The exam will cover from Chapter 13 to 14.
There will be a review at next Tuesday November 18.
The MIDTERM II EXAM WILL BE at the regular classroom of the Thursday Nov 20.
1.Find the tangent plane of $x^{2}+y^{2}+2 z^{2}=4$ at $(1,1,1)$.
2. Find the direction in which the function $z=2 x+\sin (2 y-x)$
increases and decreases the most from the point $(0,0)$.
3.Find the directional derivative of $z=f(x, y)=4 x^{2}+y^{2}$
in the direction of $\mathrm{i}+\mathrm{j}$ at the point $(1,1)$. What is physical meaning of this derivative? 4. Compute: $\left(x^{y}\right)_{x y}$.
5. Compute the integral $\iint_{x^{2}+4 y^{2} \leq 4}\left(x+y^{2}\right) d x d y$.
6. Approximate $\sqrt{99}$ and $\sin \left(46^{\circ}\right)$. You have to show the formula. An answer from calculate will yield 0 point.
7. Find the maximum of $x y z$ if $x+y+z=\dot{1}$ and positive.
8.Find maxima and maximal value of the function $2 x-y$ inside the unit circle.
9. Find the integral $\iiint_{D} x^{2} d v o l$, where D is the upper half unit ball $x^{2}+y^{2}+z^{2} \leq 1, z \geq 0$.
10. Find maxima and maximal value of the function $x^{2}+2 y$ in the triangle $x+3 y=1, y=0$ and $x=0$.
11. Find the integral $\iiint_{D} x d v o l$, where D is the part of the unit ball $x^{2}+y^{2}+z^{2} \leq 1$ and $x \geq 0, y \geq 0, z \geq 0$.
12. Find the extrema of the function $x^{2} y$ in the triangle bounded by the $x-a x i s$
and $y-a x i s$ and the line $x+y=1$.
13. Compute $\iint_{D} x^{2} y d x d y$, where D is the upper half disk.
14. Write down the change of variable formulae for spherical and cylindrical coordinates.

