Coupled Systems: Theory & Examples

Coupled Cell Networks

Martin Golubitsky Mathematical Biosciences Institute Ohio State University

Reference: Golubitsky and Stewart. Nonlinear dynamics of networks: the groupoid formalism. *Bull. Amer. Math. Soc.* **43** No. 3 (2006) 305–364

Thanks

Ian StewartWarFernando AntoneliSaoAna DiasPorteAna DiasPorteReiner LauterbachHanMaria LeiteOklaMatthew NicolHousMarcus PivatoTrenAndrew TörökHousYunjiao WangMan

Warwick Sao Paulo Porto Hamburg Oklahoma Houston Trent Houston Manchester

Networks and Coupled Systems

$$\dot{x}_1 = f(x_1, x_2)$$

 $\dot{x}_2 = f(x_2, x_1)$ $x_1, x_2 \in \mathbf{R}^k$

$$\dot{x}_1 = f(x_1, x_3)$$

 $\dot{x}_2 = f(x_2, x_1)$
 $\dot{x}_3 = f(x_3, x_2)$

$$\dot{x}_1 = f(x_1, x_1, \lambda)$$

$$\dot{x}_2 = f(x_2, x_1, \lambda)$$

$$\dot{x}_3 = f(x_3, x_2, \lambda)$$

- p. 3/37

Synchrony Subspaces

A polydiagonal is a subspace

 $\Delta = \{ x : x_c = x_d \quad \text{for some subset of cells} \}$

A synchrony subspace is a flow-invariant polydiagonal

Synchrony Subspaces

A polydiagonal is a subspace

 $\Delta = \{ x : x_c = x_d \quad \text{for some subset of cells} \}$

- A synchrony subspace is a flow-invariant polydiagonal
- $Fix(\Sigma) = \{x \in \mathbb{R}^n : \sigma x = x \quad \forall \sigma \in \Sigma\}$ is flow invariant Proof: $f(x) = f(\sigma x) = \sigma f(x)$

Synchrony Subspaces

A polydiagonal is a subspace

 $\Delta = \{ x : x_c = x_d \text{ for some subset of cells} \}$

- A synchrony subspace is a flow-invariant polydiagonal
- Let σ = be a permutation. Then $Fix(\sigma)$ is a polydiagonal

• Fix((23)(14)) = {(x_1, x_2, x_3, x_4) : $x_2 = x_3$; $x_1 = x_4$ }

• Let Σ be a subgroup of network permutation symmetries. Then $Fix(\Sigma)$ is a synchrony subspace

Coupled Cell Overview

Coupled cell system: discrete space, continuous time system Has information that cannot be understood by phase space theory alone

- symmetry synchrony and phase shifts
- network architecture

balanced colorings quotient networks

Coupled Cell Overview

Coupled cell system: discrete space, continuous time system Has information that cannot be understood by phase space theory alone

- symmetry synchrony and phase shifts
- network architecture
 balanced colorings
 quotient networks
- Primary Question
 Which aspects of coupled cell dynamics are due to network architecture?
- Beginner Question: Are all synchrony spaces fixed-point spaces? Answer: No

Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)

Chain with Back Coupling

 $\dot{x}_1 = f(x_1, x_3) \qquad \dot{x}_2 = f(x_2, x_1) \qquad \dot{x}_3 = f(x_3, x_2)$ $\dot{x}_4 = f(x_4, x_3) \qquad \dot{x}_5 = f(x_5, x_4) \qquad \dot{x}_6 = f(x_6, x_5)$ $\dot{x}_7 = f(x_7, x_6)$

Chain with Back Coupling

 $\dot{x}_1 = f(x_1, x_3) \qquad \dot{x}_2 = f(x_2, x_1) \qquad \dot{x}_3 = f(x_3, x_2)$ $\dot{x}_4 = f(x_4, x_3) \qquad \dot{x}_5 = f(x_5, x_4) \qquad \dot{x}_6 = f(x_6, x_5)$ $\dot{x}_7 = f(x_7, x_6)$

• $Y = \{x : x_1 = x_4 = x_7; x_2 = x_5; x_3 = x_6\}$ is flow-invariant

Robust synchrony exists in networks without symmetry

All cells are identical within the network; same equations

Balanced Coloring

- Let Δ be a polydiagonal
- Color equivalent cells the same color if cell coord's in Δ are equal
- Coloring is balanced if all cells with same color receive equal number of inputs from cells of a given color

Balanced Coloring

- Let Δ be a polydiagonal
- Color equivalent cells the same color if cell coord's in Δ are equal
- Coloring is balanced if all cells with same color receive equal number of inputs from cells of a given color

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5 \longrightarrow 6 \longrightarrow 7$$

Balanced Coloring

- Let Δ be a polydiagonal
- Color equivalent cells the same color if cell coord's in Δ are equal
- Coloring is balanced if all cells with same color receive equal number of inputs from cells of a given color

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5 \longrightarrow 6 \longrightarrow 7$$

● Theorem: synchrony subspace ↔ balanced
Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)

2D-Lattice Dynamical Systems

- square lattice with nearest neighbor coupling
- Form two-color balanced relation

Each black cell connected to two black and two white Each white cell connected to two black and two white

Stewart, G. and Nicol (2004)

Lattice Dynamical Systems

On Black/White diagonal interchange black and white

Result is **balanced**

Lattice Dynamical Systems

On Black/White diagonal interchange black and white

Result is **balanced**

Continuum of different synchrony subspaces

Lattice Dynamical Systems (2)

There are eight isolated balanced two-colorings on square lattice with nearest neighbor coupling

 $2B \to W; 4W \to B$

 $1B \to W; 4W \to B$

 $3B \rightarrow W; 3W \rightarrow B$

 $4B \rightarrow W; 4W \rightarrow B$

 $2B \rightarrow W; 3W \rightarrow B$

 $2B \to W; 1W \to B$ 1B -

 $1B \to W; 1W \to B$

Wang and G. (2004)

indicates nonsymmetric solution

Lattice Dynamical Systems (3)

There are two infinite families of balanced two-colorings

/	/	/		/		/		/	/	/	/	/	/		/
/	/	/	/	/	/	×	×	/	/	/	/	/	/	/	/
/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
/	/	/	/	/	/	_	/	/	_	_	/	/	/	/	/
/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
/	/	/	/	/	/	/		/		/	/	/	/	/	/

 $2B \to W; 2W \to B$

Up to symmetry these are all balanced two-colorings

Lattice Dynamical Systems

Architecture is important

Lattice Dynamical Systems

- Architecture is important
- For square lattice with nearest and next nearest neighbor coupling
 - No infinite families
 - For each k a finite number of balanced k colorings
 - All balanced colorings are doubly-periodic

Antoneli, Dias, G., and Wang (2004)

$$W_0 = \{0\}$$
 and $W_{i+1} = I(W_i)$

Input set of $U = I(U) = \{c \in \mathcal{C} : c \text{ connects to cell in } U\}$

 \blacksquare W_{k-1} contains all k colors of a balanced k-coloring

bd(U) = I(U) \ ↓ U
 c ∈ bd(U) is 1-determined if color of c is determined by
 colors of cells in U and fact that coloring is balanced

Define *p*-determined inductively

• $bd(U) = I(U) \smallsetminus U$ $c \in bd(U)$ is 1-determined if color of c is determined by colors of cells in U and fact that coloring is balanced

- Define *p*-determined inductively
- All NN boundary cells are not 1-determined NNN boundary cells are 1- or 2-determined

Windows 3: Square Lattice

Nearest and next nearest neighbor coupling

Black • indicates cells whose colors are known

 \times indicates **1-determined** cells of W_2

Windows 3: Square Lattice

Nearest and next nearest neighbor coupling

Black • indicates cells whose colors are known

 \times indicates **1-determined** cells of W_2

• Three cells in corners of square are 2-determined

Windows 3: Square Lattice

Nearest and next nearest neighbor coupling

Black • indicates cells whose colors are known

 \times indicates **1-determined** cells of W_2

- Three cells in corners of square are 2-determined
- U determines its boundary if all $c \in bd(U)$ are p-determined for some p
- W_i determines its boundary for all $i \geq 2$

Square lattice with Nearest neighbor coupling

 W_2 is not 1-determined

• W_{i_0} is a window if W_i determines its boundary $\forall i \ge i_0$

- Suppose a balanced k-coloring restricted to $int(W_i)$ for some $i \ge i_0$ contains all k colors. Then
 - *k*-coloring is uniquely determined on whole lattice by its restriction to W_i
- **•** Thm: Suppose lattice network has window. Fix k. Then
 - Finite number of balanced k-colorings
 - Each balanced k-coloring is multiply-periodic

Antoneli, Dias, G., and Wang (2004)

Quotients: Self-Coupling & Multiarrows

$$\dot{x}_1 = f(x_1, x_2, x_3) \dot{x}_2 = f(x_2, x_3, x_1) \dot{x}_3 = f(x_3, x_1, x_2)$$

where f(x, y, z) = f(x, z, y)

Quotients: Self-Coupling & Multiarrows

Balanced two-coloring of bidirectional ring

$$\dot{x}_1 = f(x_1, x_2, x_3)$$

 $\dot{x}_2 = f(x_2, x_3, x_1)$
 $\dot{x}_3 = f(x_3, x_1, x_2)$

where
$$f(x, y, z) = f(x, z, y)$$

Quotient network:

$$\dot{x}_1 = f(x_1, x_1, x_3)$$

 $\dot{x}_3 = f(x_3, x_1, x_1)$

where f(x, y, z) = f(x, z, y)

Quotient Networks

Given cell network \mathcal{C} and balanced coloring \bowtie

- Define *quotient network*:
 - $\mathbf{C}_{\bowtie} = \{ \overline{c} : c \in \mathcal{C} \} = \mathcal{C} / \bowtie$
 - Quotient arrows are projections of \mathcal{C} arrows
- Thm: Admissible DE restricts to quotient admissible DE Quotient admissible DE lifts to admissible DE
- G., Stewart, and Török (2005)

Multiple Equilibria in LDE

LDE on square lattice has form

$$\dot{x}_{ij} = f(x_{ij}, \overline{x_{i+1,j}, x_{i-1,j}, x_{i,j+1}, x_{i,j-1}})$$

- Quotient network: $\dot{B} = f(B, \overline{B, B, W, W})$ $\dot{W} = f(W, \overline{W, W, B, B})$
- All quotient networks in continuum are identical One equilibrium implies a continuum of equilibria

Asym Network; Symmetric Quotient

Quotient is bidirectional 3-cell ring with D₃ symmetry

Asym Network; Symmetric Quotient

Quotient is bidirectional 3-cell ring with D_3 symmetry

Population Models

- Cell system is homogeneous if cells are input equivalent
- Cell system has identical edges if all arrows are equivalent
- Cell system is regular if homogeneous & identical edges
- Any quotient of a regular network is regular

Regular Three Cell Networks

• $a_{ij} =$ number of inputs cell *i* receives from cell *j*

• Valency = n = total number of inputs per cell

 $a_{i1} + a_{i2} + a_{i3} = n$ for j = 1, 2, 3

34 regular three-cell valency 2 networks

Leite and G. (2005)

Three-Cell Feed-Forward Network

 $\dot{x}_1 = f(x_1, x_1, \lambda)$ $\dot{x}_2 = f(x_2, x_1, \lambda)$ $\dot{x}_3 = f(x_3, x_2, \lambda)$

$$J = \begin{bmatrix} \alpha + \beta & 0 & 0 \\ \beta & \alpha & 0 \\ 0 & \beta & \alpha \end{bmatrix}$$

- p. 25/37

Eigenspace Types of Adjacency Matrices

Simple complex (no zero) eigenvalues: 2, 14, 18, 19, 24

Double with two synch-breaking eigenvectors: 4, 7, 8

Nilpotent: 3; 6, 11, 27, 28

Double with synchrony preserving eigenvector: 12
(1) - 2 - 3)

Remaining 20 networks have real simple eigenvalues
Leite and G. (2006)

Jacobians and Adjacency Matrices

- Each node in regular network has ν inputs where $\nu =$ valency of network
- $A = (a_{ij})$ where $a_{ij} =$ number of arrows $j \rightarrow i$ A is adjacency matrix
- ODE systems for a regular network

$$\dot{x}_j = f(x_j; \overline{x_{\sigma_j(1)}, \dots, x_{\sigma_j(\nu)}})$$

- $x_1 = \cdots = x_n$ is flow invariant Can assume synchronous equilibrium WLOG $x_1 = \cdots = x_n = 0$ is the equilibrium
- Assume dim(internal dynamics $\equiv k = 1$) Jacobian $= \alpha I_n + \beta A$ where $\alpha =$ linearized internal node dynamics $\beta =$ linearized coupling

Bifurcations at Linear Level

Symmetry-breaking bifurcations

• Theorem:

There is a codimension one steady-state bifurcation corresponding to each absolutely irreducible subspace

There is a codimension one Hopf bifurcation corresponding to each irreducible subspace

Synchrony-breaking bifurcations in regular networks

9 Theorem: $k \ge 2$

There is a codimension one steady-state bifurcation corresponding to each real eigenvalue of adj matrix

There is a codimension one Hopf bifurcation corresponding to each eigenvalue of adjacency matrix

Lauterbach & G. (2009)

Nilpotent Hopf

• Networks 3, 28, 27: branches that grow at $\lambda^{\frac{1}{6}}$

(b)

• Networks 6, 11: two or four branches that grow $\lambda^{\frac{1}{2}}$

Regular five-cell network: two branches that grow λ

Nilpotent Hopf in Network 27

Conjecture

- Number of regular networks grow superexponentially Number of eigenspace types grow much more slowly
- Each eigenspace type has 'small' number of codim 1 bifurcations — correspond to different regular networks
- Example: 3-4 different bifurcations for nilpotent Hopf (Elmhirst & G.)
 - 1) Two branches: $\lambda^{\frac{1}{2}}$ and $\lambda^{\frac{1}{6}}$
 - 2) Two branches: λ^1
 - 3) Two or four branches: $\lambda^{\frac{1}{2}}$
 - 4) Two branches: $\lambda^{\frac{1}{2}}$ and $\lambda^{\frac{1}{4}}$

Simple Zero Eigenvalue Bifurcations

- Generic equivariant case saddle node, transcritical, or pitchfork
- Generic network case: Not so simple
- There exist many arrow four-cell regular networks with codimension one bifurcations that are more degenerate than a pitchfork