Assuming at least s processors on a parallel computer, the local cost on the i th processor of computing the matrix-vector product $K u$ consists essentially of:

- one matrix-vector product with matrix M;
- one matrix-vector product with matrix J;
- some communication with other processors according to the nonzero coefficients of the i th row of matrix $T A T^{-1}$.
The local cost on the i th processor of computing the matrix-vector product $Q v$ consists essentially of:
- one decomposition of matrix H_{i};
- solving two linear systems with the decomposed matrix H_{i};
- one matrix-vector product with matrix M;
- one matrix-vector product with matrix J;
- some communication with other processors according to the nonzero coefficients of the i th row of matrix Ω.
Remark: When $\gamma_{i}=\gamma$ is the same value for $i=1, \ldots, n$ we can express

$$
H=I_{s} \otimes(M-h \gamma J), \quad G=\left(I_{s}-\frac{1}{\gamma} \Omega\right) \otimes M+\frac{1}{\gamma} \Omega \otimes(M-h \gamma J)
$$

hence we obtain

$$
Q=H^{-1} G H^{-1}=H^{-1}\left(\left(\left(I_{s}-\frac{1}{\gamma} \Omega\right) \otimes M\right) H^{-1}+\frac{1}{\gamma} \Omega \otimes I_{n}\right)
$$

and the matrix-vector products with matrix J are not needed anymore in the computation of the matrix-vector product $Q v$.

