZZ 3gk (@, )ko AdA i . (3.6)
k=1 =1 =1 k=1

An alternative way to understand this formula is as follows: if the variable A would
be constant then as for unconstrained Hamiltonian systems (see [HaNgWa93, Formula
11.16.18]) the expression on the left-hand side of (3.6) would vanish; hence only the
terms involving dA! have to be considered. From the hypotheses (2.3) and the formulas
(3.5) and (3.6) we get

Z d‘h A dP1 Ed% A dpo _—th ZZ (Qp)de A dAé . (3.7)

i=1 =1 k=1

Now by the use of g(Q;)=0, we have G(Q;)d@,;=0, i.e.,

Z (Q )dQF = (38)

which finally gives the desired result. a

This result is another motivation to consider the constraints (3.1¢) of index 3 and not
those of reduced indices (3.1d, e) in Definition 3.1.

’b\i =b,, and €;=c;. In [Jay93b] and Chapter IV the convergence behaviour of respectively
collocation and RK methods applied to semi-explicit index 3 DAE’s in Hessenberg
form has been analyzed in detail, confirming the conjecture of [HaLuRo89a, p. 86].
Compared to other methods requiring an equivalent work, stiffly accurate RK methods,
i.e., methods which satisfy

a,; =b; for j=1,...,s (3.9)
are tuned to give highly accurate results when applied to DAE’s. Unfortunately this
later assumptlon and the symplecticity condition b;a;;+b;a;;—b;b; =0lead to b,=0 and

=0 for 7 satisfying b, #0. Therefore we have the followmg result

Theorem 3.2. No symplectic and stiffly accurate RK schemes ezist. O

This negative result is another motivation for the consideration of PRK methods. For
RK methods with an invertible RK matrix 4, one can also easily show that (3.9) implies
that R(co) = 0 where R is the stability function of the method, whereas symplectic
schemes must satisfy |R(o0)|=1.

For PRK methods the stiff accuracy condition (3.9) implies that ¢; = @, and
g(¢;) = 9(Q,) = 0. For symplectic PRK methods (see (2.3)) satisfying b; # 0 this
condition (3.9) implies that

a.,. =0 for j=1,...,s, (3.10)

Js
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and conversely. Consequently, we restrict now our analysis to PRK methods satisfying
(3.10). Under this assumption, A, does not influence the solution of the following
nonlinear system originating from (3.3b, c)

Qi =gq+h > a;HI(Q;,P;),
j=1

(3.11)
_ s—1
P =p,—h Y a;(HT(Q; P)+GT(Q))h;) »  0=49(Q)).

i=1

However, A, enters into the definition of p, in (3.3a). It is therefore natural to use
this extra freedom by choosing A, such that (g¢,,p,) satisfy (3.1d), i.e., p; and A, are
solution of :

s—1
Py =p0—h;bi (H;T(Qiapi)‘l‘GT(Qi)Ai) —hb, (Hg(Qs,P3)+GT(Q5)A3> ’ (3.3d)

0 :G(QI)HZ(thl) .

For constrained Hamiltonian systems this projection onto the manifold (3.1d) does not
destroy the symplecticity property shown in Theorem 3.1 (see also [LeSk94]). The
system (3.3d) defines implicitly p, and A, in a unique way (see Theorem 4.1 part b)
below).

Several definitions of the numerical Lagrange multiplier A, are conceivable. One
possibility is to define A, such that (g;,p;,7,) satisfy (3.1e), i.e., A, is given by
-1
A= (GHLZGT) (G (HI,HI)+GHLHI —GH. HYT) (¢,,7,) - (3.3¢)

However, a very accurate value for A\; may be unnecessary. This remark is important if
one wants to avoid the computation of extra derivatives such as ;. For PRK methods
which satisfy ¢, =¢,=1 a fairly good choice is often given by A, :=A,.

Because of the singularity of the matrix A due to (3.10), the nonlinear system (3.11)
does not possess a solution in general. This remark applies specifically to the cases
where the coefficients (4, b,c) are those of the Radau ITA and Lobatto IIIC methods,

and (A\,b,c) those of their dual symplectic methods. As it seems obviously necessary
to have as many unknowns as equations in (3.11), the only supplementary reasonable
assumption to make on the PRK coeflicients is

a;; =0 for j=1,...,s. (3.12)

Thus we get Q; =¢q, and g(Q,) =g(g,) =0 is automatically satisfied if ¢, is consistent.
For symplectic PRK methods (see (2.3)) satisfying b,7#0, this assumption implies that

i = by form =N N s (3.13)

Q)

and conversely. Under the assumptions (3.10) and (3.12) the existence and local unique-
ness of the PRK solution (g;,p;, ;) (see Theorem 4.1 below) can be shown provided h

is sufficiently small, 33 #0, and 4, :=Ao;{o is invertible where

Gy ... Gy gy

Ag=| + . 1], Ag=1| ., : : (3.14)

a5y see @ asl a's,s—l
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In this situation, for an efficient solution of the nonlinear system (3.11) (the unknowns
are Q,,...,Q,, Py, ..., P,A,,...,A,_;), simplified Newton iterations with the follow-
ing approximate Jacobian matrix

I(s—l)n —hA, ® Hz'}z;(%,?o) 0
o Isn —hzﬂ ® GT(qO) (3'15)
Is—l ® G(‘Io) O O

lead to very simple iterations (see Section IIL.6 and also [HaLuRo89a, Section 7]). Only
the decomposition of the matrix (GHZL,GT)(qgy,p,) is needed, and at each iteration
s —1 independent linear systems of dimension m must be solved, this remark being
important for a parallel implementation. Due to the invertibility of Zo =4, 20 and of
(GHLE,GT)(gy5p), the matrix given in (3.15) is invertible. Another important remark
is that high order methods allow the use of larger stepsizes than low order methods.
However, the higher the order of the method, the more Newton-type iterations are
necessary to preserve this order, and the larger the number s of involved internal stages
is required. Therefore a trade-off between a high order and a low number s of internal
stages must be made for an efficient implementation.

We mention that a particular class of PRK methods is given by the half-ezplicit
methods (HEM’s) of Ostermann (see [Os93]), whose coefficients satisfy

a;; =a;; =a,; =0, a,sj:bj, 53_1,]':51' for j=1,...,s, (3.16)

a;;=8; =0 if :<j for :=1,...,s, 73=1,...,s.

However, no second order HEM constructed in [0s93] is symplectic. The exception
is the first order HEM already presented in [Os90] and [HaLuRo89a, p. 90] which is |
symplectic if the Hamiltonian is separable.

4. A class of PRK methods for semi-explicit index 3 DAE’s
in Hessenberg form.

Instead of dealing with the equations (3.1) of Hamiltonian systems with holonomic
constraints, we consider the more general autonomous semi-explicit index 3 DAE in
Hessenberg form (see Chapter II)

y’:f(ya z) ) z'=k(y,z,u) ) 0=g(y) - (4'10', b,c)

For Hamiltonian systems with holonomic constraints we have (y, z,u) =(g, p, A), f(y,2)= |
HZT(q,p), k(y,z,4)=—HI(q,p)—GT(g)A (linear in u=21), and g(y)=g(g). Differenti-
| ating (5.1¢) twice we obtain additionally

0= (g,f) (¥,2) 0= (g,,(f, F)+9,f, f+9,f.k) (y,2u) . (4.1d,e)

We suppose that |
| (9, k0 )y, 2,2) is invertible (4.2) |

‘ in a vicinity of the exact solution (indez 3 assumption).

' |
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The analysis of the application to such systems of the class of PRK methods (see

Definition IIL.1.1) with invertible matrix A = AA is given in Chapter III. From the
discussion of the preceding section we only consider here the class of PRK methods

with coefficients (4, b, c)-(Z, b, ) satisfying the following hypotheses

;i =0, a,; =b;, a;, =0, b; =b;, ¢; =F; for j=1,...,s,

H: A, := Ay A, is invertible, b, # 0,
B(p), C(q), D(r), &(@); D(7), CC(Q), DD(R) .

ay

Definition 4.1. One step of an s-stage PRK method applied to (4.1a,b,c) with initial
values (y,, 29, %) at zy reads :

8 3
h= yo‘*‘E bk; , &l = zO-I—Zbili (4.3a)
i=1

=1
where
b= hf(YaZ),  L=hE(YLZ,U),  0=g(Y),  (43b)

and the internal stages are given by

8 S
Y, =yo+ > ask; Z; = zy+ Y Gt; - (4.3¢)
j=1 j=1

From a;; =0 we get in ¥; =y, and 9(Y;) =g(yp) =0 is automatically satisfied if y, is
consistent. From a,; =b; we get y; =Y, and 9(y,)=9(¥,)=0. From @;, =0, U, does
not influence the solution of (4.3b, ¢), but it enters in the definition of 2, in (4.3a). Asin
(3.3d) it is therefore natural to use this extra freedom by choosing U, such that (y1,27)

satisfy (5.1d), i.e., z; and U, are solution of
s=1 R
21 =% +hiz=;bik(Yi,Zi, U;)+hbk(Y,,2,,U,) , (4.3d)
0 =(g,f)v1,2) -

Several definitions of the numericalu-component u, are conceivable. One possibility
is to define u, such that (y;,z,,u,) satisfy (4.1e), i.e., u, is the solution of

0= (gyy(f7 f)+gyfyf+gyfzk) (Y1215 01) - (4.3€)

However, a very accurate value for u, may be unnecessary (see Remark 4.1.3 below).
This remark is important if one wants to avoid the computation of extra derivatives
such as g,,. For PRK methods which satisfy ¢, =¢, =1 a fairly good choice is often
given by u,:=U,.

We investigate now the existence and uniqueness of the PRK solution under the
assumptions given by H and where the initial values (yy,2,,%,) have been replaced

_—_—
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by approximate h-dependent starting values (7,(,v) = (n(h),{(k),v(k)). We do not
suppose the symplecticity conditions (2.3a,b) for the moment.

Theorem 4.1. (Existence and local uniqueness).

a) Let us suppose that

gn)=0, (44q)
(9,£)(n,0) = O(R?) (4.40)
(9yy(fs )49, f f+a,f.k)(n,(v) = O(R) , (4:4¢c)
(9,f.F,)(y, 2,u) is invertible in a neighbourhood of (n,¢,v) , (4.4d)

and that the hypotheses given by H are satisfied with ¢>2 and Q>2. Then for h < h,
there ezists a locally unique solution to

Y, =1, Y, =n+h) a;f(Y;,Z;)  for i=2,...,s, (4.5a)
. o
s—1

Z,=(+hY @k}, 2;,U;)  for i=1,...,s, (4.5b)
i=1

0= g(Y;) for 1=1,...,s (4.5¢)

which satisfies

Y,—n = 0O(h) for 1=2,...,s, (4.6a)
Z,—¢ =0(h) for i=1,...,s, (4.6b)
U,—v = O(h) for 1=1,...,s—1. (4.6¢)
b) Moreover, for .
Y ="7+hz b,f(Y;, Z;) =Y, , (4.7a) ‘
=1
.<J—1A .
2 =C+h ) b:k(Y;, Z;, V) +hb k(Y 2,,U,) (4.70)
=1
0 =(9yf)(y1’ z1) s (4.7¢)
0 =(g,,(f, F)+9,f,F+9,F.k) (15 21,1) (4.7d)

we also have local uniqueness with y,, z,, U,, and u, satisfying

y—-n=0(0), z-(=0kh), U—v=0h), u—-v=0(kh). (4.8)

Remarks 4.1.
1) A similar proof to that of [HaLuRo89a, Theorem 6.1, pp. 72-74] is possible.

_
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2) If the function k of (4.1) is linear in then instead of (4.4b, c) it is sufficient to have

(g,£)(@,¢) = O(R) , (4.4b')
(94 (F> )+ 9, Fy f+9,£)(n, (v) = O(1) (4.4¢")

and the conditions ¢>2 and @ >2 can be omitted. However, for U, and u, we only
have the estimates

U,—v=0(1), u,—v=0(1) . (4.9)

3) The value of v in (4.4c) only prescribes the solution of (4.5) and (4.7) to be close
to the manifold defined by (4.1e). However, (Y;, Z;,U;) and (y;, 2;,%,) are clearly
independent of v.

4) The invertibility of Ay = Aozo is essential for the existente of a solution to the
nonlinear system (4.5). Because of (3.11) and (3.13) the matrix A:= AA satisfies
G, =0fori=1,...,5s and a;; = 0 for j=1,...,s. The condition (4.4d) and the

invertibility of the matrix A,=A4, 20 ensure the invertibility of the Jacobian of the
system (4.5) (see formula (4.10) below).

Proof. Part a) can be proved completely similarly to Theorem II1.2.1. We get a
nonlinear system identical to (III.2.8) where the unknowns are Y,...,Y,,Z,,...,2Z,,
U,,-..,U,_,. The only modification is that the Jacobian of this system is given by

I+O(k)  O(h) 0
( O(h) I+O0(h) ~ O(h) ) : (4.10)
o)  O(1) A4, ®(g,f.k,)n,¢v)+O(R)

Concerning part b), z;, U, are the unknowns of the equations (4.7b,¢). Using again
similar techniques to those of part a) we get the nonlinear system

s—1
0=2,—(—h > bk(Y;, Z; U)-hb,k(Y,,2,,U,), (4.11a)
=1
1
0 =—(g,/)(m )+ (4.11b)

s 1
; bz-gy(n)/; fy (n+f(y1—n),é+f(z1—4)) dr - f(Y;, Z;)+
s—lA 1
> a0 [ 5. (= (=) dr T 2,V
1
gy [ £ (s =) (e =) dr KT, 2 V)

_zi:bi /01 Iyy (77+T(y1-77))d7' : (f(Yi,Zi) af(y1,z1)) .

Because of b, =b,, (4.4b,¢), (4.6), and (4.7a), for =0 the values z, =((0) and U, =v(0)
satisfy (4.11). The Jacobian of the system (4.11a,b) with respect to (2,,U,) is of the
form

I O(h)
(0(1) by - (gyfzku)(n,c,v)+0(h)) (4.12)

_
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which is invertible for A < hy. Concerning u,, from the preceding results (4.8) related
to y; and z, and because of (4.4c), for h =0 the value u, = v(0) satisfies (4.7d). The
derivative of this equation (4.7d) with respect to u; is of the form

(9, 1.k, )(n, ¢, v)+O(R) (4.13)

which is invertible for h <h,. m|

The next result is concerned with the influence of perturbations to (4.5)-(4.7).

Theorem 4.2. (Influence of perturbations). Let us suppose that the hypotheses of
Theorem 4.1 are fulfilled. Let (Y;,Z,,U;) and (y,,2,,%,) be given by (4.5) and (4.7),
and let us consider perturbed values (Y,,Z,,0,) and (3,,%,,3;) satisfying

Y, = 7+hé, V,=7+hY a;f(¥;,Z;)+hs;,  for i=2,...,s, (4.14a)
= hi: =ol1) marcle awsti powvr oY,
N _ s—1 A /)ZI;A'Z:" ..

Z,=C+hY a;k(Y;,Z;,0,)+hp;,  for i=1,...,s, (4.14b)
j=1

0= 9(2‘)"'91: for 1=1,...,s, (4.14¢)

n=1, (4.150)
s—1

% =C+h) Bk(Y, Z,0)+hb,k(Y,, Z,,0,)+huryys (4.155)
=1

0= (gyf)(g1721)+0;+1 ’ (4.15¢)

0 = (gyy(f7 f)+gyfyf+gyfzk) (§1’317a1)+0;'+1 (4'15d)

where we have supposed that

An=0(R*), AC=0k?), U,—v=0(h), &-v=0(h),

2 3 ! 2 (4'16)
§;=0(*), u;=0(h), 6,=0(r%), 6,,=0(r"), 68, =0().
Then we have for h < h, the estimates
- 1
AY; = PyAn+hciszzAC+0(hllAn||+h2I|A€|I+§I|QyAn||2+l]QzAC||2 (4.17a)

+h|8]+R2 ] +18]) ,
1 1
AZ; = PAC+O (1@, Anll+ ] P, Anl| +RIAC +11Q,AC) (4.176)
1
+I18l1+hlal+ <161
1 1
P,;AZ; = P,AC+O(]|Q, Anl|+h|[P, Anl|+RIAC]+55 1@, A0+ 21Q.A¢I"  (4.17¢)

+R|8]+hlul+161l) ,

X
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AU; = 0( —1Q, Anl|+ IP, Anll+ 1Q,ACl+] P, AC|I+—|I5II+IIu|I+ uon) (4.17d)
AU, = o(ﬁncz,,mnmnpymn+5||QZA4||+1|PzA<u+;u6u+uuu+nu,+1|| (4.17¢)

oz 0+ 2 18]
Ay, = P, An+hf,P.ACHO (] Anll A AC + 55 11Q, Anl + QA (417f)
+h||6u+h2||un+nen) ,
Az, = PAC+O(Q, 0 +BIP, Al +IAC I+ 5 1@, AP+ £ 1Q.ACF (4179)
h8l|+ Al + Rl |+ 1]+ 16 )
Au, = O (|| An+ [P, A+ hIQ, AL + 55 1@, Anl+ 7 1Q.AC? (4.17h)

+h[|8]|+ Al +hlle g |+ 181+ 18541 | +116 +1II)

where § = (6,,...,6,)T, ||6|| = max; ||6;]|, and similarly for p and 6. P, Q,, P,, and
Q, are projectors defined under the condition (4.2) by

— -1
S ku(gyfzku) gy ’ (418)
Q, =15, P, :=I1-Q,, Q,:=S5f,, P,:=1-Q,.

O

Remarks 4.2.
1) We have used the notation An=7—n, AY; =2~—Yi, Ay, =Y, —y,, and similarly for
the z- and u-components.

2) The missing arguments for f_, S, P, @, etc., are (n,¢{,v) or (17,(, G(n,()) with G
as described in (I1.1.4). Those of P ,i are (Y3, 2, G(Y;, Z,)) or (Y, Z;,U;).

3) The conditions (4.16) ensure that all O-terms in the proof below are small.

4) If g(7) = 0 = g(n) then Q,An = O(||An|?). Consequently, this term may be
neglected and the hypothes1s An = O(h3) can be relaxed to O(h2?). If we have

(9,5)#@,¢ ) 0=(g,f)(n,¢) then similarly A(= O(h) suffices.

5) If the function k of (4.1) is linear in u, then the terms {|Q,An||? and ||Q,A(]? i
(4.17) are multiplied by one additional factor A. In this case, it is sufficient to have

An=0k?), AC=0k), U,—v=0Q1), @,-v=0(1),

2 , " (4.19)
o;=0(h), p;=0(1), 8, =0(r%), 0,1, = O(h) , b1 = o),
but then we only have
AU, = 0O(1), Au; = 0O(1) . (4.20)
6) The constants implied by the O-terms in (4.17) depend on bounds for certain )

derivatives of f, g, and k, but not on the constants entering in the O-terms in
(4.4b) and (4.16) or (4. 19), if h is sufficiently small.

L——
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7) A crucial observation is that the terms ||8||/h2, ||8||/h, ||é]|/h, ||6]|, and ||p|| are not |
present in (4.17a,c, f,g,h). The effect of the projections (4.3d, ) is to stabilize the ;
numerical solution as regards the influence of perturbations. Since the constraints
(4.1d, €) are taken into account, the ODAE (4.1) is not ill-posed as it is of index 1
(see Section II.1).

Proof. The results (4.17a,b,c,d, f) can be shown completely similarly to Theorem
. I11.2.2 and Theorem IV.3.2.

The estimates (4.17e,g) can be proved with analogous techniques. Subtracting
(4.7b) from (4.15b) we obtain by linearization

s—1 3 il
Azy =AC+h Y bk, (Y, Z;, U AU +hb b, (Y,, 2, U)AU, +hp, o+ (4210) |

=1 |
O(_hIIAY||+hHAZH+hllAUl|2) ,
0 =(9,£.)(¥1521) A2+, +O (| Ay | +]| Az |17) - (4.210)

Inserting (4.21a) into (4.21d), using b, #0 and the invertibility of the matrix il] !i
(95 F )1, 2 )k,(Y,5 25, U) (4-22) i
for h sufficiently small, we get (4.17e). From (4.21b) we have
Az = Py Az +O(||Ayy |+ Az, |7 +]16,41) (4-23)

where the arguments of P} are given by (v, 2;,%;) with u; =G(y,, 2, ) given by (IL.1.4). |
The estimate (4.17g) is obtained with the help of (4.17a, b, d, ¢, f), (4.21a), and P,k, =0. 1

The estimate (4.17h) simply follows from (4.17f, g) because of B
Auy = O([|Ayy || +[| Az || +[[Auy |*+[165 1) - (4.24)

O

| Now we consider one step of a PRK method (4.3) with consistent initial values
(Yo, 2,4y ) at z, and we want to give estimates for the local error.

Theorem 4.3. (Local error). Let us suppose that the hypotheses given by H are satisfied
with ¢>2 and Q@ >2. Then for consistent initial values (y,, z,,u,) at &, we have

byp(zg) = O(R**) | 8z,(zg) = O(R*H) ,  uy(zy) = O(R*?) (4.25)

where qri, Grrt2

k =min(p, 2¢+2,24+2,¢+7+1,3+7+1,2Q-1,Q+7,Q+R) , (4.26) |
¢ = min(p, 20+2,2§+2, ¢ +7+1,§+7+1,2Q—2,Q+7,Q+R) . x|
11442, ferr2

_
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Remarks 4.3. -

1. If the function k of (4.1) is linear in  then the assumptions ¢>2 and @ >2 can be
omitted. Instead of (4.26) we get

q-’.{ﬂ"z' e?‘l’( t2
k =min(p,2q+2, 24+2,¢+7r+1,§+7+1,2Q,Q+7,Q+R) ,
X ¢ =min(p,2¢+2,2G+2,¢+r+1,§+7+1,2Q-1,Q+7,Q+R) .
qrite, irte
2. If the RK method (A4,b,¢) is symmetrical, then by the symplecticity conditions

(2.3a,b) it can be easily shown that (A,b,c) is also symmetrical. Therefore in this
situation the PRK method (4.3) is symmetrical. Hence it follows that the orders
for the local error must be even.

N

(4.26')

Before giving the proof of this theorem we first need similar definitions and results to
those given in Section II1.3. The most difficult part is to estimate the local error for
the z-component. We only outline the main differences and the slight modifications to
bring in the definitions and results of Chapter III which are needed for our purposes.
We do not rewrite all nearly identical formulas.

We denote the product matrix 4, := Aozo with AO,.ZO given by (3.15) and we
define the new “inverse matrix”

Q == (wzJ S,j=1 = E . (4.27)
0 --- 0

Following the derivation of Section III.3, we also obtain the results of Theorem III.3.1

and Theorem II1.3.2, excepted those related to £, =hk(Y,, Z,,U,), z,, and U, which will

be determined with the help of (4.7, ¢). The coefficients ®; of Definition III.3.2 remain '
valid, excepted for ®,(v) with v€ LDAT3, and ®,(u) with u € LDAT3, which enter

in the derivatives of £,, z,, and U,. Nevertheless, in Definition III.3.2 the summation

indices i and j of a;; take their values in {2,...,8} and {1,...,s} respectively, those

of G;; in {1,...,s} and {1,... ,$—1} respectively, and those of w;; in {1,...,5—1} and

{2,..., s} respectively. T i€Sgass JESK, 5

Concerning £,, z;, and U, we have the following result:

Lemma 4.4. Under the assumptions of Theorem 4.1 (with consistent values ¥y =
(Yg» 205 %o) Gt To), the qth derivatives for ¢>1 at h=0 of £,=hk(Y,,Z,,U,), z,, and '
U, satisfy

S

€900y = > v(v)®,(2)F(v)(¥,) , (4.28a)
o

Z200)= 3 7(0) Y 5,8,(0)F(v)(T,) , (4.28b)
vej(?)i?z =1

S UP0) = Y 9(w)) 58,(u)F(u)(T,) (4.28¢)
=1 uef(f)iiq‘s,, i=1

I 4
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where the coefficients ® (v) with ve LDAT3, and ®,(u) with u€ LDAT3,,, depending
on the monotonic labelling of v and u respectively, satisfy

B,(v)= D -0 By o8y, D, (4). B, (Ba)X (4.29a)
‘:11’,---’,‘;: Qul (vl) e Qu,‘ (vn)és(ul) b Qs(u’p)

Fo=[t, ety VyyeeesVpyty,yeaeyu,],€LDATS, ,

s // Mi\x i/ ‘\\\’:,
D b®(w)=T(w) Y bagy -+ -bagy by -+ Onfr byt 10 Bag, (T1) - B, (Tag) X
= My,....Mp v
e Sy (V). By (V)2, (1) .8, (1) (4:295)

ifu=[tgstsse st ] ELDATS, with ty=[Ti,...,Tas, Vy,..., Vyl, € LDATS,

and t, is the subtree of u among {t4,,,...,t,,} having the smallest indez attached to
the root. The coefficients T(u) depending on the monotonic labelling of u (only by the
position of the smallest index among the meagre vertices attached to the root) are given

by

1
(e(u)+1)y(u)

T(u) = Y(TL) .o A Tag)¥(V2) - (Vv () -+ 2(24) - (4.30)

3{ v+ )
( TR X
Remark 4.4. A similar proof to the second one given for Theorem III.3.1 is not directly

possible, because we do not obtain strict DA3-series. The theory of DA3-series should

require slight modifications to be applicable in our new situation.
2 L qq X
Ezample 4.1. The coefficient Y(u) of the labelled tree u in Fig. I1.5.13 is given by

1 A P
Y(u) = - 7(T) XX ¥
L3 5 |
Tga @Sl 7 ;
: |
Proof. From 0=(g, f)(y;, %) we have for ¢>2 .
(¢-2)
0 =((g,N(@1,2)) (4.31)
- ¥ 61+ g(y,) (3M+Nf(y1, %) ( D gd0 00 )
- 14+m M N = ? 27 ?
VSLDATS3, 4 by Oy 0z
1 1
WD ,ygum)>

with pl+.. . +pl +pd+.. . +pd,4+v,+...+vy=g—2. The trees of VSLDAT3 u,g BT€

similar to those described in the proof of Theorem II1.3.1. We give below one example




130 Chapter V. Symplectic PRK methods for constrained Hamiltonian systems

of a such very special labelled DAT3, -tree (its corresponding expression is mentioned)

3 87
g_yg'(yl) (ga‘%(yl ,11)(y£2),z§1) ,z£2)),y£2) ayg_l)

Figure 4.1.

From (4.3a) and b; =5, we get. for ¢g>1
y:(lIZ) N Zbikgq) , z§¢1) — Z b,-fgq) ) (4'32)
i=1 =1

These formulas can be inserted for k=0 into (4.31) leading to

0=(g,£.)0 b4V (0)+ (4:33)
=1
31+mg) (( 9M+N f ) 2 (u?) >~ ) .
— — bk;"(0),..., ) b;4;7%(0),...},
VSLDXA:TS,,,,q(ayH- 0 oyMoZN 0(; ; )

(m,M,N);é(0,0,l)

3 bk40(0), .. ) .
=1

Similarly to the proof of Theorem III.3.1 we are not interested in the cases ¢ = 2,3.
Formula (IT1.3.21Db) is also valid for qu)(O). Inserting this formula (with g replaced by
g—2) into the first term of (4.33) yields

0 =(g—2) i by - (g, .k )oUT 2 (0)+ (4.34)

=1

(-2 3 b (9, £ Do

gm+ntpk ‘ d (u1) s ) -

SLDAT?)Z,q_z =1 =1
(m,n,p)#(6,0,1)

[ 91tm 8M+N d f® "
> (532) ((ram ) (b0, 30 0),),
0 ° =1

VSLDAT3. 4 i=1
(m,M,N)#(0,0,1)

S )
=1

———
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Since the matrix (g, f,k, ), is supposed to be regular, then we can extract the expression
Y8 b, U (0) for ¢>4 from this formula, giving

i=1%1"1¢

Z b,U(0) = (4.35)

mpE DLk (k) a )

3 (M zs:a.lkgf‘l)(o) : ia.leg”l)(o) U{*)(0) +
Sy o EeT ), ; ey G yers, U -

SLDAT3. 4_ =1 =1

(moms2)#(0,0,1)

(= 2)( g, fk)et D (g%n%) ((;:;:;f) (Zb K0,

VSLDATS,
(m, M,N)#(0,0.1)

Zb £7(0),. . ) Zb k0 (0) ) .

From the formulas (II1.3.19), (4.32), (4.35), by 1nduct10n on g, and explmtmg the mul- |
tilinearity of the derivatives, we obtain the desired result. Similar arguments to those

given in the first proof of Theorem II1.3.1 can be used. For example to each expression

appearing in the right-hand side of (4.33) there corresponds a unique m.l. tree and

conversely. We illustrate this fact on the following example

Figure 4.2. !

Since each m.l. tree appears exactly once the relations (4.28a,b, ¢) are established. 0O

For the numerical solution y,, 2,, we then easily obtain:

Theorem 4.5. Under the assumptions of Theorem 4.1 (with consistent values ¥ =
(Yos 29> Up ) at Ty), the Taylor ezpansions at z, of the numerical solution y,, 2, are given

by
et Y S bR, - (4.36a)
teELDATS, ) i=1

teDATS3,

o =zn+ Y Z(g;;)!'y(v)Zbi@i(v)F(v)(\Ilo). (4.36)

vELDATS,

O
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The order conditions for the y-component are given by (III.4.2a). Those for the
z-component are given by (IIL.4.2b) where trees of LDAT3, must be considered, i.e.,
a different order condition occurs for each monotonic labelhng of a DAT3 -tree. This
fact is due to the results of Lemma 4.4.

In order to estimate the local error under the assumptions of Theorem 5.3, the
reductions by C(q), C(3), ICC(Q), D(r), D(), and IDD(R)-D(7)-(S) (F>1) described
in Section III.4 can also be applied in our situation. We are now able to prove Theorem
4.3: '

Outline of the proof of Theorem 4.3. The estimate (4. 25) (4.26)-(4.26') for the
y-component can be obtained with the same techniques used in the proof of Theorem
I11.4.3 to show (1I1.4.11a)- (III 4.11'a). s

We outline the main points of the proof for the z-component. The techniques
used to prove (4.25)-(4.26)-(4.26') are again similar. We do not need the results on the
composition of DA3-series of Section IL.5. If for a tree u € LDAT3,, the right-hand side
of (4.29b) can be reduced, i.e., if all expressions S, 5,8, (w) are replaced by 1/v(w),

then we get
- 1
248 = Sty (437)

After application of the reductions C(g), 6(@), etc., there remain trees of the form

Figure 4.3.

where u = [t,t,,...,t,], € LDAT3, with ty = [T},..., Ty, Vi, ..., Vy], € LDATS,.

From the simplifying assumptions IDD(R)-D(1)-(S) we get the following supplemen-
tary “reduction”

2 bi(cf—l)wijga]- = k(k-1) Z bcE 20, —kp, for k=1,...,R. (4.38)

For k=1 the term k(k—1) 3 b;c¥ =2, has to be removed. This relation implies that the
order condition of the tree in Fig. 4.3 with n < R can be reduced to those of DAT3y-trees
or to those of LD AT3,-trees with a smaller height and order, because of

szc ®.(u) = Zb (c? 1)@i(u)+z b,8,(u)
=Ebi(c l)wu J#o‘bﬂo(tO) Lipm um(tm)+zb i(w)
=n(n—1)zbici— iJ Jpoépo(to) Jp,m p.m(t ) (4'39)

D 00 @, (te) 00 B (E)+
T () Z bMI‘I’Ml(Tﬂ"‘bMM‘i’MM(TM)leq’Nl(Vl)"'

e by Oy (V)b By, () -8, 8, (E) -
H1yeeoshm
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The estimate (4.25)-(4.26)-(4.26') for the z-component then follows from the “first
worse” order conditions which correspond to the same trees given in Fig. I11.4.8.

For the u-component (u, defined by (4.3€)), the result trivially follows from the
results for the y- and z-component as a consequence of

Sup(to) = O (||8ya(te)l+1162 (o)) - (4.40)
O

We are now able to give a global convergence result.

Theorem 4.6. (Global error). Consider the differential-algebraic system (4.1) with
consistent initial values (y,;zy,uy) at ¢, and the PRK method (4.3) with coefficients
satisfying the hypotheses of Theorem {.4. Then for z,—z,=nh< Const, we have

yn_y(mn) = O(he) 9 Zn—Z(:Dn) = O(ht) ’ un_u(mn) = O(ht) (4'41)
where £ is the value defined in Theorem 4.3.

Remark 4.5. This theorem remains valid in the case of variable stepsizes with h =
max; h,.

Proof. The result (4.41) is a direct consequence of Theorem 4.2 and Theorem 4.3. We
denote two neighbouring PRK solutions by {¥,,%,}, {¥,,%,} and their difference by
Ay, =Y,-7,, Az,=Z,—2,. We suppose for the moment that

1Ta—w(z )l < Cob? , ||Z,~2(z, )l < Cob, [|Ay, || < C1R°, [|Az, || < C1R? (4.42)

(this will be justified below). Because of ¢(3,) = 0 = ¢(¥,) and (g,f)(¥,,%,) =0=
(9, f)(¥y>2,), Remark 4.2.4 holds, implying that

(Qz)'n,Azn = O(”AynlI+|lAzn||2) = O(”(Py)nAyn”+h2”(Pz)nAzn”) * (4'43b)
Theorem 4.2 can be applied with §=0, =0, ., =0,6=0,6,,, =0, and 6 , =0
yielding

(Py)n+1 Ay-n,+1 =(Py)nAyn+ o (h”(Py)nAyn”+h“(Pz)nAzn“) ? (4‘436)

(Pz)n+lAzn+1 =(Pz)nAzn+ O (h”(Py)nAyn“+h”(Pz)nAzn||) N (4'43d)

In (4.43) (P,)n» (Qy)ns (P,)n, and (Q,),, are evaluated at (¥,,2,,d,). The estimates
(4.43) lead to

1Ay, Il <C (I(P,)e Ayl +[I(P)oAz]) (4.44a)

18z, ]| <C (I(P,)oAyoll+[I(P,)oAzll) - (4.44b)

Hence the result (4.41) follows from standard techniques (see [HaLuRo89a, Fig. 4.1,

p- 36] or [HaNgWa93, Fig. I11.3.2, p. 160]). The assumption (4.42) is justified by in-

duction on n provided the constants C; and C; are chosen sufficiently large and  is
sufficiently small. \ O
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5. High order symplectic PRK methods for constrained

Hamiltonian systems.

In this section we turn our interest to PRK methods satisfying the hypotheses given
by H (see the previous section) and the symplecticity conditions (2.3a,b).

A direct application of Theorem 4.6 to symplectic PRK methods leads to the fol-
lowing result (put §:=r and 7:=gq in (4.26)-(4.26'), see Remark 2.2.1):

Corollary 5.1. Consider the differential-algebraic system (4.1) with consistent initial
values (Yo, Zg»Ug) 0t Ty and the PRK method (4.3) with coefficients satisfying the hy-
potheses given by Theorem 4.3 and Theorem 2.2. Then for z, ) =nh < Const, we
have

yn'_y(m'n.) = O(hy) ’ zn_z(zn) . O(hy) ’ un_u(tn) = O(hy) (5‘1)

where v = min(p, 2¢+2,2r+2,q+r+1,2Q —2). Moreover if the function k of (4.1) is
linear in u then convergence of order v=min(p,2q+2,2r+2,9+7r+1,2Q—1) occurs. O

For the application of symplectic PRK methods to Hamiltonian systems with holo-
nomic constraints, the convergence behaviour is now a direct consequence of Corollary
5.1.

Corollary 5.2. Consider the Hamiltonian system with holonomic constraints (3.1) with
consistent initial values (gy,pg,Ag) at t, and the PRK method (3.3) with coefficients
satisfying the hypotheses given by H and Theorem 2.2. Then for t,, —t, =nh < Const,
we have

0,—4q(t,) = O(h") ,  p,—p(t,) =O(R"), A, =Alt,) = O(r") (5.2)

with v=min(p, 2¢+2,2r+2,9+7r+1,2Q—1). O

The couples of s-stage Lobatto IITA-IIIB methods (see Section 2) satisfy the sim-
plifying assumptions C(s), D(s—2), C(s—2), and D(s). Hence CC(s—1) and DD(s—1)
must hold. In fact they also satisfy Ca(s) and Dﬁ(s) and this is the subject of the
following lemma:

Lemma 5.3. Suppose that a;; =0 and a,; = b; hold for j =1,...,s, and that the
hypotheses of Theorem 2.2 are fulfilled with p=2s—2, g=s—1, and r =s—2. Then
CC(s) and DD(s) are satisfied.

Proof.
Proof of CC (s). Because of @ >s—1 it is sufficient to show that the coefficients

Z Z ] chk s(sci 1) (5'3)

j==1 k=1
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vanish for :=1,...,s. From a,; =0 and ¢; =0 we have 6,=0. Using a,;=b; and ¢, =1
we get

We will next show that the sums
szcm—la (5.5)

vanish for m=1,...,s—2. This will give the desired result 6,=0 fori = 2,...,s—1. By
the symplecticity condition a;; =b;(1-3;;/b;) we get S, =4, —-B_,-C, where

= E by Z Z bidjei” (56)

k=1 j=1
S
Zb Z @t Zajkc;—z , (5.7)
by te? 5.8
m 3(3—1) Z ( )
Each term can be computed separately
ZORN ~a Bl (1 1y L
= Zbic Zbk(l Ck Ck = m (s—l s - mS(S—l) 9 (5.9)
C’(s 2) 1 e—2 D(s 1) +1
EZ”:% @;5.Ch = m(m+1) Zbk(l ¢y

k—1_7 1

s— 1 i 1 1
B(2s-2) ( _ ) _ ’ (5.10)

m(m+1) \s—1 m+s m(m+s)(s—1)
c. B(25-2) (m+s)ls(s_1) : (5.11)

From these results we easily get S,, =

Proof of Dﬁ(s). Because of R>s—1 it is sufficient to show that the coefficients

- . o 1 c c3
B = ZZbic‘;’ zaijajk—bk (; f (o k 1)) (5.12)

=1 j=1

vanish for k=1,...,s. From @;, =0 (see (3.11)) and ¢, =1 we have p, =0. Using
@;, =b, (see (3.14)) and c; =0 We get

: -1 s
iy = by (Ebicz"l—;) “o. (5.13)
i=1
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We will next show that the sums
T = prcrt (5.14)

vanish'for m=1,...,s—2. This will give the desired result y;, =0 for £ = 2,...,s—1.
By the symplecticity condition @, =b,(1—ay;/b;) we get T,,, =D, —E_ —F,, where

= Z bic ™ Z a;; Z byt (5.15)
=1

j=1

S
= Z bic;?_z ” Z by ay; (5.16)
=1

j=1 ~7 k=1
1 = .
F =;Zbkc;;z e Z P+ Zbk Ko (5.17)
k=1

Each term can be computed separately

e Zb Zbk m—1 B(2) nis , (5.18)

D(s —2) 1 szc Za”(l C C(s 1) 1 Eb m(m+1)zb m+.s-~1

B(2s—2) 1 1
= —— 5.19
| ms m(m+1)(m+s)’ (5.19)
' B(2s—2) 1 1 1
F = —=— ; 5.20
b ms (m+1)(s—1) M s(s—1)(m+s) (5.20)
From these results we easily get T, =0. O

From Corollary 5.1, Corollary 5.2, and Lemma 5.3 we have now the following conver-
gence results:

Corollary 5.4. For the couples of s-stage Lobatto IIIA-IIIB methods applied to the
system (4.1) (see (4.3)) with consistent initial values (yq, 29, u,) at z,, the global error
satisfies for z, —zy=nh< Const

ypmp(z,) = O(h*2), 2,-2(2,) =O(h*™?), u,—u(z,)=O(R™2).  (521)

Proof. These methods satisfy the hypotheses given by H viith p=2s—2,q=7=as,
r=g=s—2, and Q= R=3s. The invertibility of the matrix 4, = 4,4, simply follows
from CC(s). |

Corollary 5.5. For the symplectic couples of s-stage Lobatto IITA-IIIB methods applied
to the constrained Hamiltonian system (3.1) (see (3.3)) with consistent initial values
(go»Pos Ag) at ty, the global error satisfies for t,—t, =nh< Const

a—a(t,) = O(h*7%),  po—p(t,) = O(R** %), A,=A(t,) = O(R*7%). (5.22)

*
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Proof. The symplecticity of Lobatto ITIA-IIIB methods has been proved in [Sun92b].
The estimates (5.22) are an immediate consequence of (5.21). |

For separable Hamiltonian systems the 2-stage Lobatto IIIA-IIIB method is half-
explicit and is equivalent to the Rattle algorithm proposed in [And83] (see also [LeSk94]).

Because of the presence of the “explicit” stage P, in (2.1) and (3.3) for symplectic
PRK methods satisfying a,; = b;, the Lobatto IITA-IIIB methods are not appropriate
when solving stiff Hamiltonian systems e.g., Hamiltonian systems containing a strong
potential of the form

1

=V, 0<e<l. (5.23)
This has been numerically observed when trying to solve the stiff spring pendulum
equations (1.4.23)-(1.4.24) (see [Lu93] and [HaLuRo89a, pp. 10-12]) with Lobatto IIIA-

IIIB methods.

For the long-time integration of Hamiltonian systems, a constant-stepsize applica-
tion of symplectic methods performs generally better than variable-stepsize algorithms
if the time-scale does not vary greatly along the solution (see [CalSS92]). The reason lies
in a “backward analysis” argument (see [Ha94]). For constant stepsizes and symplectic
methods, the numerical solution can be interpreted as the exact solution of a nearby
perturbed Hamiltonian system. It is likely that this result can be extended to Hamil-
tonian systems with holonomic constraints. We also point out that the construction of
an embedded PRK scheme is not crucial for a constant-stepsize implementation if an
approximation to the global error of the method is not needed.

6. Numerical experiments.

We first notice that for the solution of the nonlinear systems (3.12) or (4.5), the
s-stage Lobatto IITA-IIIB method requires a computational work approximately equi-
valent to that arising for the (s —1)-stage RK methods Radau IIA and Gauss. Hence
these methods are comparable.

Example 1: we consider the motion of a particle of mass m and electric charge e,
moving on a sphere of radius R under the action of forces due to an electric field
(0,0, E)T and to a magnetic field (0,0, B)7 (see [Cho92, Problem 7.16]). We use the
cartesian coordinates ¢ = (z,y,2)T for the description of the position of the particle.
The holonomic constraint is expressed by

L 0=+/2?+y?+22-R. (6.1)
The Lagrangian of the system is given by
L(q,q) = %(:&2+y2+22)+m(my—y:&)+eEz (6.2)

where w = eB/(2mc) and c is the speed of light. The generalized momenta are p =
(pzﬁpy,pz)T:Lg(q, g) leading to

P, = mi&—muwy, p, = my+muwz, p, =mz . (6.3)

Ui

— e e )
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The Hamiltonian H =pT¢—L is given by

1
H(g,p) = 5— ((P=+nwy)2+(py—nwz)2+pﬁ) —eEz
and is therefore non-separable. The Hamilton equations of motion are

:i:=&+wy, y:ﬁ—wz, zz& s
m m m

R

Pe =wpy—mw2z—-;—2z\,
One differentiation of (6.1) implies that
0 ==zp,+yp, +2p, ,
and another one permits to obtain

11,5 2, 2 20,2, .2
A= ¥ (;n-(Pz‘l‘Py'*‘Pz)—m‘-" (z°+y )+ zeE

: Y . z
Py =—wp, —mw’y— =, P, = eE—EA .

(6.4)

(6.7)

We have applied 5000 steps of the 3-stage Lobatto IITA-IIIB method of order 4 with

stepsize h=0.12,
m=1, w=1, R=1, eE=1,
and consistent initial values
z(0)=0.2, y(0)=10.2, z(0)=+0.92,
p,(0)=1, p,(0)=-1, p,(0)=0.

We have plotted in Fig. 6.1 the phase portraits (z,p,) and (z,p,).

(6.8)

(6.9)

Figure 6.1. The phase portraits (z,p,) and (z,p,) of the 3-stage Lobatto IIIA-IIIB

method applied to Example 1 with stepsize h=0.12.
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In Fig. 6.2 we have drawn the first 500 steps of the numerical Hamiltonian, whose value |
for the exact solution is H =1.22 —1/0.92 =~ 0.4808336955. The remaining 4500 steps '
show the same periodic behaviour. If the scale of Fig. 6.4 would be used here then the 1
numerical Hamiltonian would appear nearly equal to the exact value. !

0.480840
H

= ¥
Hexact b - - - - . - . . P . . . Iz

0480825 PP ST T ST SO I U S ST R VAT ST ST I TSRS VN S S ST ST ST A S SO S R U SAT S RS i SR R v, . W ., .,
0 10 20 30 40 50 t 60

Figure 6.2. The numerical Hamiltonian of the 3-stage Lobatto IITA-IIIB
method applied to Example 1 with stepsize h =0.12.

As a comparison we have applied the 2-stage Radau ITA method with the same stepsize
h=0.12. The numerical results are given in Fig. 6.3 and 6.4.

[ Pz F Pz

1.z —1‘ ...l.

-1}

Figure 6.3. The phase portraits (z,p,) and (z,p,) of the 2-stage Radau IIA
method applied to Example 1 with stepsize h=0.12.
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H exact
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Figure 6.4. The numerical Hamiltonian of the 2-stage Radau IIA
method applied to Example 1 with stepsize h=0.12.

Since the numerical solution of the Radau ITA method does not satisfy all underlying
constraints, we have also applied this method with projections onto these constraints
after every step. Although the theoretical order of convergence is improved compared
to the unprojected method, the numerical results did not exhibit any visible difference
with regards to Fig. 6.3 and Fig. 6.4. For that reason the corresponding figures are not
plotted.

- We observe that for the Lobatto IIIA-IIIB method the numerical Hamiltonian re-
mains in tolerable bounds, but it drifts away from the exact value (roughly linearly with
time) for the unprojected and projected Radau ITA methods. This is a demonstration
of the different behaviour of symplectic and non-symplectic integrators.

Example 2: the double pendulum. We use the cartesian coordinates ¢, = (z;, 2,)7,

g, =(z,,2,)T for the description of the position of each pendulum. The two holonomic
constraints on the lengths £, and £, of the two pendula are

0=fzi+zi—t, 0=1/(z,—2) +(5—2)2L, . (6.10)

The Lagrangian of the system is L=T—U where

T(q) = Tl (e1+22) +,f(z§+23), U(g) = mygz; +mygz, , (6.11)
thus the generalized momenta are

Pgy =T 21, Pz = M2, Py, = MpT2 Py, = M2 - (6.12)

The Hamiltonian H =T +VU is given by

1 1
H(q,p) = I (P2 +p2)+ o, (2, +02,) +m gz, +myg2, (6.13)
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and is separable. The Hamilton equations of motion are -

. D . D . b . y

q=tmn  h=0h B=0h A=

) z T,—2 . z 2o —2

De, =——1A1 +‘—( 2 1)A25 P, =—m1g——1—)\1+( 2 I)AZ ’ (6'14)

¢ £, ¢ £,
. Ty—T . Zo—2
B N I
2 2
One differentiation of (6.10) implies that X
Py, P P, D,

0= . 0= (z,— z_ T2 —z) (B2 6.15

T1Py, T21D,, ("32 ‘1’1) (m2 m1)+(z2 z1) (mz ml) ) (6.1 )
and another one leads to i

2 + 2 T A L
0 =M_elxl+2—a(zg+z§_eg_eg)_mlgzl : (6.16)

1
2 2

Pz, P: Pz, P: A 2, .2 g2 g2 il 1
0= =2_-—7 = _-= )2l | —+— ] .

(mz m1) +(m2 ml) +2m1Z1 (m2+22 ! 2) 22 m1+m2

We have applied 5000 steps of the 3-stage Lobatto IIIA-IIIB method of order 4 with
stepsize h=0.12,

m; =1=m,, Ea= le=pltn g=1, (6.17)
and consistent initial values
2,(0) =05,  2(0)=—v075,  2,(0)=0,  2z(0)=-2V0.75,
p:|:1(0) ':0’ pz1(0)=0 ? pzz(o)zo’ pz2(0)=0 :
We have plotted in Fig. 6.5 the phase portraits (z;,p,,), (23,P,,), and in Fig. 6.6

the first 500 steps of the numerical Hamiltonian whose value for the exact solution is
H= —-3+0.75~ —2.5980762113.

(6.18)

L D2, _1
L _pzz

|

zs -15

Figure 6.5. The phase portraits (z,,p,,) and (2,,p,,) of the 3-stage Lobatto IIIA-IIIB
method applied to Example 2 with stepsize h=0.12.
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~2.598066 [
HE
Hexact:,:‘\ e -"’_: -~ f.',' .'"-. :ﬂ‘. ,"-‘. :-5' :_‘. ENEA? ,’q’..,’" :'..'. O :“'. ;-. f'-. ~ :"'-' NN
-2 86 Ce s 000 0y | PR | | P PR R Lo o o
3980 0 10 20 30 40 50 t 60

Figure 6.6. The numerical Hamiltonian of the 3-stage Lobatto IITA-IIIB
method applied to Example 2 with stepsize h=0.12.

As a comparison we have applied the projected 2-stage Gauss method and the unpro-
jected and projected 2-stage Radau ITA methods to this problem with the same stepsize
h =0.12. Their numerical Hamiltonian is plotted in Fig. 6.7. We point out that the
unprojected 2-stage Gauss method generally diverges when applied to Hamiltonian sys-
tems with holonomic constraints (see [HaJay93]). This has been numerically observed
for this problem. Although the unprojected Gauss methods are symplectic, the pro-
jected Gauss methods are not, and we clearly see here that the numerical Hamiltonian
drifts off the exact value. However, this drift is less drastic here than for the unpro-
jected Radau ITA method which in turn is less severe than for the projected Radau ITA
method.

—2.58
HE
Hexa,ct .
proj. Gauss (s=2)
3 Radau ITA (s=2)
3 proj. Radau ITA (s=2)
D64 B | U b o oy o 0 e o b |
0 10 20 30 40 50 i 60

Figure 6.7. The numerical Hamiltonians of the projected 2-stage Gauss
method and of the unprojected and projected 2-stage Radau IIA methods
applied to Example 2 with stepsize h=10.12.

In Fig. 6.8 the global errors at ¢ =5 of the four above-mentioned methods have been
plotted as functions of h. Since we have used logarithmic scales, the curves appear as
straight lines of slope k whenever the leading term of the error is O(h*). This behaviour
is indicated in the figures.
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Figure 6.8. Global errors at t =5 of four methods applied to Example z.
(projected 2-stage Gauss:o;projected 2-stage Radau ITA:x;
2-stage Radau IIA:+; 3-stage Lobatto IIIA-ITIB:o).

The order of convergence of the projected s-stage Gauss method is s and that of the
projected s-stage Radau ITA method is 2s—1 (see Theorem III.5.1). For the unprojected
s-stage Radau ITA method the order of convergence is 2s—1 for the g-component, s for
the p-component, and s—1 for the A-component (see Corollary IV.6.2 and [J93b]). The
predicted orders are confirmed in Fig. 6.8 and this clearly shows the superiority of the
Lobatto IIIA-IIIB schemes also in terms of accuracy.

Example 3: the pendulum, whose equations are given in Section 1. We have applied
5000 steps of the 2-stage Lobatto IIIA-IIIB method with stepsize A=0.3 to the ODAE
(1.9)-(1.5)-(1.10)-(1.11) with

m=1, £=1, g=1, (6.19)
“and consistent initial values
z(0) =09, 2z(0)=-+0.19, p,(0)=0, p(0)=0. (6.20)

We have plotted in Fig. 6.9 the phase portraits (z,p,), (2,p,), and in Fig. 6.10 the
first 500 steps of the numerical Hamiltonian whose value for the exact solution is H =
—+/0.19=-0.4358898943.
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B

-1p

Figure 6.9. The phase portraits (z,p,) and (z,p,) of the 2-stage Lobatto IIIA-IIIB
method applied to Example 3 with stepsize h=0.3.
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Figure 6.10. The numerical Hamiltonian of the 2-stage Lobatto IIIA-IIIB
method applied to Example 3 with stepsize h=0.3.

As a comparison we have applied on the index 3 problem (1.9)-(1.5) 5000 steps of the

2-stage Radau IIA method with stepsize h = 0.3. The numerical results are given in
Fig. 6.11 and 6.12.
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Figure 6.11. The phase portraits (z,p,) and (z,p,) of the 2-stage Radau IIA
method applied to Example 3 with stepsize h=0.3.
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Figure 6.12. The numerical Hamiltonian of the 2-stage Radau ITIA
method applied to Example 3 with stepsize h=0.3.

As in the preceding example we have also applied the Radau ITA method with pro-
jections onto the constraints (1.10) and (1.11) after every step. The numerical results
plotted in Fig. 6.13 and 6.14 are worse for this problem.
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r Pz F Pz

Figure 6.13. The phase portraits (z,p,) and (z,p,) of the projected 2-stage Radau IIA
method applied to Example 3 with stepsize h=0.3.

04
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Figure 6.14. The numerical Hamiltonian of the projected 2-stage Radau IIA
method applied to Example 3 with stepsize h=0.3.

We observe again that the numerical Hamiltonian remains in tolerable bounds for the
Lobatto IIIA-ITIB method, but drifts away from the exact value (roughly linearly with
time) for the unprojected and projected Radau IIA methods.

Example 4: For our last experiment we have applied the Lobatto IIIA-IIIB methods
to the following index 3 problem (a non-Hamiltonian system)

Y= 2010212, 5 Yo = —U1¥r7s
2= (nthtazn)u, z5=-yyszsu’, (6.21)

0=y, %51,
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which is of the form (5.1a,b,c) with k nonlinear in u. For the consistent initial values
y(0)=(1,1)T, 2(0)=(1,1)7, and u(0)=1 the exact solution is given by

y,(z) = z,(z) = e?®, Yo(z) = 2z5(z) = €77, u(z) =€® . (6.22)

In Fig. 6.15 the global errors at z, 4 = 0.1 for the Lobatto IIIA-IIIB methods (s =
2,3,4,5,6) applied to (6.21) have been plotted as functions of k. Since we have used
logarithmic scales, the curves appear as straight lines of slope k& whenever the leading
term of the error is O(h*). This behaviour is indicated in the figures.

U X X
1y =y (M |2, —2(%,)]l llwn—u(3,)l|
| l ' in | I l 10! I I l 1 nnl
h 103 102 107! “’; E 107 102 100 gt | 10% 102 100 1
E‘B‘E—E‘E’E—E’a -0 'b E‘E_E—E'E—E’E‘a 10° E EEEEEEEE 10°°
2 2 — 2
h 101 h 10710 L 10710
h4 10—15 h4 10—15 E h4 10—15
1020 10-20 é 10-20
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Figure 6.15. Global errors of the Lobatto IIIA-IIIB methods applied to Example 4.
(s=2:1;3:+; 4:X; 5:0; 6:4).

This is a numerical confirmation of Corollary 5.4.
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Résumé de la thése en francais.

Introduction.

Le sujet de cette these traite de I’Analyse Numérique des Equations Différentielles
Algébriques (EDA). Les EDA consistent en des systémes mixtes d’équations différentiel-
les et d’équations algébriques (i.e., non linéaires) qui ne peuvent étre exprimés sous forme
d’Equations Différentielles Ordinaires (EDO). Ce sujet qui est actuellement en plein
essor, est essentiel pour les calculs scientifiques en physique, en chimie et dans les ap-
plications techniques. Les équations différentielles représentent un cadre mathématique
naturel dans lequel se modélisent de nombreux probléemes dans les domaines susmen-
tionnés. Bien souvent, en plus d’équations différentielles les modéles contiennent des
équations implicites, en général purement algébriques (non linéaires), afin de tenir
compte par exemple de lois de conservation, de contraintes géométriques et cinématiques,
des lois de Kirchoff, etc. Des exemples typiques o1 de tels systémes d’EDA surviennent
sont les suivants :

- en dynamique des systémes mécaniques;

_ dans 1’étude des systémes Hamiltoniens munis de contraintes, par exemple en dy-
namique moléculaire;

- en analyse des circuits électriques;
- en cinétique des réactions chimiques;

- dans les équations provenant de la discrétisation d’équations aux dérivées partielles,
par exemple en mécanique des fluides;

- en théorie du controle, par exemple en robotique;
- dans l’analyse des EDO raides (en anglais “stiff”).

De facon plus précise on entend par EDA tout systéme d’equations de la forme
Rl(w’yp cee ,yn,y:'l)' . '7?/-57,) =0,

(1)

Rm(‘”’yl"' ',yn7y§l,' "7y-:1,) =0 P

ou plus succinctement

R(:c,y, y’) =0, (1')

et oll m >n, z est la variable (unidimensionelle) d’intégration, y = (y;,... Yn) T, Y =
(¥5,...,y,)T = dy/dz et R, n’est pas de rang maximal n (singuliére si m=n).

Quoique le domaine des EDO est traditionnel en Analyse Mathématique depuis
’époque de Newton, le traitement systématique des EDA n’a réellement pris son es-
sor que depuis la derniére décennie. Les EDA différent par plusieurs aspects des EDO
et elles présentent de nouvelles difficultés tant sur le plan analytique que numérique.
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Contrairement aux EDO qui sous des hypothéses raisonnables admettent une solu-
tion unique pour de quelconques valeurs initiales, il n’existe pas de théorie générale
d’existence et d’unicité des solutions pour les EDA. Par exemple les EDA peuvent ne
posséder des solutions que pour un sous-ensemble de valeurs initiales dites consistantes,
peuvent avoir plusieurs solutions possibles, peuvent présenter des bifurcations, peuvent
posséder des points d’impasse ou de rebroussement, ou peuvent carrément ne pas avoir
de solution du tout. C’est la raison pour laquelle chaque type de probléme nécessite
une analyse particuliere.

Les EDA peuvent étre caractérisées par la notion d’indez dont diverses définitions
existent. L’ndez de perturbation est une mesure convenable de la sensibilité d’une
solution & des perturbations dans les équations.

>
Définition 1. La i*™¢ composante a un indez de perturbation v, ; le long d’une solution
u sur un intervalle borné I passant par u(zg) en z, si v, ; est le plus petit entier tel
que pour toutes les fonctions %(z) ayant un résidu

R(z,(z), @ (z)) = é() (2)

il existe sur I une estimation de la forme

Vp,i—1

¢
u.(z)—u.(z | Hu(zy ) —u(z su T)dT su ()
% (z)—u,(z)| SCZ(II (zo)—u( o)l|+<€gl|/zo5( )drl[+ > CEI;IM (C)H) (3)

=0

pourvu que l’expression de droite de (3) soit suffisamment petite. Ici C; est une cons-
tante qui ne dépend que de R et de la longueur de l'intervalle I. L ’indez de perturbation
v, est défini par v, := max,_; .V, ;-

Contrairement aux EDA d’index v, = 0 (tels que les EDO) ou 1, les EDA d’index
v, = 2, appelées EDA d’indez élevé, sont des problemes mal posés dans le sens ol de
petites perturbations peuvent étre la source de changements importants des solutions.
Le traitement numérique de tels problémes méne souvent a de sérieuses difficultés qui
peuvent néanmoins étre surmontées en réduisant ’index du probléme & 0 ou 1 a Daide
de différentes techniques. De nombreux problémes courants dans les domaines susmen-
tionnés sont formulés ou ménent & des EDA d’index élevé (voir plus loin).

Résoudre des EDO ou des EDA de fagon analytique est une tiche généralement
impossible. Ainsi des méthodes numériques ont été développées afin d’obtenir des
approximations aux solutions de ces problemes. De nos jours, avec ’avénement de
la technologie des ordinateurs, les intéréts dans la modélisation, dans ’analyse, dans
la simulation, et dans le contrdle de nombreux systémes ont énormément augmenté,
d’ol1 un besoin accru en méthodes et logiciels siirs et efficaces pour les EDA. Beaucoup
de progrés ont été faits dans 1’analyse théorique et numérique des EDA (voir les livres
[BreCamPe89], [GrM3a86], [HaLuRo89a] et [HaWa91]). Pour un rapide survol sur les
EDA et les méthodes numériques voir [Pe89], [Rh9la], [GrHaMa91], [Pe92], (Ma92] et
[HaJay93]. Dans certaines situations des EDA peuvent étre réduites en EDO étant
ainsi directement résolubles par des “résolveurs d’EDO” standards. Néanmoins, méme
dans ce cas il peut étre en fait avantageux de travailler directement avec des EDA.
Le développement systématique de méthodes numériques pour la résolution d’EDA ne
date que d’un peu plus d’une dizaine d’années. La recherche dans ce domaine a débuté
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par les travaux originaux de Gear [GeT71] et principalement de Petzold [Pe82]. De nom-
breuses méthodes numériques pour les EDO ont été spécialement adaptées pourles EDA.
Elles comprennent principalement les méthodes linéaires multipas, les méthodes dites
en anglais “one-leg”, les méthodes linéairement implicites, les méthodes de Rosenbrock,
les méthodes de Runge-Kutta et quelques méthodes d’extrapolation. A cause d’une
certaine connexion entre les EDO raides (en anglais “stiff”) et les EDA, les méthodes
de Runge-Kutta dites en anglais “stiffiy accurate” et les méthodes de différentiation
rétrograde (en anglais “backward differentiation formula”) sont d’un grand intérét.

EDA semi-explicites d’index 3 sous forme de Hessenberg.

*
Cette thése traite plus. spécifiquement d’une classe d’EDA, dites semi-ezplicites
d’indez 3 sous forme de Hessenberg qui se formulent

¥ =f(y,2) , z'=k(y, z,u) , 0=g(y) (4a,b,c)

et ou
(9, F ) (Y5 2,0) est inversible (5)

dans un voisinage de la solution exacte. Nous nous restreignons & des problémes a
valeurs initiales. En dérivant deux fois la contrainte (4¢) nous obtenons successivement

0=(9,) ®2) (44)
0 = (g,,(f, )+9,f, f+9,1.k) (v, 2,u) . (4e)

Il s’ensuit que des valeurs initiales au probléme (4a, b, c) ne peuvent pas étre choisies
arbitrairement, mais doivent satisfaire toutes les contraintes (4c, d, ). De telles valeurs

sont dites comsistantes. On peut vérifier que l'index de tels problémes (4a,b,c) est

bien égal & 3. A dessein nous considérons une solution (y(z),2(z),u(z)) de (4) sur un

intervalle borné I passant par des valeurs initiales consistantes (Yg» 29,uq) en 4. Nous .
considérons aussi des fonctions perturbées (§(z),Z(z), %(z)) suffisamment proches de

(y(z), 2(z), u(z)) passant par (Fo,Zy, %) en z, et satisfaisant

7'(z) =f(9(=), 2(2))+6(=) ,
2'(z) =k(g(z), Z(z), 8(=))+p(2) , (6)
0 =g(§(z))+6(=) -

On montre alors ’estimation suivante
8(z)—y(2) || +|2(z) — z(2) || +]E(=) —u(z)]| < (7)
¢ (nao—yon+nz,—zon+sup(u6(4)||+na'(on+uu(c)n+ue"(o||)) -
(€Tl

Divers exemples typiques ol de telles équations surviennent sont donnés ci-dessous.
D’autres exemples existent en théorie du contréle.

— 4
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Les systémes mécaniques munis de contraintes.

Les équations de systémes mécaniques munis de contraintes se déduisent du principe
de Lagrange-Hamilton. Si ¢ = (gq;,...,49,)T sont les n coordonnées généralisées d’un
systéme mécanique soumis & m contraintes holonémes g,(¢)=0,...,9,,{(q)=0, alors les
equations de mouvement sont données par

q. =v,
M(q)o =£(q,v)-GT(g)X, (8)
0 =g(q)

ot G(g):=g,(q) et en général (GM~1GT)(q) est inversible.
Les systémes Hamiltoniens munis de contraintes.

Les équations de systémes Hamiltoniens munis de contraintes se déduisent du
formalisme Hamiltonien. Si ¢ = (g;,...,4,)T sont les n coordonnées généralisées et
p = (pyy.--,P,)T les moments généralisés d’un systéme Hamiltonien d’Hamiltonien
H(g,p) soumis & m contraintes holonémes g,(¢)=0,...,9,,(g) =0, alors les équations
de la dynamique du systéme sont données par

¢=H](q,p),
p=—HI(q,p)-GT(g)), (9)
0 =g(q)

ou G(g):=g,(q) et en général (GHL GT)(q,p) est inversible. Le flot généré dans I’espace
de phase de dimension 2(n—m)

V ={(g,p) € R"xR™ | 0=g(q) , 0 = G(9)E (4, D)} (10)

par le systéme (9) posséde la propriété de symplecticité, c’est-a-dire que la forme diffé-
rentielle

n
w? = quk A dp, est préservée. (11)
k=1

Des exemples de systémes Hamiltoniens munis de contraintes sont donnés par les systé-
mes mécaniques ainsi qu’en dynamique moléculaire.

Les systémes mécaniques raides (en anglais “stiff mechanical systems?).

Les problémes & perturbation singuliére et singuliers (en anglais “singular singularly
perturbed problems”) forment une classe particuliére d’EDO raides, contenant un petit

parameétre 0<e K1
y' =f(:c,y,z) 3
ez’ =g(z,y,2) .

(12)

Pour ces problémes la matrice g, est supposée posséder des valeurs propres nulles et
vérifier
(9,(z,y,2)w,w) < —Const-||w|? avec Const >0 . (13)
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L’analyse du cas limite ¢ =0, le probléme réduit, fournit une certaine information concer-
nant le comportement des solutions de tels systémes. Les systémes mécaniques raides
pour lesquels un fort potentiel % V(q) force la solution a étre proche d’une certaine
variété tombent dans cette catégorie de probléemes. Une formulation précise est

q=v,

M(q)o =f(¢1,v)—€1—2VqT(q) (14)

avec les hypotheses
- M(q) est symétrique et définie positive;
- V{q) atteint un minimum (local) sur une variété V de dimension m;

- dans un voisinage de V, V(gq) est fortement convexe le long de directions non
tangentes a V.

Sous ces hypothéses on peut montrer que pour des valeurs initiales bien choisies les
solutions lisses de (14) possédent un développement en 2

g(t) =¢"(}) +e2g* (&) +.. .+ NN (1) + O(2VH?)

v(t) zvo(t)+€2v1(t)+. ] .+62NUN(t)-I—O(52N+2) (15)

o1 (g°(%),v°(2)) est la solution d’un probléme de la forme (8) avec g s’annulant sur V
(et seulement sur V), et (g*(t),v*(t)) sont solutions d’EDA d’index 2k+3.

Développement en série de Taylor de la solution exacte.

L’analyse de méthodes numériques appliquées aux EDA du type (4) nécessite tout
d’abord de connaitre le développement en série de Taylor de la solution exacte. Celui-ci
peut étre obtenu & I’aide de structures arborescentes.

Théoréme 1. Le développement en série de Taylor de la solution ezacte de (4),est
donné par

yath) =y}t 3 a(t>’;—f§ﬂtxy(z),z(w),u(w)),

t€DATS,
(eth)=s(@)r Y alo) o F(0)((2), 2(2), u(2)) (16)
vEDATS, Q(v)'

u(z+h) =u(z)+ Y, alu)

u€DATS,

heo(w)
. F(u)(y(z), z(z),u(z))

()!
ou DAT3,, DAT3, et DAT3, sont des ensembles d’arbres.
Dans ce contexte la théorie des B-séries d’Hairer et Wanner (voir [HaWa74] et [HaNg-

Wa93, Section I1.12]) est étendue aux EDA considérées (4), donnant naissance a ce que
I’on appelle une théorie des DA3-séries.
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Méthodes de Runge-Kutta partitionnées.
Le but de cette thése est principalement d’étudier ’application de méthodes de
Runge-Kutta partitionnées (RKP) aux EDA semi-explicites d’index 3 sous forme de
Hessenberg (4a,b,c).

Définition 2. Un pas d’une méthode RKP & s étages appliquée a (4a,b, ¢) avec valeurs
initiales (y,, 2, %g) €n z, est donné par

S 38
Yy =yo+h > Y/, 2, = zy+h Y 5,2
i=1 =
ou
Y = f(Y;, Z;) . Z;=kKY,;Z,U), 0=g(Y;) (17)
et olt les étages internes sont donnés par
}/‘izy0+h2aijl/}' , Z, —zo-l—hZaU x

i=1 j=1

Plusieurs définitions pour la composante numérique u sont possibles (omises ici). Nous
nous intéressons plus particuliérement aux méthodes dites en anglais “stiffly accurate”
qui satisfont

(5): a,; =b, pour t=1,...,s.
Nous supposons que la méthode RKP est basée sur une seule formule de quadrature,
c’est-a-dire R
b1.=b1,7 CZ=EZ pO'uI 'L'=1,...,8. (18)
La construction de méthodes RKP d’ordre élevé est intimement reliée aux conditions
suivantes, dites conditions stmplificatrices

N, o1 1
B(p) : E:bici-c lzz pour k=1,...,p;
ck X
C(q): Eamj —f pour 1=1,...,s, k=1,...,q9;
= ck i
C(9): Za’zzz —?’ pour i=1,...,s, k=1,...,7;

b.
D(r): Zbicf—laijzf(l—cf) pour j=1,...,8, k=1,...,7;

~ b.
D7) : szck 1j.=-];’(1—c§) pour j=1,...,s, k=1,...,7;

k
= . c; .
cCc(Q): ZZaU chl —t pour t=1,...,8, k£=2,...,Q;
o k(k-—l)
~ g~ b, b b,ck
DD(R): bicb=%a, G, = -t L =1,...
(R) ;Zl i a5 = k—1+k(k—1) pour [=1,...,s,
= Lim k=2,...,R;
(S): a,;, =b; pour i=1,...,s.
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Sous les conditions C(2) et CC(2) on peut démontrer I'existence et I'unicité de la so-
lution numérique pourvu que la matrice 4 := AA soit inversible ol A4 := (@;;)f ;=1 et

:=(@;;){ j=1- En général il est préférable de projeter la solution numérique obtenue

sur les contraintes (4c,d, e), comme suit

9 =y, —(F k) (Y15 21,u1)A 0=yg(%),
7y =2, —k,(y1, 21,011 0= (gyf)(gl’zl) ) (19)
0= (gyy(f7 f)+gyfyf+gyfzk) (91, %1, 4y) - l

Pour le développement en série de Taylor de la solution numérique une formule
similaire & celle donnée au Théoréme 1 peut é&tre obtenue.

Théoréme 2. Sous les hypothéses d’ezistence et d’unicité de la solution numérique et
pour des valeurs initiales (yy,29,u,) consistantes, le développement en série de Taylor
de la solution numérique (17) est donné par

Y1 =Y+ Za(t) o(t ),’7(t)sz@z(t)F(t)(ymzo,uo) ’
teDATS3,

(20)

z; =%+ Za(v) o(v ),7("’ Zb {(0)F(v)(Yp5 29 g) -

v€EDAT3,

Pour la composante u, un développement similaire peut &tre obtenu dépendant de la
définition choisie. Ainsi en comparant les résultats des Théorémes 1 et 2 on obtient ainsi
aisément les conditions d’ordre des méthodes RKP. A I’aide des conditions simplificatri-
ces on peut alors montrer des estimations optimales concernant P’erreur locale de telles
méthodes. Finalement des estimations concernant I’erreur globale peuvent étre obtenues
(voir Tables 1 et 2 plus loin). Pour des méthodes de Runge-Kutta pures, c’est-a-dire non
pa.rtltlonnees et non projetées, une démonstration d’une conjecture (V01r [HaLuRo89al)
relative & la superconvergence des méthodes “stiffly accurate” est aussi donnée. C’est
I’un des résultats principaux de cette thése et il est le suivant.

Théoréme 3. Considérons le systéme (4a,b,c) d’indez 3 avec des valeurs initiales
consistantes et une méthode de Runge-Kutta pure. Supposons que les coefficients de la
méthode satisfont B(p), C(q) avec ¢>2, D(r), (S) et que la matrice A soit inversible.
Alors pour z,—zy=nh< Const, Uerreur globale satisfait

Y,—y(z,) = O(R=REH=2940) - 5 —i(2,) = O(h9),

. (21)
P(z,) (20— 2(z,)) = O(hR=2@224) oy —u(z,) = O(RT™)

ot P (z):=(I—k,(g,f.k.)19,.)(y(2), z(2), u())-

Ce résultat a une application dans P’analyse de convergence des méthodes de Runge-
Kutta appliquées a des systémes mécaniques raides (en anglais “stiff mechanical sys-
tems”) (voir [Lu93]).

. W
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Une classe importante de méthodes de Runge-Kutta partitionnées, pour lesquelles 1
la matrice A= AA n’est pas inversible, est donnée par les conditions suivantes J

=b;, ¢; =5 pour j=1,...,s,

a1j=0,asj=b d;,=0,b ; ;

ir Pis J

H: rang(A;f) =s-1,b,#0,
B(p), Clq), D(r), €(@), D7), ¢C(Q), DD(R) .

Les méthodes satisfaisant de plus les relations

b, =5 our =1 s ’
‘LA ‘1,A p e ? ? ? . . (22)
biazj"i'bja:]z""bzb] = pO‘llr 1= 1,--.,3 9 ] = 1,.--,5

sont d’une importance spéciale pour les systémes Hamiltoniens munis de contraintes
(9). De telles méthodes peuvent s’appliquer de fagon & ce que toutes les contraintes
soient satisfaites et ceci de la maniére suivante

8 s—1
Q; =90+h2aing‘(Qj’Pj) , P= Po“hzaz‘j (Hf(Qj’Pj)'*"GT(Qj)Aj) )
Jj=1 i=1

0=g(Q;), e =Q,,

R

s—1
” =f~po—hzbi (H;p(Qi, P) +GT(Qi)Ai>_hb3 (HqT(Qs,P,)-i-GT(Q,)A,) ,  (23)

=1
0 =G(q1)Hf(qlaP1) )

T ~T\"1 T gT T T T T
A, =(GH,,G (G (H, , Hy )+GHp H, ~GHLH) (q1,P,) -

De plus de telles méthodes préservent aussi la symplecticité du flot, plus précisément
on peut montrer qu’elles vérifient

Z d'h,k N dP1,k s 2 d%,k A dPo,k . (24)

k=1 h k=1

Comme précédemment on peut montrer l’existence et I’unicité de la solution numérique
et l'on peut aussi obtenir des résultats optimaux concernant Perreur locale et ’erreur
globale de telles méthodes.

Finalement ‘on résume les ordres de convergence pour différentes méthodes de
Runge-Kutta (partitionnées) (et projetées) dans les Tables 1 et 2. On rappelle que
’ordre de convergence d’une méthode est égal & v si I’erreur globale est uniformément ;
bornée par Const - h* sur des intervalles bornés et pour des pas h suffisamment petits. ]
La Table 2 concerne la situation éminemment importante oli la fonction k est linéaire
en u. Tous ces résultats sont valides pour des pas non constants avec h=max; h;.

'Y

RSP S L SR S ¥




Résumé de la thése en francais 167

Méthode étages ordre de convergence
Y z u

Lobatto IITA-IIIB 82>2 2s—2 28—-2 2s5-2

Radau ITA $2>2 25-2 s s—1

Radau IIA projeté 82>2 2s—2 28—-2 2s8-2

Lobatto IIIC s>3 | 2s—4 s—1 =2

Lobatto IIIC projeté 8>3 2s—4 23—4 2s3-4

! Gauss 8>5 s s—2 s—4
h Gauss projeté 82>2 s 8 ]

Radau IA 8>3 s—1 s—1 s-2

Radau IA projeté >3 s—1 s—1 s—-1

{. Table 1. Ordres de convergence pour le probléme (4)-(5).

“ Méthode étages ordre de convergence “‘
1 Y z % |
| 1
! Lobatto IIIA-IIIB §>2 2s—2 25—2 2s-2
1" Radau IIA 8 2s—-1 8 s—1
" Radau IIA projeté 8 2s—1 2s-1 2s-1
. Lobatto IIIC $2>2 28—3 s-1 s—2

Lobatto IIIC projeté 8>2 2s—-3 2s—-3 2s-3
Gauss >3 s s—2 s—4
' Gauss projeté s s s s

Radau IA 8>2 s—1 s—1 s-2

Radau IA projeté $>2 s—1 s—1 s-1

Table 2. Ordres de convergence pour le probléme (4)-(5) avec k linéaire en u.

Organisation générale de la thése.

Le but principal de cette thése est d’étudier ’application de méthodes de Runge-
Kutta (projetées) partitionnées & des EDA semi-explicites d’index 3 sous forme de Hes-
senberg (4a,b,c) (voir (17)). Nous nous intéressons principalement aux méthodes dites
en anglais “stiffly accurate” et nous nous restreignons a des problémes a valeurs initiales.
L’organisation générale de la thése se présente ainsi :

- Au Chapitre I nous passons en revue quelques notions et résultats fondamentaux
relatifs aux EDA et & leur traitement numérique. Aprés avoir décrit certains types
d’EDA, nous discutons ensuite des concepts importants de solubilité et d’index.
Puis nous donnons quelques exemples courants d’EDA ayant un index élevé et
nous présentons quelques techniques possibles afin de reduire 'index d’un probléme.
Nous passons ensuite en revue quelques méthodes numériques utilisées pour la
résolution des EDA. Finalement un bref survol des buts de la thése et des principaux
résultats de convergence est donné.
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Au Chapitre II nous donnons des résultats théoriques relatifs aux EDA semi-
explicites d’index 3 sous forme de Hessenberg. Aprés avoir caractérisé ’ensemble
des valeurs consistantes et ’index du probléme, nous dérivons ensuite le développe-
ment en série de Taylor de la solution exacte & 1’aide de structures arborescentes.
Dans ce contexte la théorie des B-séries d’Hairer et Wanner est étendue aux EDA
considérées, donnant naissance & ce que l'on appelle une théorie des D A3-séries.

Le Chapitre III traite de l'application de méthodes de Runge-Kutta (projetées)

partitionnées aux EDA semi-explicites d’index 3 sous forme de Hessenberg. Nous

donnons des résultats concernant l’existence et I'unicité de la solution numérique,
de l'influence de perturbations, de son erreur locale et de son erreur globale. Une
courte discussion sur 1’application d’itérations de Newton simplifiées au systéme
d’équations non linéaires induit par la méthode numériquescldt ce chapitre.

Les deux chapitres suivants sont similaires au Chapitre III additionnés de quelques
exemples numériques. Au Chapitre IV nous nous restreignons a 1’application di-
recte de méthodes de Runge-Kutta pures aux EDA semi-explicites d’index 3 sous
forme de Hessenberg. Une preuve d’une conjecture relative & la superconvergence
de méthodes de Runge-Kutta dites en anglais “stiffly accurate” est donnée, ainsi
qu’une application de ce résultat & ’analyse de convergence de ces méthodes aux
systémes mécaniques raides (en anglais “stiff mechanical systems”). Au Chapitre
V nous traitons principalement de ’application d’une classe spéciale de méthodes
de Runge-Kutta partitionnées aux systémes Hamiltoniens munis de contraintes
holonomes. Ces méthodes sont superconvergentes et préservent la structure sym-
plectique du flot ainsi que toutes les contraintes sous-jacentes.




