## Symmetry Breaking

## and

## Synchrony Breaking

## Martin Golubitsky

Department of Mathematics
Mathematical Biosciences Institute
Ohio State

## Why Study Patterns I

- Patterns are surprising and pretty


## Mud Plains



## Leopard Spots



## Sand Dunes in Namibian Desert



## Zebra Stripes



## Porous Plug Burner Flames (Gorman)



- Dynamic patterns
- A film in two parts
- rotating patterns
- standing patterns


## Why Study Patterns II

1) Patterns are surprising and pretty
2) Science behind patterns

## Columnar Joints on Staffa near Mull



## Columns along Snake River



## Irish Giants Causeway



## Experiment on Corn Starch



Goehring and Morris, 2005

## Why Study Patterns III

1) Patterns are surprising and pretty
2) Science behind patterns
3) Change in patterns provide tests for models

## A Brief History of Navier-Stokes

Navier-Stokes equations for an incompressible fluid

$$
\begin{gathered}
u_{t}=\nu \nabla^{2} u-(u \cdot \nabla) u-\frac{1}{\rho} \nabla p \\
0=\nabla \cdot u \\
u=\text { velocity vector } \quad \rho=\text { mass density } \\
p=\text { pressure } \quad \nu=\text { kinematic viscosity }
\end{gathered}
$$

Navier (1821); Stokes (1856); Taylor (1923)


## The Couette Taylor Experiment



- $\Omega_{i}=$ speed of inner cylinder
- $\Omega_{o}=$ speed of outer cylinder

Andereck, Liu, and Swinney (1986)


Couette
G.I. Taylor: Theory \& Experiment (1923)


Fig. 18. Comperieon betwe observed and calculated speeds et which iantability firat appears;

## Why Study Patterns IV

1) Patterns are surprising and pretty
2) Science behind patterns
3) Change in patterns provide tests for models
4) Model independence

Mathematics provides menu of patterns

## Planar Symmetry-Breaking

- Euclidean symmetry: translations, rotations, reflections
- Symmetry-breaking from translation invariant state in planar systems with Euclidean symmetry leads to
- Stripes: invariant under translation in one direction

Sand dunes, zebra

- Spots: states centered at lattice points
mud plains, leopard


## Circle Symmetry-Breaking Oscillation

- There exist two types of time-periodic solutions near a circularly symmetric equilibrium
- Rotating waves:

Time evolution is the same as spatial rotation Standing waves:
Fixed lines of symmetry for all time

- Examples: Gorman's flame experiments
- PDE systems on interval with periodic boundary conditions


## Primer on Steady-State Bifurcation

- Solve $\quad \dot{x}=f(x, \lambda)=0 \quad$ where $f: \mathbf{R}^{n} \times \mathbf{R} \rightarrow \mathbf{R}^{n}$
- Local theory: Assume $f(0,0)=0$ - find solns near $(0,0)$
- If $J=\left(d_{x} f\right)_{0,0}$ nonsingular, IFT implies unique soln $x(\lambda)$
- Bifurcation of steady states $\Longleftrightarrow \operatorname{ker} J \neq\{0\}$


## Equivariant Steady-State Bifurcation

$$
\text { Let } \gamma: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n} \text { be linear }
$$

- $\gamma$ is a symmetry iff $\gamma($ soln $)=$ soln iff $f(\gamma x, \lambda)=\gamma f(x, \lambda)$
- Chain rule $\Longrightarrow J \gamma=\gamma J \Longrightarrow$ ker $J$ is $\gamma$-invariant
- Theorem: Fix $\Gamma$. Generically ker $J$ is an absolutely irreducible representation of $\Gamma$
i.e. only commuting matrices are multiples of identity
- Reduction implies that there is a unique steady-state bifurcation theory for each absolutely irreducible rep


## Primer on Hopf Bifurcation

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{cc}
\lambda & 1 \\
-1 & \lambda
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]-\left(x^{2}+y^{2}\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Origin is an equilibrium for all values of $\lambda$

## Primer on Hopf Bifurcation

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{cc}
\lambda & 1 \\
-1 & \lambda
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]-\left(x^{2}+y^{2}\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$


$\lambda=-1$

$\lambda=1$

## Primer on Hopf Bifurcation

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{cc}
\lambda & 1 \\
-1 & \lambda
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]-\left(x^{2}+y^{2}\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Origin goes from spiral sink to spiral source as $\lambda \nearrow 0$
- Let $r^{2}=x^{2}+y^{2}$. Then $\dot{r}=\left(\lambda-r^{2}\right) r$

1) Unique branch of periodic trajectories (for $\lambda>0$ )
2) Amplitude growth of periodic solution is $\lambda^{\frac{1}{2}}$

## Primer on Hopf Bifurcation

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{cc}
\lambda & 1 \\
-1 & \lambda
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]-\left(x^{2}+y^{2}\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Origin goes from spiral sink to spiral source as $\lambda \nearrow 0$
- Let $r^{2}=x^{2}+y^{2}$. Then $\quad \dot{r}=\left(\lambda-r^{2}\right) r$

1) Unique branch of periodic trajectories (for $\lambda>0$ )
2) Amplitude growth of periodic solution is $\lambda^{\frac{1}{2}}$

Hopf Theorem: Generically (1) and (2) hold when pair of eigenvalues of Jacobian on imaginary axis

## Primer on Equivariant Hopf Bifurcation

- Hopf bifurcation $\Longleftrightarrow J$ has eigenvalues $\pm \omega i$
- Suppose

$$
\mathbf{R}^{n}=V_{1} \oplus \cdots \oplus V_{\ell}
$$

where $V_{j}$ are distinct absolutely irreducible
Then

- $J: V_{j} \rightarrow V_{j}$ is a real multiple of $I_{V_{j}}$
- all eigenvalues of $J$ are real
- Hopf bifurcation is not possible.


## Primer on Equivariant Hopf Bifurcation

- Hopf bifurcation $\Longleftrightarrow J$ has eigenvalues $\pm \omega i$
- Representation on $E^{c}$ is $\Gamma$-simple iff either
- $E^{c}=V \oplus V$ where $V$ is absolutely irreducible, or
- $\Gamma$ acts nonabsolutely irreducibly on $E^{c}$
- Theorem: Fix $Г$. At Hopf bifurcation, generically, Г acts $\Gamma$-simply on center subspace $E^{c}$
- Reduction implies that there is a unique Hopf bifurcation theory for each irreducible rep


## Spatiotemporal Symmetries

- What kind of symmetries do periodic solutions have?
- Let $x(t)$ be a time-periodic solution
- $K=\{\gamma \in \Gamma: \gamma x(t)=x(t)\} \quad$ space symmetries
- $H=\{\gamma \in \Gamma: \gamma\{x(t)\}=\{x(t)\}\}$ spatiotemporal symm's
- $\gamma \in H \Longrightarrow \theta \in \mathbf{S}^{1} \quad$ such that $\quad \gamma x(t)=x(t+\theta)$


## Spatiotemporal Symmetries

- Let $x(t)$ be a time-periodic solution
- $K=\{\gamma \in \Gamma: \gamma x(t)=x(t)\} \quad$ space symmetries
- $H=\{\gamma \in \Gamma: \gamma\{x(t)\}=\{x(t)\}\}$ spatiotemporal symm's
- $\gamma \in H \Longrightarrow \theta \in \mathbf{S}^{1} \quad$ such that $\quad \gamma x(t)=x(t+\theta)$
- Example: $\Gamma=\mathbf{O}(2) ; E^{c}=\mathbf{R}^{2} \oplus \mathbf{R}^{2}$

Two periodic solutions types emanate from bifurcation

- rotating waves: $H=\mathbf{S O}(2) ; K=\mathbf{1}$
- standing waves: $H=\mathbf{Z}_{2}(\kappa) \oplus \mathbf{Z}_{2}\left(R_{\pi}\right) ; K=\mathbf{Z}_{2}(\kappa)$, where $\kappa$ is a reflection


## Spatiotemporal Symmetries

- Let $x(t)$ be a time-periodic solution
- $K=\{\gamma \in \Gamma: \gamma x(t)=x(t)\} \quad$ space symmetries
- $H=\{\gamma \in \Gamma: \gamma\{x(t)\}=\{x(t)\}\}$ spatiotemporal symm's
- $\gamma \in H \Longrightarrow \theta \in \mathbf{S}^{1} \quad$ such that $\quad \gamma x(t)=x(t+\theta)$
- $H / K$ is cyclic or $\mathbf{S}^{1}$ since
$\gamma \mapsto \theta$ is a homomorphism with kernel $K$


## Summary on Pattern Formation

- There is a codimension one steady-state bifurcation from a group invariant equilibrium corresponding to each absolutely irreducible subspace

There is a codimension one Hopf bifurcation from a group invariant equilibrium corresponding to each irreducible subspace

## Summary on Pattern Formation

- There is a codimension one steady-state bifurcation from a group invariant equilibrium corresponding to each absolutely irreducible subspace

There is a codimension one Hopf bifurcation from a group invariant equilibrium corresponding to each irreducible subspace

- Mathematics leads to a menu of patterns

This menu is model independent
Physics \& Biology choose from that menu
This choice is model dependent

## Quadruped Gaits

- Bound of the Siberian Souslik

- Amble of the Elephant

- Trot of the Horse


## Standard Gait Phases



## The Pronk



## Gait Symmetries

| Gait | Spatio-temporal symmetries |  |  |
| :---: | :--- | :---: | :---: |
| Trot | (Left/Right, $\frac{1}{2}$ ) | and | (Front/Back, $\frac{1}{2}$ ) |
| Pace | (Left/Right, $\frac{1}{2}$ ) | and | (Front/Back, 0$)$ |
| Walk | (Figure Eight, $\frac{1}{4}$ ) |  |  |

- Three gaits are different
- Assumption: There is a network in the nervous system that produces the characteristic rhythms of each gait
- Design simplest network to produce walk, trot, and pace


## Central Pattern Generators (CPG)

- Use gait symmetries to construct coupled network

1) walk $\Longrightarrow$ four-cycle $\omega$ in symmetry group
2) pace or trot $\Longrightarrow$ transposition $\kappa$ in symmetry group

- Simplest network has $\mathbf{Z}_{4}(\omega) \times \mathbf{Z}_{2}(\kappa)$ symmetry



## Primary Gaits: Hopf from Stand

Six Irreducible Representations of $\mathbf{Z}_{4}(\omega) \times \mathbf{Z}_{2}(\kappa)$

| Phase Diagram | Gait |
| :---: | :---: |
| $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ | pronk |
| $\left(\begin{array}{ll}0 & \frac{1}{2} \\ 0 & \frac{1}{2}\end{array}\right)$ | pace |
| $\left(\begin{array}{ll}\frac{1}{2} & 0 \\ 0 & \frac{1}{2}\end{array}\right)$ | trot |
| $\left(\begin{array}{cc}0 & 0 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$ | bound |
| $\left(\begin{array}{rr} \pm \frac{1}{4} & \pm \frac{3}{4} \\ 0 & \frac{1}{2}\end{array}\right)$ | walk ${ }^{ \pm}$ |
| $\left(\begin{array}{cc}0 & 0 \\ \pm \frac{1}{4} & \pm \frac{1}{4}\end{array}\right)$ | jump ${ }^{ \pm}$ |

## The Jump



- Average Right Rear to Right Front $=31.2$ frames
- Average Right Front to Right Rear = 11.4 frames
- $\frac{31.2}{11.4}=2.74$


## Two Identical Cells



$$
\begin{aligned}
& \dot{x}_{1}=f\left(x_{1}, x_{2}\right) \\
& \dot{x}_{2}=f\left(x_{2}, x_{1}\right)
\end{aligned}
$$

where $x_{1}, x_{2} \in \mathbf{R}^{k}$

- Time-periodic solutions exist robustly where two cells oscillate a in phase

$$
x_{2}(t)=x_{1}(t)
$$

- Time-periodic solutions exist robustly where two cells oscillate a half-period out of phase

$$
x_{2}(t)=x_{1}\left(t+\frac{1}{2}\right)
$$

## Two Identical Cells

$$
\begin{aligned}
&(2 \longrightarrow \begin{aligned}
\dot{x}_{1} & =f\left(x_{1}, x_{2}, \lambda\right) \\
\dot{x}_{2} & =f\left(x_{2}, x_{1}, \lambda\right) \quad x_{1}, x_{2} \in \mathbf{R}^{k} \\
0 & =f(0,0, \lambda)
\end{aligned} \\
& \qquad J(\lambda)=\left[\begin{array}{ll}
\alpha(\lambda) & \beta(\lambda) \\
\beta(\lambda) & \alpha(\lambda)
\end{array}\right] ;\left[\begin{array}{c}
x \\
x
\end{array}\right],\left[\begin{array}{c}
x \\
-x
\end{array}\right] \text { invariant subsp's }
\end{aligned}
$$

eigenvalues of $J$ are eigenvalues of $\alpha+\beta$ and $\alpha-\beta$

## Two Identical Cells



$$
\begin{aligned}
\dot{x}_{1} & =f\left(x_{1}, x_{2}, \lambda\right) \\
\dot{x}_{2} & =f\left(x_{2}, x_{1}, \lambda\right) \quad x_{1}, x_{2} \in \mathbf{R}^{k} \\
0 & =f(0,0, \lambda)
\end{aligned}
$$

- $J(\lambda)=\left[\begin{array}{ll}\alpha(\lambda) & \beta(\lambda) \\ \beta(\lambda) & \alpha(\lambda)\end{array}\right] ;\left[\begin{array}{l}x \\ x\end{array}\right],\left[\begin{array}{c}x \\ -x\end{array}\right]$ invariant subsp's
eigenvalues of $J$ are eigenvalues of $\alpha+\beta$ and $\alpha-\beta$
- $\alpha+\beta$ critical: synchronous periodic solutions
- $\alpha-\beta$ critical: periodic solutions where two cells are half-period out of phase

$$
x_{2}(t)=x_{1}\left(t+\frac{T}{2}\right)
$$

## Three-Cell Unidirectional Ring: $\Gamma=\mathrm{Z}_{3}$



$$
\begin{aligned}
& \dot{x}_{1}=f\left(x_{1}, x_{3}\right) \\
& \dot{x}_{2}=f\left(x_{2}, x_{1}\right) \\
& \dot{x}_{3}=f\left(x_{3}, x_{2}\right)
\end{aligned}
$$

- Discrete rotating waves






## Three-Cell Bidirectional Ring: $\Gamma=\mathbf{S}_{3}$



$$
\begin{aligned}
\dot{x}_{1} & =f\left(x_{1}, x_{2}, x_{3}\right) \\
\dot{x}_{2} & =f\left(x_{2}, x_{3}, x_{1}\right) \quad f\left(x_{2}, x_{1}, x_{3}\right)=f\left(x_{2}, x_{3}, x_{1}\right) \\
\dot{x}_{3} & =f\left(x_{3}, x_{1}, x_{2}\right)
\end{aligned}
$$

- Discrete rotating waves

In-phase periodic solutions:

$$
x_{3}(t)=x_{1}(t)
$$

Out-of-phase periodic solutions:

$$
x_{3}(t)=x_{1}\left(t+\frac{T}{2}\right) \quad \text { and } \quad x_{2}(t)=x_{2}\left(t+\frac{T}{2}\right)
$$

G. and Stewart (1986)

## Bidirectional Three-Cell Ring (2)



## Three-Cell Feed-Forward Network

$$
\text { - C(1) } \left.\longrightarrow \longrightarrow 3 \begin{array}{l}
\dot{x}_{1}=f\left(x_{1}, x_{1}, \lambda\right) \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}=f\left(x_{2}, x_{1}, \lambda\right) \quad \text { (x, }, x_{2}, \lambda\right) ~ \quad J=\left[\begin{array}{ccc}
\alpha+\beta & 0 & 0 \\
\beta & \alpha & 0 \\
0 & \beta & \alpha
\end{array}\right]
$$

## Three-Cell Feed-Forward Network

- $C$ (1) $2 \rightarrow 3$

$$
\begin{aligned}
\dot{x}_{1} & =f\left(x_{1}, x_{1}, \lambda\right) \\
\dot{x}_{2} & =f\left(x_{2}, x_{1}, \lambda\right) \\
\dot{x}_{3} & =f\left(x_{3}, x_{2}, \lambda\right)
\end{aligned} \quad J=\left[\begin{array}{ccc}
\alpha+\beta & 0 & 0 \\
\beta & \alpha & 0 \\
0 & \beta & \alpha
\end{array}\right]
$$

- Network supports solution by Hopf bifurcation where $x_{1}(t)$ equilibrium $\quad x_{2}(t), x_{3}(t)$ time periodic
- $x_{2}(t) \approx \lambda^{1 / 2} \quad x_{3}(t) \approx \lambda^{1 / 6}$


G., Nicol, and Stewart (2004); Elmhirst and G. (2005)


## Quasiperiodic Solutions in FF Network

Network supports solution where
$x_{1}(t)$ equilibrium, $x_{2}(t)$ time periodic, $x_{3}(t)$ quasiperiodic $f\left(y_{1}, y_{2}\right)=\left(i+0.3-\left|y_{1}\right|^{2}\right) y_{1}-y_{2}-1.83\left|y_{2}\right|^{2} y_{2}+(2.33+4.71 i)\left|y_{2}\right|^{2} y_{1}$




G., Nicol, and Stewart (2004); Broer and Vegter (2007)

## Forced Feed Forward Network



- forcing at frequency $\omega_{f}$ and amplitude $\varepsilon$
- network tuned near Hopf bifurcation with frequency $\omega_{h}$
- $\lambda<0$ so that equilibrium is stable
- Three parameters: $\lambda, \epsilon, \omega_{f}-\omega_{h}$


## Numerics with Aronson

$$
g(t)=\varepsilon\left(e^{i \omega_{F} t}+2 e^{2 i \omega_{F} t}-0.5 e^{3 i \omega_{F} t}\right) \quad \lambda=-0.1 \quad \varepsilon=0.01
$$



## McCullen-Mullin Experiment



## More Precisely

- $\omega_{f}=5, \lambda=-0.109, \varepsilon=0.1, \gamma=10$
- $\dot{z}=\left(\lambda+\omega_{H} i-(1+i \gamma)|z|^{2}\right) z+\varepsilon e^{2 \pi i \omega_{f} t}$



## Best Guess

- Fix $\lambda<0$ and $\varepsilon>0$ near 0
- For all $\gamma>\gamma_{c}$ there is a region of multiple small amplitude periodic solutions near $\omega_{0}$ as $\omega_{F}$ is varied
- $\omega_{0} \rightarrow \omega_{H} \quad$ and $\quad \gamma_{c} \rightarrow \sqrt{3} \quad$ as $\quad \lambda, \varepsilon \rightarrow 0$

Postlethwaite and G. (2008)

## Many Thanks To Ian Stewart

## Feedforward

Toby Elmhirst Cook's U Quadrupedal Gaits Matt Nicol Houston

Nick McCullen Bath

Luciano Buono Oshawa Jim Collins Tom Mullin Manchester Don Aronson Minnesota

Coupled Cells
Reiner Lauterbach Hamburg Maria Leite Marcus Pivato

Oklahoma Trent Andrew Török Houston

Pictures of Patterns
Mike Gorman Houston
Steve Morris Toronto

