\qquad October \qquad 30

We will use the triange $\Delta: x \geq 0, y \geq 0$, and $x+y \leq 1$.

1. Find the extrema of the function $x^{2} y$.in the triangle Δ.
2. Compute $\iint_{\Delta} x^{2} y d x d y$.

Solution:1.
$f(x, y)=x^{2} y$.
Then $f_{x}=2 x y, f_{y}=x^{2}$. Hence $f_{x}=f_{y}=0$ implies $x=0$ and for all y.
Namely all point of the form ($0, y$) but they are on the boundary. So no interior critical points.

The boundary has three parts. However it is easy to observe that $f=0$ on $x=0$ and $y=0$ so we don't have to do calculus there.
On the part that $g(x, y)=x+y=1$, we use Lagrange multiplier:

$$
f_{x}=2 x y=\lambda g_{x}=\lambda
$$

$$
f_{y}=x^{2}=\lambda g_{y}=\lambda
$$

We have $2 x y=x^{2}$ and therefore $x=0$ (which is on the boundary) and $2 y=x$ with the condition $x+y=1$ will imply $x=2 / 3, y=1 / 3$.
Finally the list of possible extrema, $(0, y),(x, 0),(2 / 3,1 / 3)$.
One can see that $f=0$, which is minimum value, on the axis and $f(2 / 3,1 / 3)=4 / 27$, which is maximum value.
2. $\iint_{\Delta} x^{2} y d x d y=\int_{0}^{1} \int_{0}^{1-y} x^{2} y d x d y$
$=\left.\int_{0}^{1} \frac{1}{3} x^{3} y\right|_{0} ^{1-y} d y=\int_{0}^{1} \frac{1}{3}(1-y)^{3} y d y=\int_{0}^{1}\left(\frac{1}{3}(1-y)^{3}-\frac{1}{3}(1-y)^{4}\right) d y=\frac{1}{12}-\frac{1}{15}=\frac{1}{60}$.

