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Networks and Coupled Systems

1 2
ẋ1 = f(x1, x2)

ẋ2 = f(x2, x1)
x1, x2 ∈ R

k

1

2 3

ẋ1 = f(x1, x3)

ẋ2 = f(x2, x1)

ẋ3 = f(x3, x2)

1 2 3
ẋ1 = f(x1, x1, λ)

ẋ2 = f(x2, x1, λ)

ẋ3 = f(x3, x2, λ)
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Synchrony Subspaces

A polydiagonal is a subspace

∆ = {x : xc = xd for some subset of cells}

A synchrony subspace is a flow-invariant polydiagonal
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Synchrony Subspaces

A polydiagonal is a subspace

∆ = {x : xc = xd for some subset of cells}

A synchrony subspace is a flow-invariant polydiagonal

Fix(Σ) = {x ∈ R
n : σx = x ∀σ ∈ Σ} is flow invariant

Proof: f(x) = f(σx) = σf(x)
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Synchrony Subspaces

A polydiagonal is a subspace

∆ = {x : xc = xd for some subset of cells}

A synchrony subspace is a flow-invariant polydiagonal

Let σ = be a permutation. Then Fix(σ) is a polydiagonal

1 2

43

Fix((2 3)(1 4)) = {(x1, x2, x3, x4) : x2 = x3;x1 = x4}

Let Σ be a subgroup of network permutation
symmetries. Then Fix(Σ) is a synchrony subspace
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Coupled Cell Overview
Coupled cell system: discrete space, continuous time system
Has information that cannot be understood by phase space theory alone

symmetry synchrony and phase shifts

network architecture
balanced colorings
quotient networks
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Coupled Cell Overview
Coupled cell system: discrete space, continuous time system
Has information that cannot be understood by phase space theory alone

symmetry synchrony and phase shifts

network architecture
balanced colorings
quotient networks

Primary Question
Which aspects of coupled cell dynamics are
due to network architecture?

Beginner Question: Are all synchrony spaces fixed-point spaces?

Answer: No

Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)
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Chain with Back Coupling

1 2 3 4 5 6 7

ẋ1 = f(x1, x3) ẋ2 = f(x2, x1) ẋ3 = f(x3, x2)

ẋ4 = f(x4, x3) ẋ5 = f(x5, x4) ẋ6 = f(x6, x5)

ẋ7 = f(x7, x6)
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Chain with Back Coupling

1 2 3 4 5 6 7

ẋ1 = f(x1, x3) ẋ2 = f(x2, x1) ẋ3 = f(x3, x2)

ẋ4 = f(x4, x3) ẋ5 = f(x5, x4) ẋ6 = f(x6, x5)

ẋ7 = f(x7, x6)

Y = {x : x1 = x4 = x7; x2 = x5; x3 = x6} is flow-invariant

Robust synchrony exists in networks without symmetry

All cells are identical within the network; same equations
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Balanced Coloring

Let ∆ be a polydiagonal

Color equivalent cells the same color
if cell coord’s in ∆ are equal

Coloring is balanced if all cells with same color receive
equal number of inputs from cells of a given color
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Balanced Coloring

Let ∆ be a polydiagonal

Color equivalent cells the same color
if cell coord’s in ∆ are equal

Coloring is balanced if all cells with same color receive
equal number of inputs from cells of a given color

1 2 3 4 5 6 7
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Balanced Coloring

Let ∆ be a polydiagonal

Color equivalent cells the same color
if cell coord’s in ∆ are equal

Coloring is balanced if all cells with same color receive
equal number of inputs from cells of a given color

1 2 3 4 5 6 7

Theorem: synchrony subspace ⇐⇒ balanced

Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)
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2D-Lattice Dynamical Systems

square lattice with nearest neighbor coupling

Form two-color balanced relation

Each black cell connected to two black and two white
Each white cell connected to two black and two white

Stewart, G. and Nicol (2004)
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Lattice Dynamical Systems

On Black/White diagonal interchange black and white

Result is balanced
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Lattice Dynamical Systems

On Black/White diagonal interchange black and white

Result is balanced

Continuum of different synchrony subspaces
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Lattice Dynamical Systems (2)

There are eight isolated balanced two-colorings on
square lattice with nearest neighbor coupling

4B →W ; 4W → B 2B →W ; 4W → B 1B →W ; 4W → B 3B →W ; 3W → B

2B →W ; 3W → B 2B →W ; 1W → B 2B →W ; 1W → B 1B →W ; 1W → B

Wang and G. (2004) indicates nonsymmetric solution
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Lattice Dynamical Systems (3)

There are two infinite families of balanced two-colorings

2B →W ; 2W → B 1B →W ; 3W → B

Up to symmetry these are all balanced two-colorings
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Lattice Dynamical Systems

Architecture is important
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Lattice Dynamical Systems

Architecture is important

For square lattice with nearest and next nearest
neighbor coupling

No infinite families

For each k a finite number of balanced k colorings

All balanced colorings are doubly-periodic

Antoneli, Dias, G., and Wang (2004)

– p. 13/37



Windows 1
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NEAREST NEIGHBOR NEXT NEAREST NEIGHBOR

W0 = {0} and Wi+1 = I(Wi)

Input set of U = I(U) = {c ∈ C : c connects to cell in U}

L = W0 ∪ W1 ∪ · · ·

Wk−1 contains all k colors of a balanced k-coloring
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Windows 2

bd(U) = I(U) r U

c ∈ bd(U) is 1-determined if color of c is determined by

colors of cells in U and fact that coloring is balanced

Define p-determined inductively
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Windows 2

bd(U) = I(U) r U

c ∈ bd(U) is 1-determined if color of c is determined by

colors of cells in U and fact that coloring is balanced

Define p-determined inductively

All NN boundary cells are not 1-determined

NNN boundary cells are 1- or 2-determined
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Windows 3: Square Lattice

Nearest and next nearest
neighbor coupling

Black • indicates cells
whose colors are known

× indicates
1-determined cells of W2 ◦
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Windows 3: Square Lattice
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• Three cells in corners of square are 2-determined
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Windows 3: Square Lattice

Nearest and next nearest
neighbor coupling

Black • indicates cells
whose colors are known

× indicates
1-determined cells of W2 ◦

◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦

• ••
•

•

••

••
•

•

•

•

•

•

•

•

•

•

•

•

••

••

× ××

×
×

×

× ××

×
×

×

• Three cells in corners of square are 2-determined

• U determines its boundary if all c ∈ bd(U) are
p-determined for some p

• Wi determines its boundary for all i ≥ 2
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Windows 4

Square lattice with Nearest neighbor coupling

W2 is not 1-determined
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Windows 5

Wi0 is a window if Wi determines its boundary ∀ i > i0

Suppose a balanced k-coloring restricted to int(Wi) for
some i > i0 contains all k colors. Then

k-coloring is uniquely determined on whole lattice by
its restriction to Wi

Thm: Suppose lattice network has window. Fix k. Then

Finite number of balanced k-colorings
Each balanced k-coloring is multiply-periodic

Antoneli, Dias, G., and Wang (2004)
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Quotients: Self-Coupling & Multiarrows

Balanced two-coloring of bidirectional ring

ẋ1 = f(x1, x2, x3)

ẋ2 = f(x2, x3, x1) where f(x, y, z) = f(x, z, y)

ẋ3 = f(x3, x1, x2)
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Quotients: Self-Coupling & Multiarrows

Balanced two-coloring of bidirectional ring

ẋ1 = f(x1, x2, x3)

ẋ2 = f(x2, x3, x1) where f(x, y, z) = f(x, z, y)

ẋ3 = f(x3, x1, x2)

Quotient network:

ẋ1 = f(x1, x1, x3)

ẋ3 = f(x3, x1, x1) where f(x, y, z) = f(x, z, y)
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Quotient Networks

Given cell network C and balanced coloring ⊲⊳

Define quotient network:

C⊲⊳ = {c : c ∈ C} = C/ ⊲⊳

Quotient arrows are projections of C arrows

Thm: Admissible DE restricts to quotient admissible DE

Quotient admissible DE lifts to admissible DE

G., Stewart, and Török (2005)
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Multiple Equilibria in LDE

Recall
balanced
relation

LDE on square lattice has form

ẋij = f(xij, xi+1,j , xi−1,j , xi,j+1, xi,j−1)

Quotient network: Ḃ = f(B,B,B,W,W )

Ẇ = f(W,W,W,B,B)

All quotient networks in continuum are identical
One equilibrium implies a continuum of equilibria

– p. 21/37



Asym Network; Symmetric Quotient

1 3
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Quotient is bidirectional 3-cell ring with D3 symmetry
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Asym Network; Symmetric Quotient
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Population Models

Cell system is homogeneous if cells are input equivalent

Cell system has identical edges if all arrows are equivalent

Cell system is regular if homogeneous & identical edges

Any quotient of a regular network is regular

– p. 23/37



Regular Three Cell Networks

1

23

a13

a33

a32

a21

a12
a22

a31

a11

a23

aij = number of inputs cell i receives from cell j

Valency = n = total number of inputs per cell

ai1 + ai2 + ai3 = n for j = 1, 2, 3

34 regular three-cell valency 2 networks

Leite and G. (2005)
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Three-Cell Feed-Forward Network

1 2 3

ẋ1 = f(x1, x1, λ)

ẋ2 = f(x2, x1, λ)

ẋ3 = f(x3, x2, λ)

J =







α + β 0 0

β α 0

0 β α
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Eigenspace Types of Adjacency Matrices
Simple complex (no zero) eigenvalues: 2, 14, 18, 19, 24

1

23 2

1

3 2

1

3 2

1

3 2

1

3

Double with two synch-breaking eigenvectors: 4, 7, 8

1 2 3

1

23

1

23

Nilpotent: 3; 6, 11, 27, 28

1 2 3

1

23 2

1

3 32 1 2

1

3

Double with synchrony preserving eigenvector: 12
1 2 3

Remaining 20 networks have real simple eigenvalues

Leite and G. (2006)
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Jacobians and Adjacency Matrices
Each node in regular network has ν inputs
where ν = valency of network

A = (aij) where aij = number of arrows j → i
A is adjacency matrix

ODE systems for a regular network

ẋj = f(xj ;xσj(1), . . . , xσj(ν))

x1 = · · · = xn is flow invariant
Can assume synchronous equilibrium
WLOG x1 = · · · = xn = 0 is the equilibrium

Assume dim(internal dynamics ≡ k = 1)
Jacobian = αIn + βA where

α = linearized internal node dynamics
β = linearized coupling
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Bifurcations at Linear Level
Symmetry-breaking bifurcations

Theorem:
There is a codimension one steady-state bifurcation
corresponding to each absolutely irreducible subspace

There is a codimension one Hopf bifurcation
corresponding to each irreducible subspace

Synchrony-breaking bifurcations in regular networks

Theorem: k ≥ 2
There is a codimension one steady-state bifurcation
corresponding to each real eigenvalue of adj matrix

There is a codimension one Hopf bifurcation
corresponding to each eigenvalue of adjacency matrix

Lauterbach & G. (2009)
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Nilpotent Hopf

Networks 3, 28, 27: branches that grow at λ
1

6

1 2 3

1

3 2

2 1 3

(a) (b)

Networks 6, 11: two or four branches that grow λ
1

2

3 2

1
1

3 2

Regular five-cell network: two branches that grow λ

1

3

2

5

4
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Nilpotent Hopf in Network 27
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Conjecture

Number of regular networks grow superexponentially
Number of eigenspace types grow much more slowly

Each eigenspace type has ‘small’ number of codim 1
bifurcations — correspond to different regular networks

Example: 3-4 different bifurcations for nilpotent Hopf
(Elmhirst & G.)

1) Two branches: λ
1

2 and λ
1

6

2) Two branches: λ1

3) Two or four branches: λ
1

2

4) Two branches: λ
1

2 and λ
1

4
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Simple Zero Eigenvalue Bifurcations

Generic equivariant case
saddle node, transcritical, or pitchfork

Generic network case: Not so simple

There exist many arrow four-cell regular networks with
codimension one bifurcations that are more degenerate
than a pitchfork
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