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In this article a broad class of systems of implicit differential–algebraic equations (DAEs)

is considered, including the equations of mechanical systems with holonomic and nonholo-

nomic constraints. Solutions to these DAEs can be approximated numerically by applying a

class of super partitioned additive Runge–Kutta (SPARK) methods. Several properties of the

SPARK coefficients, satisfied by the family of Lobatto IIIA-B-C-C∗-D coefficients, are crucial

to deal properly with the presence of constraints and algebraic variables. A main difficulty for

an efficient implementation of these methods lies in the numerical solution of the resulting

systems of nonlinear equations. Inexact modified Newton iterations can be used to solve these

systems. Linear systems of the modified Newton method can be solved approximately with a

preconditioned linear iterative method. Preconditioners can be obtained after certain transfor-

mations to the systems of nonlinear and linear equations. These transformations rely heavily

on specific properties of the SPARK coefficients. A new truly parallelizable preconditioner is

presented.
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1. Introduction

In this article a broad class of systems of possibly stiff and implicit differential–

algebraic equations (DAEs) is considered, including Hessenberg DAEs of index 1, 2,

and 3 [1,5,6,8,9]. These equations encompass the formulation of mechanical systems

with mixed constraints of holonomic, nonholonomic, scleronomic, and rheonomic types

[7,16,17]. Solutions to these DAEs can be approximated numerically by applying a

class of super partitioned additive Runge–Kutta (SPARK) methods, such as the combi-

nation of Lobatto IIIA-B-C-C∗-D methods [9]. SPARK methods can take advantage of

splitting the differential equations into different terms and of partitioning the variables

into different classes. Several properties of the SPARK coefficients, satisfied by the Lo-
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batto family, are essential to treat the constraints and the algebraic variables properly.

A main difficulty for an efficient implementation of these methods lies in the numerical

solution of the resulting systems of nonlinear equations. For this purpose inexact mod-

ified Newton iterations can be used, extending techniques proposed for the solution of

implicit Runge–Kutta (IRK) methods applied to implicit systems of stiff ordinary dif-

ferential equations (ODEs) [10–12]. Such an extension is not straightforward, as the

presence of constraints and algebraic variables adds some extra difficulty. Linear sys-

tems of the modified Newton method can be solved approximately with a preconditioned

linear iterative method after certain transformations to the systems of nonlinear and lin-

ear equations. These transformations rely heavily on specific properties of the SPARK

coefficients. For an s-stage SPARK method and stiff DAEs the decomposition of at most

s + 1 independent submatrices of the same dimension as the DAEs is required to build

an efficient preconditioner. The main purpose of this paper is to present the steps in-

volved to put the system of linear equations of the modified Newton method in a form

such that preconditioning these linear equations can be done in a straightforward manner

following the results of [10–12].

In section 2, the class of implicit DAEs considered in this article is presented. In

section 3, the definition of SPARK methods applied to these DAEs is given. Some prop-

erties of the SPARK coefficients are given which are crucial for an efficient implementa-

tion of these methods. In section 4, an approximate Jacobian to the system of nonlinear

equations is derived after certain linear transformations. Section 5 describes the steps

involved to transform the approximate Jacobian before application of a preconditioner.

A new truly parallelizable preconditioner is succinctly presented.

2. The system of implicit differential–algebraic equations

Consider the following class of systems of implicit differential–algebraic equations

(DAEs)

d

dt
q(t, y)= v(t, y, z), (1a)

d

dt
p(t, y, z)= f (t, y, z, u, γ, λ,ψ), (1b)

d

dt
c(t, y, z, u)= d(t, y, z, u, γ, λ,ψ), (1c)

m(t, y, z, u, γ )= 0, (1d)

h(t, y, z)= 0, (1e)

g(t, y)= 0, (1f)

which may present some stiffness. These equations encompass Hessenberg DAEs of

index 1, 2, and 3 [1,5,6,8,9]. They also include the formulation of mechanical sys-

tems with mixed constraints of holonomic, nonholonomic, scleronomic, and rheonomic

types [7,13,16,17]. In mechanics the quantities q, v, p represent respectively gener-
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alized coordinates, generalized velocities, and generalized momenta. The right-hand

side f of (1b) contains generalized forces acting on the system and (1c) describes the

dynamics of external variables u. The algebraic variables λ and ψ are Lagrange mul-

tipliers associated respectively to the nonholonomic constraints (1e) and the holonomic

constraints (1f). The equations of constrained systems in mechanics can be derived from

Newton’s law of motion and the generalized Gauss variational principle of least con-

straint [13]. It is assumed that the constraints (1f) can also be expressed as

g(t, y) = r(t, q(t, y)) = 0. (1g)

The variable t ∈ R is the independent variable and

y =
(
y1, . . . , yny

)T
∈ R

ny ,

z=
(
z1, . . . , znz

)T
∈ R

nz,

u=
(
u1, . . . , unu

)T
∈ R

nu,

γ =
(
γ 1, . . . , γ nγ

)T
∈ R

nγ ,

λ=
(
λ1, . . . , λnλ

)T
∈ R

nλ,

ψ =
(
ψ1, . . . , ψnψ

)T
∈ R

nψ ,

q : R × R
ny −→ R

ny ,

p : R × R
ny × R

nz −→ R
nz,

c : R × R
ny × R

nz × R
nu −→ R

nu,

m : R × R
ny × R

nz × R
nu × R

nγ −→ R
nγ ,

h : R × R
ny × R

nz −→ R
nλ,

g : R × R
ny −→ R

nψ ,

r : R × R
ny −→ R

nψ ,

v : R × R
ny × R

nz −→ R
ny ,

f : R × R
ny × R

nz × R
nu × R

nγ × R
nλ × R

nψ −→ R
nz,

d : R × R
ny × R

nz × R
nu × R

nγ × R
nλ × R

nψ −→ R
nu .

The variables y, z, u are called the differential variables and the variables γ, λ,ψ are

called the algebraic variables. The latter often correspond to Lagrange multipliers when

the DAEs are derived from some constrained variational principle [7,13]. The initial val-

ues y0, z0, u0, γ0, ψ0, λ0 at t0 are supposed to be given. Some differentiability conditions

on the above functions and consistency of the initial values are assumed to ensure ex-

istence and uniqueness of the solution. In a neighborhood of the solution the following

conditions are supposed to be satisfied

qy is invertible, (2a)

pz is invertible, (2b)
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cu is invertible, (2c)

mγ is invertible, (2d)

pz −fλ −fψ

hz O O

rqvz O O


 is invertible. (2e)

Notice that from (1g) gy = rqqy holds, hence rqvz = gy(qy)
−1vz in (2e). Under con-

ditions (2a)–(2c) explicit expressions for the derivatives of the differential variables can

be obtained. The differential equations (1a)–(1c) lead to

qt (t, y)+ qy(t, y)
dy

dt
= v(t, y, z), (3a)

pt(t, y, z) + py(t, y, z)
dy

dt
+ pz(t, y, z)

dz

dt
= f (t, y, z, u, γ, λ,ψ), (3b)

ct (t, y, z, u)+ cy(t, y, z, u)
dy

dt
+ cz(t, y, z, u)

dz

dt
+ cu(t, y, z, u)

du

dt
= d(t, y, z, u, γ, λ,ψ). (3c)

For example, (3a) leads to

dy

dt
=
(
qy(t, y)

)−1(
v(t, y, z)− qt (t, y)

)
.

Implicit expressions for the algebraic variables can be obtained by application of the

implicit function theorem. From (1d), (2d) the algebraic variables γ can be implicitly

expressed as γ = γ (t, y, z, u). Differentiating the constraints (1e) once gives

0 =
d

dt
h(t, y, z) = ht(t, y, z)+ hy(t, y, z)

dy

dt
+ hz(t, y, z)

dz

dt
. (4a)

Differentiating the constraints (1g) twice leads successively to

0 =
d

dt
g(t, y) = rt

(
t, q(t, y)

)
+ rq

(
t, q(t, y)

)
v(t, y, z), (4b)

0 =
d2

dt2
g(t, y) = rt t

(
t, q(t, y)

)
+ 2rtq

(
t, q(t, y)

)
v(t, y, z)

+ rqq
(
t, q(t, y)

)(
v(t, y, z), v(t, y, z)

)
+ rq

(
t, q(t, y)

)
vt(t, y, z)

+ rq
(
t, q(t, y)

)
vy(t, y, z)

dy

dt
+ rq

(
t, q(t, y)

)
vz(t, y, z)

dz

dt
. (4c)

Hence from (2e), (3b), (4a), (4c) implicit expressions for the algebraic variables λ,ψ

can be obtained. The exact solution must satisfy these additional so-called underlying

constraints (4). To be consistent the initial values y0, z0, u0, γ0, ψ0, λ0 at t0 must sat-

isfy the whole set of constraints (1d)–(1f), (4). After one more differentiation of the

constraints (1d), (4a), (4c) explicit expressions for the derivatives of the algebraic vari-

ables can be obtained, forming together with (1a)–(1c) an underlying system of ODEs.
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The overdetermined system of DAEs (1), (4) is therefore of differential and perturbation

index 1 [8]. The constraints (1d)–(1f) are often called the index 1, 2, 3 constraints re-

spectively, although the notion of index, especially of perturbation index, is more closely

related to variables than to equations [8, p. 10]. DAEs of perturbation index less than

or equal to 1 such as (1), (4) are well-posed contrary to higher perturbation index DAEs

such as (1). From a numerical and computational perspective and from the mathemati-

cal point of view of well- and ill-posedness the perturbation index is certainly one of the

most relevant notions of index.

With the equations of mechanical systems in mind where different types of forces

are present, see [7,9,16,17], decompositions of the right-hand sides of (1a)–(1c) can be

considered

v(t, y, z)=

mmax∑

m=1

vm(t, y, z), (5a)

f (t, y, z, u, γ, λ,ψ)=

mmax∑

m=1

fm(t, y, z, u, γ, λ,ψ), (5b)

d(t, y, z, u, γ, λ,ψ)=

mmax∑

m=1

dm(t, y, z, u, γ, λ,ψ). (5c)

The functions vm, fm, dm are supposed to have distinct properties and can therefore be

numerically treated in a different way. The value ofmmax corresponds to different classes

of certain types of right-hand side terms. This value should be reasonably small. For

example, mechanical systems may include different types of forces such as conservative,

dissipative, explosive, and highly oscillatory forces, hence typically mmax = 4. For the

application of the numerical methods considered in this paper, the following additional

assumptions are made

f1(t, y, z, u, γ, λ,ψ) = f1(t, y, z, u, γ ), d1(t, y, z, u, γ, λ,ψ) = d1(t, y, z, u, γ ).

(5d)

This is obviously not a restriction on the system (1) per se, but it is used as a restriction

on the application of SPARK methods, see section 3.

3. SPARK methods

The application of SPARK methods to the overdetermined system of implicit DAEs

(1), (4) is tentatively given as follows, generalizing the definition of [9]:
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Definition 1. One step of an s-stage super partitioned additive Runge–Kutta (SPARK)

method applied with stepsize h to the overdetermined system of implicit differential–

algebraic equations (1), (4) satisfying the assumptions with decompositions (5) reads

Qi − q0 − h

s∑

j=1

mmax∑

m=1

aij,mvm(Tj , Yj , Zj ) = 0 for i = 1, . . . , s, (6a)

Pi − p0 − h

s∑

j=1

mmax∑

m=1

aij,mfm(Tj , Yj , Zj , Uj , "j ,#j ,$j ) = 0 for i = 1, . . . , s,

(6b)

Ci − c0 − h

s∑

j=1

mmax∑

m=1

aij,mdm(Tj , Yj , Zj , Uj , "j ,#j ,$j ) = 0 for i = 1, . . . , s,

(6c)

m(Ti, Yi, Zi, Ui, "i) = 0 for i = 1, . . . , s, (6d)

h(Ti, Yi, Zi) = 0 for i = 1, . . . , s, (6e)

r

(
Ti, q0 + h

s∑

j=1

aij,1v(Tj , Yj , Zj )

)
= 0 for i = 1, . . . , s, (6f)

q1 − q0 − h

s∑

j=1

bjv(Tj , Yj , Zj ) = 0, (6g)

p1 − p0 − h

s∑

j=1

bjf (Tj , Yj , Zj , Uj , "j ,#j ,$j ) = 0, (6h)

c1 − c0 − h

s∑

j=1

bjd(Tj , Yj , Zj , Uj , "j ,#j ,$j ) = 0, (6i)

m(t1, y1, z1, u1, γ1) = 0, (6j)

h(t1, y1, z1) = 0, (6k)

r(t1, q1) = 0, (6l)

rt (t1, q1)+ rq(t1, q1)v(t1, y1, z1) = 0, (6m)

where

q0 := q(t0, y0),

p0 := p(t0, y0, z0),

c0 := c(t0, y0, z0, u0),

Ti := t0 + cih for i = 1, . . . , s,

Qi := q(Ti, Yi) for i = 1, . . . , s,



L.O. Jay / Iterative solution of SPARK methods 177

Pi := p(Ti, Yi, Zi) for i = 1, . . . , s,

Ci := c(Ti, Yi, Zi, Ui) for i = 1, . . . , s,

t1 := t0 + h,

q1 := q(t1, y1),

p1 := p(t1, y1, z1),

c1 := c(t1, y1, z1, u1).

The RK coefficients matrices of mmax Runge–Kutta (RK) methods based on the same

quadrature formula (bi, ci)i=1,...,s are denoted by Am := (aij,m)i,j=1,...,s for m = 1,

. . . , mmax. To ensure existence and uniqueness of the numerical solution, only a certain

linear combination of equations (6e), (6k) is actually considered, see equations (14e).

From this tentative definition of SPARK methods results a system of nonlinear

equations to be solved for the internal stages Yi, Zi, Ui, "i,#i,$i for i = 1, . . . , s

and for the numerical approximation at t1 given by y1, z1, u1, γ1. In general existence

and uniqueness to these nonlinear equations cannot be shown unless some assumptions

on the SPARK coefficients are made. Also equations (6e), (6k) for the constraints (1e)

cannot be all satisfied. The actual definition of SPARK methods is given in definition 5.

Accurate values for the algebraic variables γ1, λ1, ψ1 are not necessary for the step by

step integration. In any case the accuracy of these algebraic variables does not influence

the convergence of the other variables and the properties of SPARK methods since the

values γ0, λ0, ψ0 do not enter explicitly the definition of SPARK methods. For SPARK

methods satisfying cs = 1 the approximations given by γ1 := "s, λ1 := #s, ψ1 := $s

are adequate.

3.1. Properties of SPARK coefficients

In this article Im denotes the m ×m identity matrix, Om,n denotes the m × n zero

matrix, b := (b1, . . . , bs)
T is the weight vector, ei := (0, . . . , 0, 1, 0, . . . , 0)T is the ith

s-dimensional unit basis vector, and 0s := (0, . . . , 0)T is the s-dimensional zero vector.

It is assumed that the number of internal stages satisfies s � 2. SPARK methods (6)

satisfying the following assumptions are considered

eT
1A1 = 0T

s , (7a)

eT
s A1 = bT, (7b)

eT
s A3 = bT, (7c)

A1Am =

(
0T
s

N

)
for m = 2, . . . , mmax, (7d)

(
N

bT

)
is invertible, (7e)

A3 is invertible. (7f)
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These assumptions are satisfied for example by the Lobatto family with mmax = 5 and

A1, A2, A3, A4, A5 being the RK matrices of Lobatto IIIA-B-C-C∗-D coefficients, re-

spectively [9]. The assumptions (7b), (7c) are stiff accuracy conditions. Notice that (7a)

is also a direct consequence of (7f) and (7d) for m = 3. Let Ã1 be the (s − 1) × s

submatrix of A1 given by the relation

A1 =

(
0T
s

Ã1

)
. (8)

The following lemmas will be extremely useful to obtain an efficient implementation of

SPARK methods applied to DAEs.

Lemma 2. The relation
(
Ã1

eT
s

)−1 (
N

bT

)
= A3 (9)

follows from (7c)–(7f).

Proof. The relation Ã1A3 = N follows from (7d) for m = 3. Hence, together with

(7c) it leads to
(
Ã1

eT
s

)
A3 =

(
N

bT

)
.

The invertibility of the left matrix on the left-hand side follows from the conditions (7e),

(7f). �

Under the assumptions of lemma 2 the following s× (s+1) matrices are defined

Qs,s+1 :=

(
Ã1

eT
s

)−1 (
Ã1 0s−1

0T
s 1

)
=
(
Is 0s

)
+ Ps,s+1, (10a)

Ps,s+1 :=

(
Ã1

eT
s

)−1 (
Os,s−1 −es es

)
=
(
Os,s−1 −ps ps

)
, (10b)

where

ps :=

(
Ã1

eT
s

)−1

es =

(
vs−1

1

)
. (10c)

Lemma 3. From (7c)–(7f) it follows that

Qs,s+1

(
Am 0s
bT 0

)
=
(
A3 0s

)
for m = 2, . . . , mmax.
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Moreover, if in addition (7b) holds then the following relation is obtained

Qs,s+1

(
A1 0s
bT 0

)
=
(
A1 0s

)
.

Proof. The relations

(
Ã1

eT
s

)−1 (
Ã1 0s−1

0T
s 1

)(
Am 0s

bT 0

)
=
(
A3 0s

)
for m = 2, . . . , mmax

follow directly from (7d) and lemma 2. For m = 1 the relation

(
Ã1

eT
s

)−1 (
Ã1 0s−1

0T
s 1

)(
A1 0s

bT 0

)
=
(
A1 0s

)

follows from

(
Os,s−1 −es es

) (A1 0s

bT 0

)
= Os,s+1

which is a simple consequence of (7b). �

Lemma 4. Consider the matrix Qs,s+1 as defined in (10) and the (s + 1)-dimensional

vector qs+1 := (0, . . . , 0,−1, 1)T. Then the following (s + 1)× (s + 1) matrix

Qs+1,s+1 :=

(
Qs,s+1

qT
s+1

)
(11)

is invertible.

Proof. The expressions (10) give

Qs,s+1 =

(
Is−1 −vs−1 vs−1

0T
s−1 0 1

)
, (12)

hence det(Qs+1,s+1) = 1 is easily obtained. In fact, the inverse to Qs+1,s+1 can be given

explicitly by using the factorization

Qs+1,s+1 = Rs+1,s+1Ss+1,s+1 (13a)

where

Rs+1,s+1 :=




1 O
.. . ps

1

O 1


 , Ss+1,s+1 :=




1 O
.. .

1

O −1 1


 . (13b)
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Hence, Q−1
s+1,s+1 = S−1

s+1,s+1R
−1
s+1,s+1 holds where

S−1
s+1,s+1 =




1 O
.. .

1

O 1 1


 , R−1

s+1,s+1 =




1 O
.. . −ps

1

O 1


 .

�

3.2. The system of nonlinear equations

It is essential to put the system of nonlinear equations in a form such that precondi-

tioning the linear equations of the modified Newton method can be done in a straightfor-

ward manner following the results of [10–12], see section 5. From the assumption (7a)

and the consistency condition r(t0, q0) = 0 the equation (6f) for i = 1 is automatically

satisfied. A consequence of the assumption (7b) is

r(t1, q1) = r

(
Ts, q0 + h

s∑

j=1

asj,1v(Tj , Yj , Zj )

)
,

therefore by (6f) for i = s equation (6l) is also automatically satisfied. Instead of solving

directly the remaining set of equations of (6), some specific linear transformations are

applied. The remaining equations are expressed by making use of the matrices Qs,s+1

(10) and Qs+1,s+1 (11) as follows:

Definition 5. The actual definition of SPARK methods applied to (1)–(4)–(5) is taken

as

(Qs+1,s+1 ⊗ Iny )




Q1 − q0 − h

s∑

j=1

mmax∑

m=1

a1j,mvm(Tj , Yj , Zj )

...

Qs − q0 − h

s∑

j=1

mmax∑

m=1

asj,mvm(Tj , Yj , Zj )

q1 − q0 − h

s∑

j=1

bjv(Tj , Yj , Zj )




= 0, (14a)
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(Qs+1,s+1 ⊗ Inz)

×




P1 − p0 − h

s∑

j=1

mmax∑

m=1

a1j,mfm(Tj , Yj , Zj , Uj , "j ,#j ,$j )

...

Ps − p0 − h

s∑

j=1

mmax∑

m=1

asj,mfm(Tj , Yj , Zj , Uj , "j ,#j ,$j )

p1 − p0 − h

s∑

j=1

bjf (Tj , Yj , Zj , Uj , "j ,#j ,$j )




= 0, (14b)

(Qs+1,s+1 ⊗ Inu)

×




C1 − c0 − h

s∑

j=1

mmax∑

m=1

a1j,mdm(Tj , Yj , Zj , Uj , "j ,#j ,$j )

...

Cs − c0 − h

s∑

j=1

mmax∑

m=1

asj,mdm(Tj , Yj , Zj , Uj , "j ,#j ,$j )

c1 − c0 − h

s∑

j=1

bjd(Tj , Yj , Zj , Uj , "j ,#j ,$j )




= 0, (14c)

(Qs+1,s+1 ⊗ Inγ )




m(T1, Y1, Z1, U1, "1)

...

m(Ts, Ys, Zs, Us, "s)

m(t1, y1, z1, u1, γ1)




= 0, (14d)

(Qs,s+1 ⊗ Inλ)




h(T1, Y1, Z1)

...

h(Ts, Ys, Zs)

h(t1, y1, z1)




= 0, (14e)

((
Ã1

eT
s

)−1

⊗ Inψ

)




1

h
r
(
T2, q0 + h

s∑

j=1

a2j,1v(Tj , Yj , Zj )
)

...

1

h
r
(
Ts, q0 + h

s∑

j=1

asj,1v(Tj , Yj , Zj )
)

rt (t1, q1)+ rq(t1, q1)v(t1, y1, z1)




= 0. (14f)
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Equations (14e) correspond only to a linear combination of the constraints (6e), (6k).

From (12) equation (6k) is truly the only one preserved among (6e), (6k), this implies

that the numerical solution at t1 still satisfies the constraint (1e). This linear combina-

tion (14e) of (6e), (6k) is somehow necessary to ensure existence and uniqueness of the

numerical solution since in (6) there are only s algebraic variables #i (i = 1, . . . , s)

for s + 1 sets of equations (6e), (6k). In order to combine the constraints (6f) and

(6l) properly the equations (6f) have been multiplied by 1/h where h is the stepsize.

Since r(t0, q0) = 0, this can be interpreted as a finite difference approximation to

dr(t, q(t, y))/dt = 0 at Ti

d

dt
r
(
Ti, q

(
Ti, y(Ti)

))
≈
r(Ti, q0 + h

∑s
j=1 aij,1v(Tj , Yj , Zj ))− r(t0, q0)

h
.

The main reason for these linear transformations is to obtain an advantageous structure

of the approximate Jacobian, given in section 4, for the construction of efficient precon-

ditioners, to be discussed in section 5.

Notice that because of the factorization (13a), (13b) multiplication by Qs+1,s+1 of

equations (14a)–(14c) has an implication easily interpretable. For example, (14b) can be

rewritten as
(
Rs+1,s+1 ⊗ Inz

)

×




P1 − p0 − h

s∑

j=1

mmax∑

m=1

a1j,mfm(Tj , Yj , Zj , Uj , "j ,#j ,$j )

...

Ps − p0 − h

s∑

j=1

mmax∑

m=1

asj,mfm(Tj , Yj , Zj , Uj , "j ,#j ,$j )

p1 − Ps − h

s∑

j=1

mmax∑

m=1

(bj − asj,m)fm(Tj , Yj , Zj , Uj , "j ,#j ,$j )




= 0. (14g)

One effect is to remove stiffness from the last set of equations, provided the terms caus-

ing stiffness are treated with coefficients aij,m satisfying the stiff accuracy condition

asj,m = bj for j = 1, . . . , s, see (7b), (7c).

A set of dummy equations can be appended to (14e), (14f)

h(t1, y1, z1)− h(Ts, Ys, Zs)+ λ1 = 0, (14h)

rt(t1, q1)+ rq(t1, q1)v(t1, y1, z1)−
(
rt (Ts,Qs)+ rq(Ts,Qs)v(Ts, Ys, Zs)

)
+ ψ1 = 0.

(14i)

These equations must be taken as a dummy definition of λ1, ψ1. Of course the exact

solution λ(t), ψ(t) at t = t0 + h must not be approximated by λ1, ψ1 as given above,

but, for example, by#s,$s when cs = 1. The unknowns λ1, ψ1 have been included only

for ease of presentation in the derivation hereafter, but they are actually not unknowns
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of the nonlinear system (14a)–(14f). In (14) a system of nonlinear equations has been

obtained for the following vector collecting all unknowns

X := (Y1, Z1, U1, "1,#1,$1, . . . , Ys, Zs, Us, "s,#s,$s, y1, z1, u1, γ1, λ1, ψ1)
T.

(15)

4. Inexact modified Newton iterations for SPARK methods

The iteration schemes proposed to solve the system of nonlinear equations corre-

sponding to the application of IRK methods to DAEs have generally been based on ad

hoc modifications of the simplified Newton method [5]. For SPARK methods there are

additional difficulties to obtain an efficient implementation due to their additive and par-

titioned nature. This paper proposes the use of inexact modified Newton iterations or

more precisely, using another terminology, of modified Newton-iterative methods, ex-

tending techniques developed in [10–12]. Instead of solving exactly the linear systems

of the modified Newton method, they can be solved approximately and iteratively after

application of specific linear transformations and the use of a preconditioner.

4.1. Inexact modified Newton iterations

Modified Newton iterations applied to the set of equations (14) read as follows

M0Xk
= −G

(
Xk
)
, Xk+1

= Xk
+0Xk, k = 0, 1, 2, . . . , (16)

where M is a modified Jacobian, i.e., roughly speaking an approximation to the exact

Jacobian,

0X := (0X1, . . . ,0Xs,0x1)
T, (17a)

0Xi := (0Yi,0Zi,0Ui,0"i,0#i,0$i)
T for i = 1, . . . , s, (17b)

0x1 := (0y1,0z1,0u1,0γ1,0λ1,0ψ1)
T, (17c)

and G(X) corresponds to the expressions in (14) reordered accordingly.

A direct decomposition of the modified Jacobian M may be inefficient. In the

inexact modified Newton method the linear systems (16) are solved only approximately,

generally by a preconditioned linear iterative method, such as preconditioned versions

of Richardson or GMRES iterations [3,4,11,14,15]. This requires the construction of

a good preconditioner, see section 5. A sequence of iterates X̂k with a residual error

rk := M0X̂k + G(X̂k) is obtained at each iteration. Sufficient a priori and a posteriori

conditions to ensure convergence of the inexact modified Newton iterates toward the

solution of a system of nonlinear equations have been given in [11]. In combination

with a linear iterative method the inexact Newton method is called a modified Newton-

iterative method. The use of preconditioned linear iterative methods for the numerical

solution of ODEs and DAEs was first considered in the context of implicit multistep

methods by Brown et al. [2].
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4.2. The “simplified” Jacobian

In a standard approach, the system of nonlinear equations (14) is solved by simpli-

fied Newton iterations. This requires the simplified Jacobian which is the Jacobian at the

initial guess. The simplified Jacobian corresponding to the equations (14a)–(14f) with

respect to the variables in (15) can be expressed as follows

Qs+1,s+1 ⊗
(
qy O O O O O

)

−h

mmax∑

m=1

Qs+1,s+1

(
Am 0s

bT 0

)
⊗
(
vmy vmz O O O O

)
, (18a)

Qs+1,s+1 ⊗
(
py pz O O O O

)

−h

mmax∑

m=1

Qs+1,s+1

(
Am 0s

bT 0

)
⊗
(
fmy fmz fmu fmγ fmλ fmψ

)
, (18b)

Qs+1,s+1 ⊗
(
cy cz cu O O O

)

−h

mmax∑

m=1

Qs+1,s+1

(
Am 0s

bT 0

)
⊗
(
dmy dmz dmu dmγ dmλ dmψ

)
, (18c)

Qs+1,s+1 ⊗
(
my mz mu mγ O O

)
, (18d)

Qs,s+1 ⊗
(
hy hz O O O O

)
, (18e)

(
Ã1

eT
s

)−1 (
Ã1 0s−1

0T
s 1

)
⊗
(
rqvy rqvz O O O O

)

+

(
Ã1

eT
s

)−1 (
Os−1,s 0s−1

0T
s 1

)
⊗
(
rtqqy + rqq(qy ·, v) O O O O O

)

= Qs,s+1 ⊗
(
rqvy rqvz O O O O

)

+
(
Oss ps

)
⊗
(
rtqqy + rqq(qy ·, v) O O O O O

)
, (18f)

where the symbol ⊗ denotes the tensor product. The arguments of the expressions

qy, vmy , etc., which have been omitted, are given by the initial values t0, y0, z0, u0, γ0,

λ0, ψ0. Strictly speaking this is in fact not really the simplified Jacobian since the ini-

tial guess of the iterations is generally not given by the initial values. Nevertheless, the

terminology of simplified Jacobian to refer to (18) will be kept, since this is how it is

generally called following, e.g., [6, section IV.8]. The terminology of modified Jacobian

would actually be more correct.

4.3. An approximate Jacobian

Some modifications to the simplified Jacobian (18) can actually be used, since it is

not necessary to keep the full simplified Jacobian to ensure convergence of the modified
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Newton iterates (16). The expression of a so-called approximate Jacobian L is given

here. It will be used in the discussion given in section 5 about the construction of pre-

conditioners. It should be noticed that it is not necessary to use exactly the approximate

Jacobian presented here to ensure convergence of the whole inexact modified Newton

procedure, additional modifications are possible.

A main point in the specification of the approximate Jacobian concerns the equa-

tions

q1 −Qs − h

s∑

j=1

mmax∑

m=1

(bj − asj,m)vm(Tj , Yj , Zj ) = 0, (19a)

p1 − Ps − h

s∑

j=1

mmax∑

m=1

(bj − asj,m)fm(Tj , Yj , Zj , Uj , "j ,#j ,$j ) = 0, (19b)

c1 − Cs − h

s∑

j=1

mmax∑

m=1

(bj − asj,m)dm(Tj , Yj , Zj , Uj , "j ,#j ,$j ) = 0, (19c)

m(t1, y1, z1, u1, γ1)−m(Ts, Ys, Zs, Us, "s) = 0, (19d)

h(t1, y1, z1)− h(Ts, Ys, Zs)+ λ1 = 0, (19e)

rt (t1, q1)+ rq(t1, q1)v(t1, y1, z1) (19f)

−
(
rt (Ts,Qs)+ rq(Ts,Qs)v(Ts, Ys, Zs)

)
+ ψ1 = 0,

which involve the numerical solution at the endpoint t1, see (14). Denoting minus the

left-hand side of equations (19) by r1, one step of the simplified Newton method for

these equations reads

(E + F)(0x1 −0Xs)+ Jd0x1 − h

mmax∑

m=1

((
bT

− eT
s Am

)
⊗ Jm

)
0X̃ = r1, (20)

where

0X̃ := (0X1, . . . ,0Xs)
T (21)

with 0Xi for i = 1, . . . , s and 0x1 as in (17), and

E :=




qy O O O O O

py pz O O O O

cy cz cu O O O

my mz mu mγ O O

hy hz O O O O

rqvy rqvz O O O O




,
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F :=




O O O O O O

O O O O O O

O O O O O O

O O O O O O

O O O O O O
(
rtqqy + rqq(qy ·, v)

)
O O O O O




,

Jm :=




vmy vmz O O O O

fmy fmz fmu fmγ fmλ fmψ

dmy dmz dmu dmγ dmλ dmψ

O O O O O O

O O O O O O

O O O O O O




,

Jd :=




O O O O O O

O O O O O O

O O O O O O

O O O O O O

O O O O I O

O O O O O I




.

The quantities y1, z1, u1, γ1 and Ys , Zs , Us , "s both approximate the exact solution y(t),

z(t), u(t), γ (t) at t = t0 + h = t1 = Ts . By (19a)–(19d) they are close to each other

provided stiff terms are treated by stiffly accurate RK coefficients. Hence, some terms

in (20) can be neglected, leading to some sort of fixed-point iterations for y1, z1, u1, γ1.

Since the variables λ1, ψ1 are dummy variables which are directly defined by (14h),

(14i), they should have no influence on the numerical solution to the system of equations

(14a)–(14f). Therefore, in (20) the term Jd0x1 and the components of r1 corresponding

to (19e), (19f) can be neglected. The dummy values λ1, ψ1 can be set explicitly after

each modified Newton iteration such that the equations (14h), (14i) are satisfied exactly

for the current iterate Xk. This means that the corresponding components of r1 can be

assumed to vanish. Provided stiff terms are treated by stiffly accurate coefficients, i.e.,

satisfying asj,m = bj for j = 1, . . . , s, the linear equation (20) can be simplified, for

example, to

−E0Xs + E0x1 = r1. (22)

From (18) the whole set of equations (14) and variables can be reordered according

to (15) such that after application of lemma 3 the corresponding approximate Jacobian L

considered here is expressed as follows
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L := Qs+1,s+1 ⊗ E − h

(
A1 0s
0T
s 0

)
⊗ J1 − h

(
A3 0s
0T
s 0

)
⊗ (J0 + J8) (23)

where from (5d)

J0 :=

mmax∑

m=2




O O O O O O

O O O O fmλ fmψ

O O O O dmλ dmψ

O O O O O O

O O O O O O

O O O O O O




=




O O O O O O

O O O O fλ fψ

O O O O dλ dψ

O O O O O O

O O O O O O

O O O O O O




, (24a)

J1 :=




v1y v1z O O O O

f1y f1z f1u f1γ O O

d1y d1z d1u d1γ O O

O O O O O O

O O O O O O

O O O O O O




, (24b)

J8 :=

mmax∑

m=2




vmy vmz O O O O

fmy fmz fmu fmγ O O

dmy dmz dmu dmγ O O

O O O O O O

O O O O O O

O O O O O O




. (24c)

The particular tensorial structure of the approximate Jacobian L can now be used to ob-

tain good preconditioners. It will be discussed in section 5. It would not be possible to

do so if the simplified Jacobian (18) was kept. Some other parts of the approximate Ja-

cobian, such as hy and rqvy , can actually be neglected without jeopardizing convergence

of the inexact modified Newton iterates.

5. Preconditioning the approximate Jacobian

In this section the discussion is based on the approximate Jacobian L (23), though

as previously mentioned, other choices are possible. Consider a linear system with ma-

trix L

L0X = R, (25)

0X as in (17), and right-hand side R decomposed as

R = (R1, . . . , Rs, r1)
T.
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5.1. Transforming the linear system

As a first step, the relation (22) can be introduced into the first s subequations

of (25). A reduced linear system

L̃0X̃ = R̃ (26)

is obtained for 0X̃ given in (21) where

L̃ := Is ⊗ E − hA1 ⊗ J1 − hA3 ⊗ (J0 + J8) ,

R̃ := (R1, . . . , Rs)
T

− ps ⊗ r1,

by using the decomposition (13) for Qs+1,s+1 in (23).

As a second step, the quantities 0#i and 0$i for i = 1, . . . , s can be replaced in

(17) as follows


091

...

09s


 = h

(
A3 ⊗ Inλ

)


0#1

...

0#s


 ,



0:1

...

0:s


 = h

(
A3 ⊗ Inψ

)


0$1

...

0$s


 .

Hence, a linear system

K̃x̃ = b̃ (27)

is obtained with matrix

K̃ = Is ⊗ (E − J0)− hA1 ⊗ J1 − hA3 ⊗ J8 (28)

where

E − J0 =




qy O O O O O

py pz O O −fλ −fψ

cy cz cu O −dλ −dψ

my mz mu mγ O O

hy hz O O O O

rqvy rqvz O O O O




.

Under the assumptions (2) the matrix E − J0 is invertible. For nonstiff DAEs the terms

−hA1 ⊗ J1 and −hA3 ⊗ J8 in (28) can be neglected.

Once an approximation to the solution of the linear system (26) is obtained, it

remains to define an approximation to 0y1, 0z1, 0u1, 0γ1. The relation (20) or (22)

can be used for that purpose. The current iterates for λ1, ψ1 can be defined directly from

(14h), (14i), but this need not be done explicitly.

The linear system (25) with approximate Jacobian L (23) has been transformed

under a form such that preconditioning the linear equations (27) can now be done in a

straightforward manner following the results of [10–12]. The preconditioner developed

in [10,11] will not be described here. The main drawback of this preconditioner is the
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fact that although its decomposition is parallelizable, the solution of the linear systems

involved is not. Instead, a new truly parallel preconditioner is presented in the next

subsection.

5.2. A truly parallel preconditioner

In this subsection some recent results of [12] are followed and briefly presented.

The linear system (27) is solved approximately by application of linear iterative methods

with a preconditioner Q̃ ≈ K̃−1 of the form

Q̃ := H̃−1G̃H̃−1

where

H̃ := Is ⊗ (E − J0)− h"1 ⊗ J1 − h"3 ⊗ J8,

G̃ := Is ⊗ (E − J0)− h:1 ⊗ J1 − h:3 ⊗ J8.

The coefficients matrices "1 and "3 are chosen to be diagonal

"1 := diag(γ1,1, γ2,1, . . . , γs,1), "3 := diag(γ1,3, γ2,3, . . . , γs,3)

with γ1,1 = 0 because of (7a), leading to

H̃−1
=




H−1
1 O

H−1
2

. . .

O H−1
s




where

Hi := (E − J0)− hγi,1J1 − hγi,3J8 for i = 1, . . . , s.

The matrices Hi can be decomposed independently, hence in parallel. Solving a linear

system with matrix H̃ can also be done in parallel since it is block-diagonal. This is the

main advantage of this preconditioner compared to the one presented in [10,11].

The coefficients of "1, "3, :1, and :3 still remain to be fixed to some values.

Assuming the coefficients of "1 and of "3 to be given, the coefficients of :1 and :3 are

taken as

:1 =

(
0 0T

s

−"̂1Â
−1
1 Â1,1 "̂1Â

−1
1 "̂1

)
, :3 = "3A

−1
3 "3

where

Ã1 =
(
Â1,1 Â1

)
, "̂1 := diag(γ2,1, . . . , γs,1)

with Ã1 as in (8). The coefficients matrices :1 and :3 have been separately determined

such that the preconditioner Q̃ is asymptotically correct when considering the Dahlquist

test equation

y′
= λy, Re(λ) � 0.
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The coefficients γi,1 for i = 2, . . . , s and γi,3 for i = 1, . . . , s are free. They are

required to satisfy γ1,i > 0 for i = 2, . . . , s and γi,3 > 0 for i = 1, . . . , s which is a

natural assumption to ensure the invertibility of the matrices Hi . These coefficients can

be chosen, for example, to minimize

max
Re(z)�0

(
max
i=1,...,s

∣∣λi
(
M(z)

)
− 1

∣∣
)

where z = hλ, M(z) = Q̃(z)K̃(z), and λi(M(z)) for i = 1, . . . , s are the s eigenvalues

of M(z). When γi,1 = γ1 for i = 2, . . . , s and γi,3 = γ3 for i = 1, . . . , s only one or

two matrix decompositions beside E − J0 are needed. This can be quite advantageous

on a serial computer. The cost of computing a matrix–vector product Q̃v with at least s

processors on a parallel computer consists of one decomposition of Hi on each proces-

sor, two linear systems with matrix Hi to be solved, one local matrix–vector product

with each matrix E − J0, hJ1, and hJ8 , and some communication between processors

according to the nonzero elements of the coefficients matrices :1 and :3.

6. Conclusion

The approximation of a certain class of DAEs by SPARK methods has been con-

sidered. The main difficulty of these methods resides in finding a way to implement

them efficiently. Certain linear transformations are applied to the resulting system of

nonlinear equations such that an efficient preconditioner to the linear systems of the

modified Newton method can be constructed. These linear transformations rely heavily

on specific properties of the SPARK coefficients. An approximate Jacobian of the sys-

tem of nonlinear equations is presented. Based on this approximate Jacobian a new truly

parallelizable preconditioner is given.
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