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Introduction

Dimensional analysis is concerned with the relationships amongst the dimensions of the parameters
and variables that occur in an equation. By dimension we mean the fundamental quantities of the
system. For example the dimensions of most mechanical systems are length, mass, and time. The
most basic idea of dimensional analysis is that, in order for an equation that is to represent a natural
phenomena to be meaningful, the terms appearing on each side of the equality must have the same
dimensions. What is more, dimensional analysis is a first step into the idea of invariance (or symmetry)
of differential equations which is useful in constructing solutions (e.g. similarity solutions).

The fundamental theorem of dimensional analysis is the so called Buckingham Pi Theorem first
proved by the American engineer E. Buckingham in 1914 [2]. The basic idea of the theorem is that
relations between natural quantities can be expressed in an equivalent form that is comprised entirely of
dimensionless quantities. On reason why this theorem is important is that natural laws (i.e. equations)
should be independent of the units used in the expressions of the law. Consider for example Newton’s
second law expressed as

F = ma. (1)

Since force has dimensions mass ·length
time2

and acceleration has dimensions length
time2

both sides of (1) have the
same dimensions and do not depend on the specific system of units used to measure the quantities
involved. We say that (1) is dimensionally homogeneous.

Dimensional analysis is also useful in deriving the relationships between quantities. For example,
suppose that the speed s of a ball depends only on its radius r and the time t and no other physical
quantities. Then we have a functional relationship

s = f(r, t). (2)

Now, dimensional analysis tells us that the expression f(r, t) should have the dimensions of speed, i.e.
length
time . The only possible way to combine r and t to get the dimensions of speed is through their ratio

r
t . For example if we assumed an expression such as

s = ar + bt
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then a, b would have to have units which contradicts our assumption that the only physical quantities
that s depends on are r and t. Thus we must have

s = c
r

t
(3)

where c is a pure number.
The next section is concerned with the formal statement of the Buckingham Pi theorem. Following

that we give some simple examples of its applications. Finally in the last section we give an application
of dimensional analysis to the reduction of variables in a partial differential equation (PDE) and discuss
the relationship between dimensional analysis and invariance under groups of scaling. For further
information on dimensional analysis and realted topics see [1, 4].

Main Result

The discussion of the Buckingham Pi theorem follows [1, 3]. The main idea of the approach to the
theorem taken here is to transform the problem of reducing equations into equivalent dimensionless
equations into a problem of linear algebra. This leads to an algorithm for reducing a dimensionally
homogeneous expression into equivalent expression with a smaller number of dimensionless variables [3].

Assumptions of Dimensional Analysis

We assume

1. A quantity u of interest is determined by n measurable quantities (the independent variables and
parameters) {x1, x2, . . . , xn} as

u = f(x1, x2, . . . , xn). (4)

We assume that this expression is dimensionally homogeneous, i.e. independent of the choice of
units.

2. The quantities {u, x1, x2, . . . , xn} are measured in terms of m fundamental dimensions labeled
{L1, L2, . . . , Lm}.

3. Let W represent any of u, x1, x2, . . . , xn, then we denote by [W ] the dimension of W . This can
be written as

[W ] = Lp1
1 Lp2

2 · · ·Lpm
m , (5)
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for some real numbers pi, i = 1, . . . ,m which we can arrange into an m-dimensional column
vector

P =




p1

p2
...

pm


 , (6)

the dimension vector of W . A quantity is said to be dimensionless if and only if [W ] = 1. Let

Pj =




p1j

p2j
...

pmj


 , (7)

j = 1, . . . , n be the dimension vector of xj , j = 1, . . . , n. Then we have the m × n dimension
matrix

A =
(

P1| P2| · · · | Pn|
)

=




p11 p12 · · · p1n

p21 p22 · · · p2n
...

...
...

...
pm1 pm2 · · · pmn


 . (8)

4. For any set of fundamental dimensions {L1, L2, . . . , Lm}, one can choose a system of units for
measuring the value of any quantity W . Note that a dimensionless quantity is invariant under a
scaling of units.

The Situation for a Mechanical System

Before stating the conclusions of the Buckingham Pi theorem let us consider the situation of a me-
chanical system so that the only fundamental dimensions are length L, mass M , and time T . Suppose
that u depends on the physical parameters or variables {x1, x2, . . . , xn}. Then we have that for each
i = 1, . . . , n

[xi] = L`iMmiT ti . (9)

Thus the dimension vector for each xi is

Pi =




`i

mi

ti


 , (10)
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and the dimension matrix is

A =




`1 `2 · · · `n

m1 m2 · · · mn

t1 t2 · · · tn


 . (11)

For example from above (1) we have

[m] = M1 (12)

[a] = L1T−2 (13)

and hence a dimension vectors

Pm =




0
1
0


 (14)

Pa =




1
0
−2


 , (15)

and dimension matrix

A =




0 1
1 0
0 −2


 . (16)

Conclusion of Buckingham Pi

The assumptions above have the following conclusions:

1. The relation

u = f(x1, x2, . . . , xn), (17)

can be expressed in terms of dimensionless quantities.

2. The number of dimensionless quantities is

k + 1 = n + 1− rank(A). (18)

3. Since A has rank(A) = n− k, there are k linearly independent solutions of

Az = 0
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which we denote by z1, z2, . . . , zk. Let a, an m column vector, be the dimension vector of u, and
let y, an n column vector be a solution of

Ay = −a. (19)

Then (17) simplifies to

π = g(π1, π2, . . . , πk) (20)

where

π = uxy1
1 xy2

2 · · ·xyn
n (21)

πi = xzi
1

1 xzi
2

2 · · ·xzi
n

n , i = 1, . . . , k. (22)

That is,

u = x−y1
1 x−y2

2 · · ·x−yn
n g(π1, π2, . . . , πk). (23)

Example with Newton’s Law

According to the theorem, we can reduce 1 to an equivalent expression

πF = g ≡ 1, (24)

since the dimension of the null space of 16 is 0. That is, the only solution of



0 1
1 0
0 −2


 z = 0, (25)

is 0 we have

πF = 1, (26)

where

πF = Fm−1a−1. (27)

This is because the solution of



0 1
1 0
0 −2


y =



−1
−1
2


 , (28)

is

y =
( −1
−1

)
. (29)
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Example with Explosions

Let r be the radius of a shock wave. For an atomic explosion it is assumed that

r = f(E, t, ρ0, P0), (30)

where

1. E - energy of explosion,

2. t - elapsed time after explosion,

3. ρ0 - initial air density,

4. P0 - initial air pressure.

Thus in the notation of the theorem

1. u = r,

2. x1 = E,

3. x2 = t,

4. x3 = ρ0,

5. x4 = P0.

Also

1. [u] = [r] = L1M0T 0,

2. [x1] = [E] = L2M1T−2,

3. [x2] = [t] = L0M0T 1,

4. [x3] = [ρ0] = L−3M1T 0,

5. [x4] = [P0] = L−1M1T−2.

Then

A =




2 0 −3 −1
1 0 1 1
−2 1 0 −2


 , (31)
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and

a =




1
0
0


 . (32)

Now

A =




2 0 −3 −1
1 0 1 1
−2 1 0 −2


 z = 0 (33)

has general solution

z = s




−2
5

6
5
−3

5
1


 (34)

thus the number k of linearly independent solutions is 1, thus we expect there to be 1 dimensionless
quantity π1. Now, the general solution of

Ay = −a, (35)

is

y =




−1
5

−2
5

1
5
0


 + s




−2
5

6
5
−3

5
1


 , (36)

taking s = 0 gives

π = rE− 1
5 t−

2
5 ρ

1
5
0 P 0

0 = r
( ρ0

Et2

) 1
5
. (37)

Moreover, the theorem implies that π has the form π = g(π1) therefore

r =
(

Et2

ρ0

) 1
5

g(π1) (38)

where π1 is a dimensionless quantity.
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Application to PDEs

Suppose that we have the quantities u, x1, x2, . . . , xn where u is the solution of a boundary value
problem and x1, x2, . . . , xn are the independent variables and parameters of the equation. Suppose
that there are ` independent variables and n − ` parameters. Then we can form A1, the m × `
dimension matrix for the independent variables and A2, the m × (n − `) dimension matrix for the
parameters. Then the dimension matrix for the boundary value problem is

A =
(

A1|A2

)
. (39)

Applying the Buckingham Pi theorem allows us to reduce the number of independent variables by
rank(A1) and the number of parameters by rank(A2).

Consider the boundary value problem for heat conduction

ρc
∂u

∂t
−K

∂2u

∂x2
= 0, −∞ < x < ∞, t > 0, (40)

u(x, 0) =
Q

ρc
δ(x), (41)

lim
x→±∞u(x, t) = 0. (42)

The solution u to this boundary value problem will depend on the variables x, t and the parameters
ρ, c, K, Q. We use so called “thermal units” for the fundamental dimensions, that is

1. L1 = length = L,

2. L2 = time = T ,

3. L3 = mass = M ,

4. L4 = temperature = H,

5. L5 = calories = C.

We then have

1. [u] = L0M0T 0H1C0,

2. [x1] = [x] = L1M0T 0H0C0,

3. [x2] = [t] = L0M0T 1H0C0,

4. [x3] = [ρ] = L−3M1T 0H0C0,

5. [x4] = [c] = L0M−1T 0H−1C1,
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6. [x5] = [K] = L−1M0T−1H−1C1,

7. [x6] = [Q] = L−2M0T 0H0C1.

Thus the dimension matrix is

A =




1 0 −3 0 −1 −2
0 0 1 −1 0 0
0 1 0 0 −1 0
0 0 0 −1 −1 0
0 0 0 1 1 1




. (43)

The dimension of the null space of A is one so there is one dimensionless quantity π1. We consider the
solution

z =




1
−1

2
1
2
1
2
−1

2
0




(44)

of Az = 0, and the solution

y =




0
1
2
1
2
1
2
1
2
−1




, (45)

of

Ay = −a. (46)

Then by the theorem

π1 = x1t−
1
2 ρ

1
2 c

1
2 K− 1

2 Q0. (47)

We define

κ =
K

ρc
(48)
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and write

π1 = η :=
x√
κt

. (49)

Thus we have that

π = ux0t
1
2 ρ

1
2 c

1
2 K

1
2 Q−1 = u

√
ρcKt

Q
, (50)

or

u =
Q√
ρcKt

g(η). (51)

Substitution of this into the original boundary value problem leads to the ordinary differential equation

2g′′(η) + ηg′(η) + g(η) = 0, (52)

with appropriate conditions. Thus we have reduced the number of independent variables.
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