The second midterm will cover from 13.8 to 15.3.
Here are hints to the problems.
1.Find maxima and maximal value of the function $2 x-y$ inside the unit circle.

Let $f(x, y)=2 x-y$. Then we see $f_{x}=2 \neq 0$ so there is not critical point for $f$ and hence $f$ couldn't have interior extrema.
Now we look at the boundary $g(x, y)=x^{2}+y^{2}=1$.
We have

$$
\begin{aligned}
2 & =\lambda 2 x \\
-1 & =\lambda 2 y \quad \text {, which leads to } x=\frac{1}{\lambda}, y=-\frac{1}{2 \lambda}, \text { and hence } \\
1 & =x^{2}+y^{2}
\end{aligned}
$$

$1=\frac{1}{\lambda^{2}}+\frac{1}{4 \lambda^{2}}$. Final $\lambda= \pm \frac{\sqrt{5}}{2}$, from which we have two points $\pm(2 / \sqrt{5},-1 / \sqrt{5})$. A direct computation implies, $\max$ is at $\ldots$ and $\min$ is at ....
2. Find the integral $\iiint_{B} x^{2} d v o l$, where $B$ is the unit ball
$x^{2}+y^{2}+z^{2} \leq 1$.
We use the symmetry of the ball to see that $\iiint_{B} x^{2} d v o l=\iiint_{B} y^{2} d v o l=\iiint_{B} z^{2} d v o l$ and
$\iiint_{B} x^{2} d v o l=\frac{1}{3} \iiint_{B}\left(x^{2}+y^{2}+z^{2}\right) d v o l=\frac{1}{3} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} \rho^{2} \rho^{2} \sin \phi d \rho d \phi d \theta=\frac{4 \pi}{15}$.
3. Find maxima and maximal value of the function $x^{2}+2 y$ in the half disk
$x^{2}+3 y^{2} \leq 1$ and $x \geq 0$.

Similar to 1. Set $f(x, y)=x^{2}+2 y$, then $f_{x}=2 x$ and $f_{y}=2$, which implies no interior critical points. On the boundary, set $g(x, y)=x^{2}+3 y^{2}=1$, we have
$\left\{\begin{array}{cc}2 x & =\lambda 2 x \\ 2 & =\lambda 6 y \\ x^{2}+3 y^{2} & =1\end{array}\right\}$, which leads to solutions $(0, \pm 1 / \sqrt{3}),( \pm \sqrt{2 / 3}, 1 / 3)$.
$A$ direct comparison will yield the result.
4. Find the integral $\iiint_{D} x d v o l$, where $D$ is the part of the unit ball
$x^{2}+y^{2}+z^{2} \leq 1$ and $x \geq 0, y \geq 0, z \geq 0$.
We use spherical coordinates.
$\iiint_{D} x d v o l=\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \rho \sin \phi \cos \theta \rho^{2} \sin \phi d \rho d \phi d \theta=\frac{1}{3} \frac{\pi}{4}=\frac{\pi}{12}$.
5. Find the extrema of the function $x^{2} y$.in the triangle bounded by the $x$-axis
and $y$ - axis and the line $x+y=1$.

Let $f(x, y)=x^{2} y$, then $f_{x}=2 x y, f_{y}=x^{2}$.

For interior critical points, we compute:
$2 x y=x^{2}=0$, which leads to $x=0$, namely all points on the $y$-axis are critical points.
However, these points are not in the interior.
The triangle has three sides and one the axes, the function is 0 so we don't have
to do calculus there. On the side that $x+y=1$, we proceed as
$\left\{\begin{array}{cc}2 x y & =\lambda \\ x^{2} & =\lambda \\ x+y & =1\end{array}\right\}$
and therefore we have the point $(2 / 3,1 / 3)$. Finally we have to compare the value of $f$ at $(2 / 3,1 / 3)$ with the value on the axes, which is 0 .
This implies that the axes are the minimal with minimal value 0 and $(2 / 3,1 / 3)$ is the maximum with maximal value .....
6. Compute $\iint_{D} x^{2} y d x d y$, where $D$ is the upper half disk.

We compute
$\iint_{D} x^{2} y d x d y=\int_{0}^{\pi} \int_{0}^{1} r^{4} \cos ^{2} \theta \sin \theta d r d \theta=-\left.\frac{1}{15} \cos ^{3} \theta\right|_{0} ^{\pi}=2 / 15$.
7. Compute the divergence and curl of the vector fields $x^{2} y \dot{i}+\cos (x+y) \mathrm{j}+z \mathrm{k}$. The physical meaning of divergence is the density of the source of the vector field and that for curl is the vector valued circulation density.

Easy.
8.Compute $\int_{C} y x d x+x d y$, where $C$ is the counterclockwise unit circle.

Let $x=\cos t, y=\sin t$. Then
$\int_{C} y x d x+x d y=\int_{0}^{\pi} \cos \theta \sin \theta d \cos \theta+\cos \theta d \sin \theta=$
$=\frac{\pi}{2}$.
9. Compute $\int_{S} x^{2} d s$, where $S$ is the upper half circle.

As in 8,
$\int_{S} x^{2} d s=\int_{0}^{\pi} \cos ^{2} \theta d \theta=\frac{\pi}{2}$.
10. Compute the center of mass of unit disk with density $d(x, y)=x^{2}$.

Clearly ( 0,0 ).
11. Write down the change of variable formulae for
spherical and cylindrical coordinates.
In the book.
12. Compute the integral
$\iint_{x^{2}+4 y^{2} \leq 4}\left(x+y^{2}\right) d x d y$.
Here you better substitute $2 y$ to $y$ so the domain of intergration is
the unit disk, this is the change of variable formula:
$\iint_{x^{2}+4 y^{2} \leq 4}\left(x+y^{2}\right) d x d y=\iint_{x^{2}+y^{2} \leq 4}\left(x+y^{2} / 4\right) d x d y / 2=\iint_{x^{2}+y^{2} \leq 4} y^{2} / 8 d x d y$
here we have used $\iint_{x^{2}+y^{2} \leq 4} x d x d y=0$ from the symmetry.
Hence

$$
\iint_{x^{2}+4 y^{2} \leq 4}\left(x+y^{2}\right) d x d y=\frac{1}{16} \iint_{x^{2}+y^{2} \leq 4}\left(x^{2}+y^{2}\right) d x d y=\frac{1}{16} \int_{0}^{2 \pi} \int_{0}^{2} r^{3} d r d \theta=\frac{\pi 2^{5}}{2^{6}}=\frac{\pi}{2} .
$$

