Symmetry and Visual Hallucinations

Martin Golubitsky Mathematical Biosciences Institute Ohio State University

Paul BressloffJack CowanUtahChicagoPeter ThomasMatthew WienerCase WesternNeuropsychology, NIHLie June ShiauAndrew TörökHouston Clear LakeHouston

Klüver: We wish to stress ... one point, namely, that under diverse conditions **the visual system** responds in terms of a limited number of form constants.

Planar Symmetry-Breaking

Euclidean symmetry: translations, rotations, reflections

Symmetry-breaking from translation invariant state in planar systems with Euclidean symmetry leads to

Stripes:

States invariant under translation in one direction

Spots:

States centered at lattice points

Sand Dunes in Namibian Desert

Mud Plains

Outline

- 1. Geometric Visual Hallucinations
- 2. Structure of Visual Cortex

Hubel and Wiesel hypercolumns; local and lateral connections; isotropy versus anisotropy

3. Pattern Formation in V1

Symmetry; Three models

4. Interpretation of Patterns in Retinal Coordinates

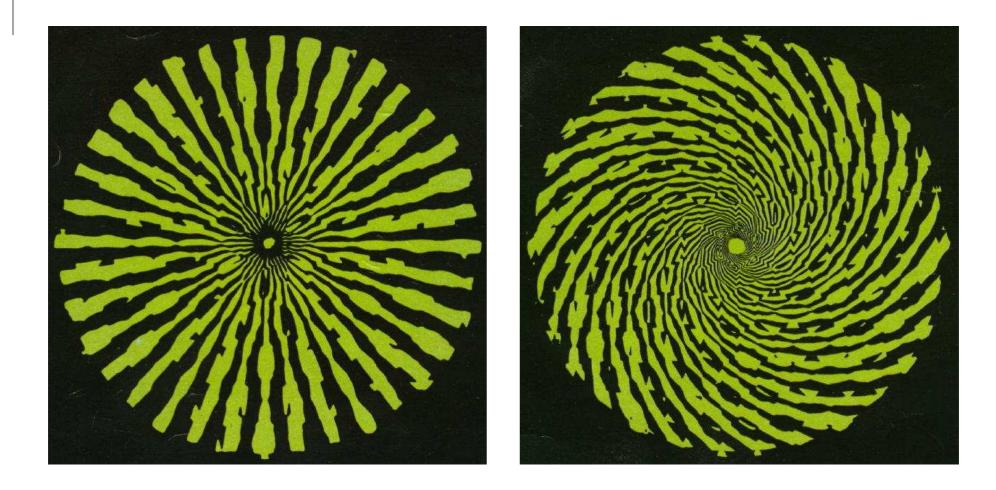
Visual Hallucinations

- Drug uniformly forces activation of cortical cells
- Leads to spontaneous pattern formation on cortex
- Map from V1 to retina; translates pattern on cortex to visual image

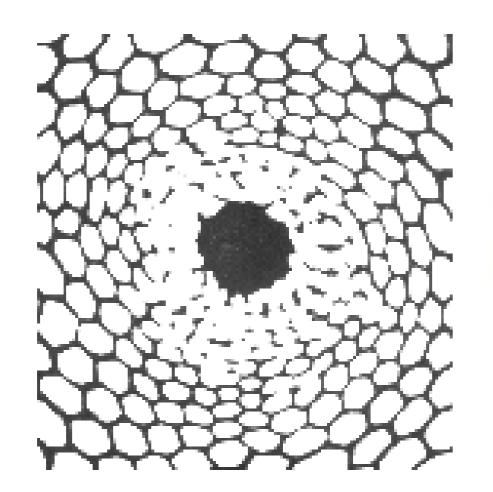
Visual Hallucinations

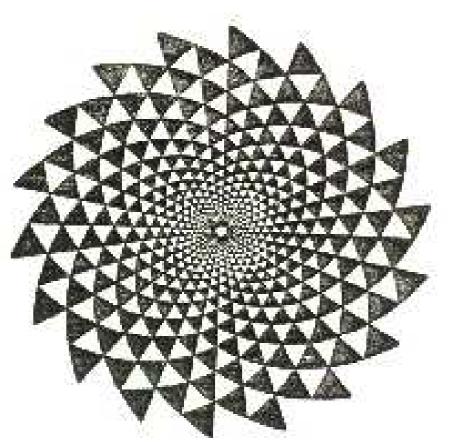
- Drug uniformly forces activation of cortical cells
- Leads to spontaneous pattern formation on cortex
- Map from V1 to retina; translates pattern on cortex to visual image
- Patterns fall into four form constants (Klüver, 1928)
 - tunnels and funnels
 - spirals
 - lattices includes honeycombs and phosphenes
 - cobwebs

Funnels and Spirals

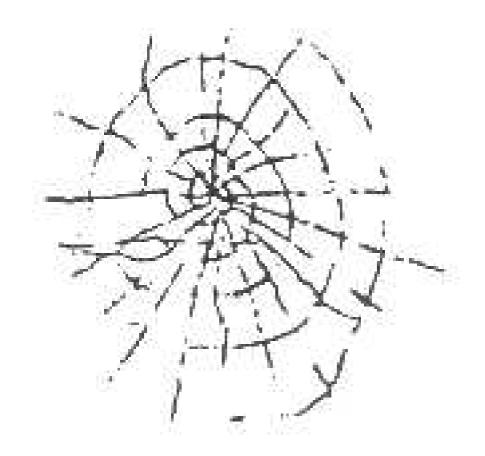


Lattices: Honeycombs & Phosphenes



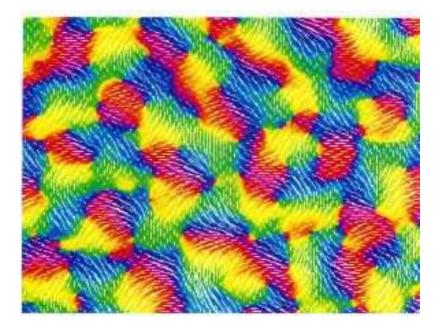


Cobwebs



Orientation Sensitivity of Cells in V1

Most V1 cells sensitive to orientation of contrast edge



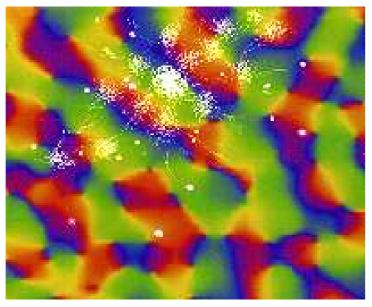
Distribution of orientation preferences in Macaque V1 (Blasdel)

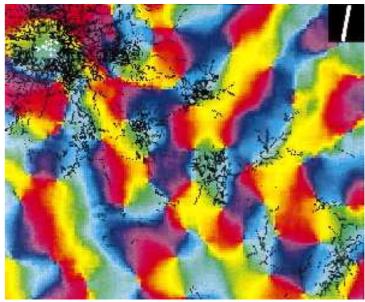
Hubel and Wiesel, 1974

Each millimeter there is a *hypercolumn* consisting of orientation sensitive cells in every direction preference

Structure of Primary Visual Cortex (V1)

Optical imaging exhibits pattern of connection

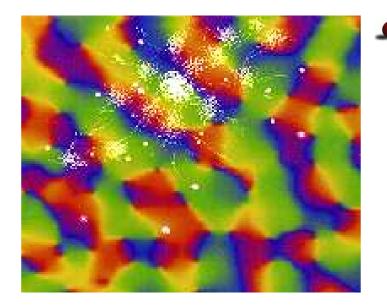




V1 lateral connections: Macaque (left, Blasdel) and Tree Shrew (right, Fitzpatrick)

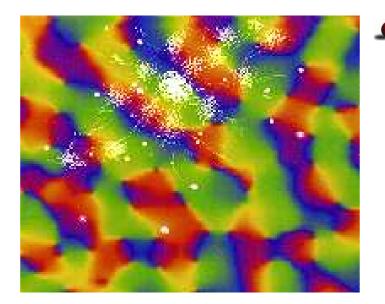
- Two kinds of coupling: local and lateral
 - (a) local: cells < 1mm connect with most neighbors
 - (b) lateral: cells make contact each *mm* along axons; connections in direction of cell's preference

Anisotropy in Lateral Coupling

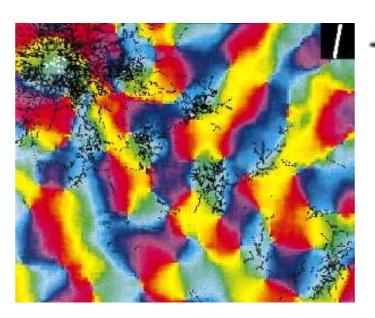


Macaque: most anisotropy due to stretching in direction orthogonal to ocular dominance columns. Anisotropy is weak.

Anisotropy in Lateral Coupling

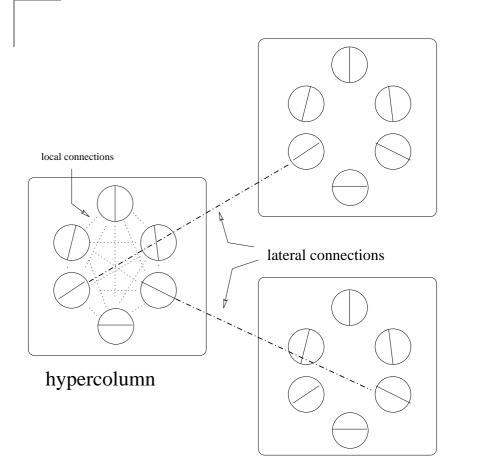


Macaque: most anisotropy due to stretching in direction orthogonal to ocular dominance columns. Anisotropy is weak.

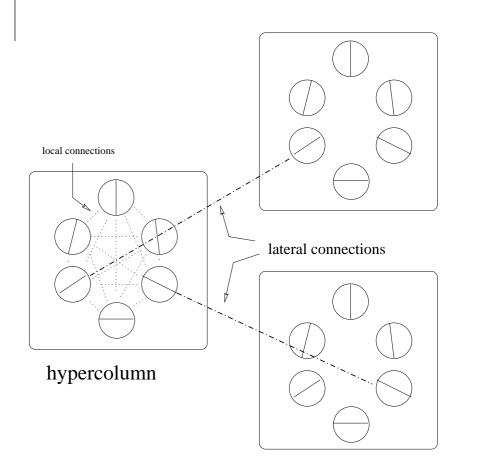


Tree shrew: anisotropy pronounced

Action of Euclidean Group: Anisotropy



Action of Euclidean Group: Anisotropy



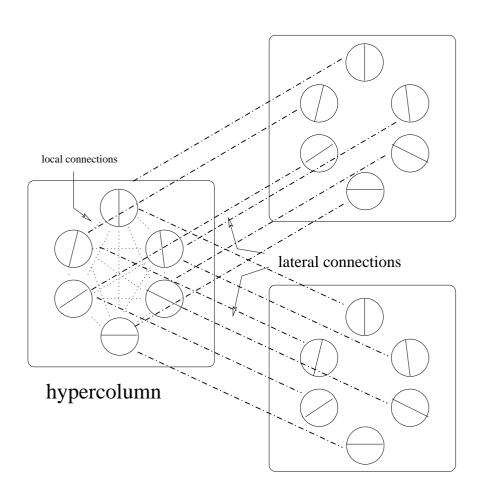
- Abstract physical space of V1 is $\mathbb{R}^2 \times \mathbb{S}^1$ — not \mathbb{R}^2 Hypercolumn becomes circle of orientations
- Euclidean group on R²: translations, rotations, reflections
- Euclidean groups acts on $\mathbb{R}^2 \times S^1$ by

$$T_{y}(x,\varphi) = (T_{y}x,\varphi)$$

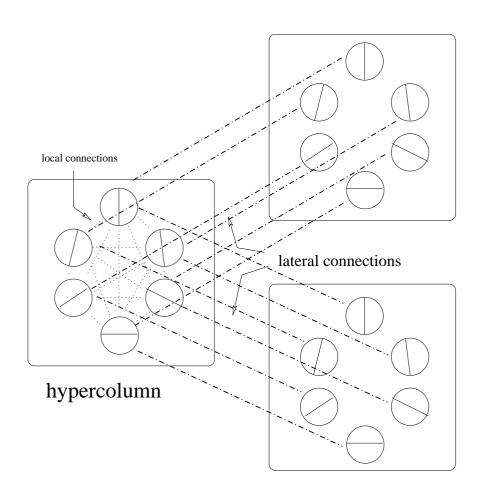
$$R_{\theta}(x,\varphi) = (R_{\theta}x,\varphi+\theta)$$

$$\kappa(x,\varphi) = (\kappa x,-\varphi)$$

Isotropic Lateral Connections



Isotropic Lateral Connections



• New O(2) symmetry

$$\hat{\phi}(x,\varphi) = (x,\varphi + \hat{\phi})$$

 Weak anisotropy is forced symmetry breaking of

$$\mathbf{E}(2)\dot{+}\mathbf{O}(2) \rightarrow \mathbf{E}(2)$$

Three Models

• E(2) acting on R² (Ermentrout-Cowan) neurons located at each point xActivity variable: a(x) = voltage potential of neuron Pattern given by threshold $a(x) > v_0$

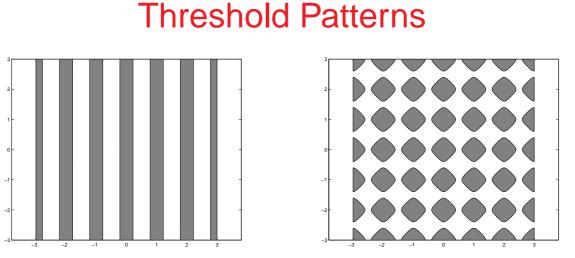
Three Models

- E(2) acting on R² (Ermentrout-Cowan) neurons located at each point xActivity variable: a(x) = voltage potential of neuron Pattern given by threshold $a(x) > v_0$
- Shift-twist action of E(2) on R² × S¹ (Bressloff-Cowan) hypercolumns located at *x*; neurons tuned to φ strongly anisotropic lateral connections Activity variable: *a*(*x*, φ) Pattern given by winner-take-all

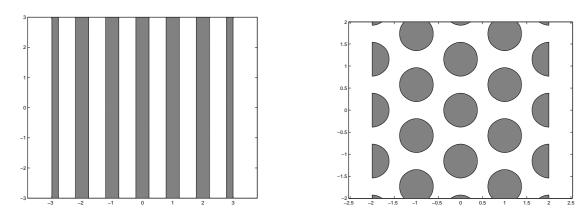
Three Models

- E(2) acting on R² (Ermentrout-Cowan) neurons located at each point xActivity variable: a(x) = voltage potential of neuron Pattern given by threshold $a(x) > v_0$
- Shift-twist action of E(2) on R² × S¹ (Bressloff-Cowan) hypercolumns located at *x*; neurons tuned to φ strongly anisotropic lateral connections Activity variable: *a*(*x*, φ) Pattern given by winner-take-all
- Symmetry breaking: $\mathbf{E}(2) \dotplus \mathbf{O}(2) \rightarrow \mathbf{E}(2)$ weakly anisotropic lateral coupling Activity variable: $a(x, \varphi)$ Pattern given by winner-take-all

Planforms For Ermentrout-Cowan



Square lattice: stripes and squares



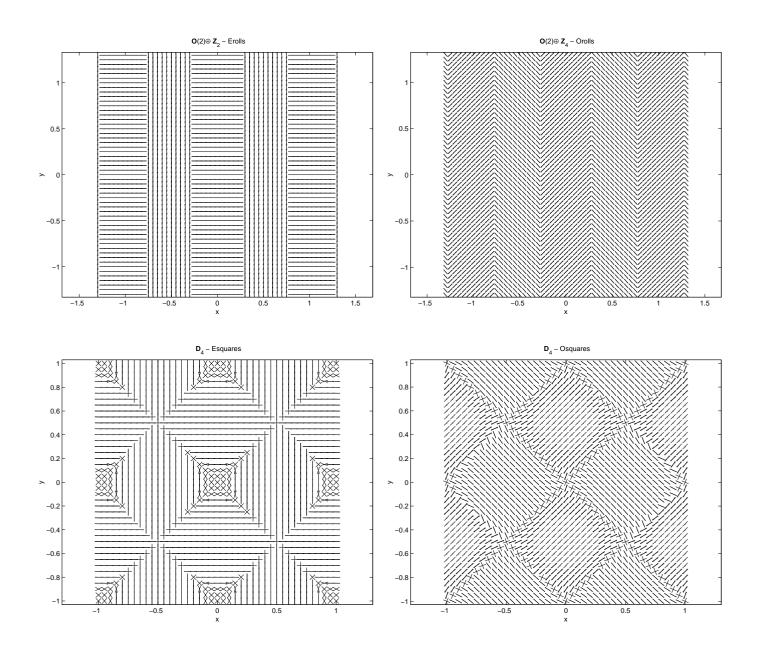
Hexagonal lattice: stripes and hexagons

Winner-Take-All Strategy

Creation of Line Fields

- Given: Activity $a(\mathbf{x}, \varphi)$ of neuron in hypercolumn at \mathbf{x} sensitive to direction φ
- Assumption: Most active neuron in hypercolumn suppresses other neurons in hypercolumn
- Consequence: For all ${\bf x}$ find direction $\varphi_{{\bf x}}$ where activity is maximum
- Planform: Line segment at each x oriented at angle φ_x

Planforms For Bressloff-Cowan

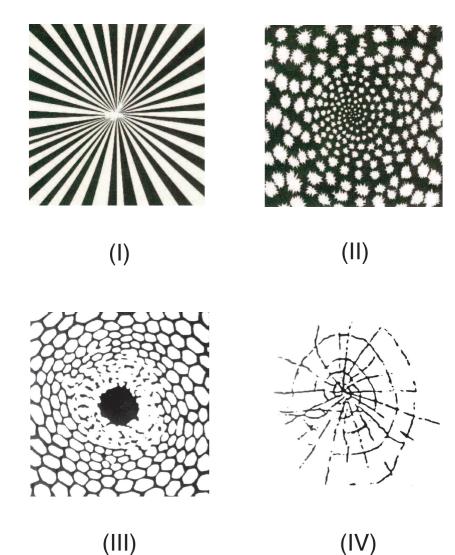


Cortex to Retina

Neurons on cortex are uniformly distributed

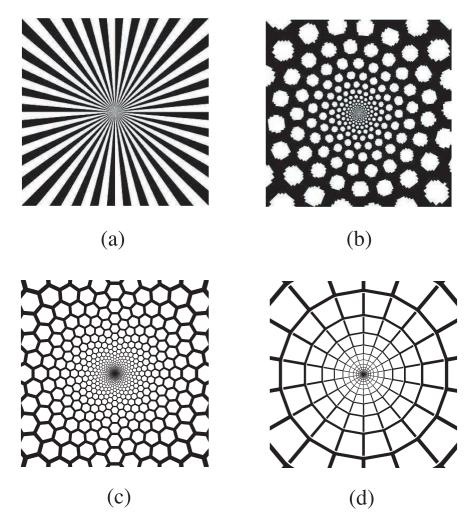
- Neurons in retina fall off by $1/r^2$ from fovea
- Unique angle preserving map takes uniform density square to $1/r^2$ density disk: complex exponential
- Straight lines on cortex → circles, logarithmic spirals, and rays in retina

Visual Hallucinations



(I) funnel and (II) spiral images LSD [Siegel & Jarvik, 1975], (III) honeycomb marihuana [Clottes & Lewis-Williams (1998)], (IV) cobweb petroglyph [Patterson, 1992]

Planforms in the Visual Field



Visual field planforms

Weakly Anisotropic Coupling

In addition to equilibria found in Bressloff-Cowan model there exist periodic solutions that emanate from steady-state bifurcation

- 1. Rotating Spirals
- 2. Tunneling Blobs Tunneling Spiraling Blobs
- 3. Pulsating Blobs

Pattern Formation Outline

- **1. Bifurcation Theory with Symmetry**
 - Equivariant Branching Lemma
 - Model independent analysis
- 2. Translations lead to plane waves
- 3. Planforms: Computation of eigenfunctions

Primer on Steady-State Bifurcation

• Solve $\dot{x} = f(x, \lambda) = 0$ where $f : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$

• Local theory: Assume f(0,0) = 0 & find solns near (0,0)

• If $L = (d_x f)_{0,0}$ nonsingular, IFT implies unique soln $x(\lambda)$

Primer on Steady-State Bifurcation

• Solve $\dot{x} = f(x, \lambda) = 0$ where $f : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$

- Local theory: Assume f(0,0) = 0 & find solns near (0,0)
- If $L = (d_x f)_{0,0}$ nonsingular, IFT implies unique soln $x(\lambda)$
- Bifurcation of steady states $\iff \ker L \neq \{0\}$
- Reduction theory implies that steady-states are found by solving $\varphi(y, \lambda) = 0$ where

 $\varphi: \ker L \times \mathbf{R} \to \ker L$

Equivariant Steady-State Bifurcation

Let $\gamma: \mathbf{R}^n \to \mathbf{R}^n$ be linear

- γ is a symmetry iff γ (soln)=soln iff $f(\gamma x, \lambda) = \gamma f(x, \lambda)$
- Chain rule $\implies L\gamma = \gamma L \implies \ker L$ is γ -invariant
- **•** Theorem: Fix symmetry group Γ . Generically $\ker L$ is an absolutely irreducible representation of Γ
- Reduction implies that there is a unique steady-state bifurcation theory for each absolutely irreducible rep

Equivariant Bifurcation Theory

- Let $\Sigma \subset \Gamma$ be a subgroup
- Σ is axial if dim $Fix(\Sigma) = 1$
- Equivariant Branching Lemma:

Generically, there exists a branch of solutions with Σ symmetry for every axial subgroup Σ

MODEL INDEPENDENT

Solution types do not depend on the equation — only on the symmetry group and its representation on $\ker L$

Translations

• Let $W_{\mathbf{k}} = \{u(\varphi)e^{i\mathbf{k}\cdot\mathbf{x}} + \text{c.c.}\}$ $\mathbf{k} \in \mathbf{R}^2 = \text{wave vector}$

• Translations act on $W_{\mathbf{k}}$ by

$$T_{\mathbf{y}}(u(\varphi)e^{i\mathbf{k}\cdot\mathbf{x}}) = u(\varphi)e^{i\mathbf{k}\cdot(\mathbf{x}+\mathbf{y})} = \left[e^{i\mathbf{k}\cdot\mathbf{y}}u(\varphi)\right]e^{i\mathbf{k}\cdot\mathbf{x}}$$

$$L: W_{\mathbf{k}} \to W_{\mathbf{k}}$$

Eigenfunctions of *L* have *plane wave* factors

Reflections

• Choose **REFLECTION** ρ so that $\rho \mathbf{k} = \mathbf{k}$

$$\rho\left(u(\varphi)e^{i\mathbf{k}\cdot\mathbf{x}}\right) = \rho(u(\varphi))e^{i\mathbf{k}\cdot\mathbf{x}}$$

So $\rho: W_{\mathbf{k}} \to W_{\mathbf{k}}$

Reflections

• Choose REFLECTION ρ so that $\rho \mathbf{k} = \mathbf{k}$

$$\rho\left(u(\varphi)e^{i\mathbf{k}\cdot\mathbf{x}}\right) = \rho(u(\varphi))e^{i\mathbf{k}\cdot\mathbf{x}}$$

So $\rho: W_{\mathbf{k}} \to W_{\mathbf{k}}$

• $\rho^2 = 1$ implies $W_{\mathbf{k}} = W_{\mathbf{k}}^+ \oplus W_{\mathbf{k}}^$ where ρ acts as +1 on $W_{\mathbf{k}}^+$ and -1 on $W_{\mathbf{k}}^-$

Reflections

• Choose REFLECTION ρ so that $\rho \mathbf{k} = \mathbf{k}$

$$\rho\left(u(\varphi)e^{i\mathbf{k}\cdot\mathbf{x}}\right) = \rho(u(\varphi))e^{i\mathbf{k}\cdot\mathbf{x}}$$

So $\rho: W_{\mathbf{k}} \to W_{\mathbf{k}}$

• $\rho^2 = 1$ implies $W_{\mathbf{k}} = W_{\mathbf{k}}^+ \oplus W_{\mathbf{k}}^$ where ρ acts as +1 on $W_{\mathbf{k}}^+$ and -1 on $W_{\mathbf{k}}^-$

• Eigenfunctions are even or odd. When $\mathbf{k} = (1, 0)$

$$u(-\varphi) = u(\varphi) \qquad u \in W_{\mathbf{k}}^+$$
$$u(-\varphi) = -u(\varphi) \qquad u \in W_{\mathbf{k}}^-$$

Protations act on spaces $W_{\mathbf{k}}$

$$R_{\theta}\left(u(\varphi)e^{i\mathbf{k}\cdot\mathbf{x}}\right) = R_{\theta}(u(\varphi))e^{iR_{\theta}(\mathbf{k})\cdot\mathbf{x}}$$

Therefore

$$R_{\theta}(W_{\mathbf{k}}) = W_{R_{\theta}(\mathbf{k})}$$

Therefore $\ker L$ is ∞ -dimensional

Protations act on spaces $W_{\mathbf{k}}$

$$R_{\theta}\left(u(\varphi)e^{i\mathbf{k}\cdot\mathbf{x}}\right) = R_{\theta}(u(\varphi))e^{iR_{\theta}(\mathbf{k})\cdot\mathbf{x}}$$

Therefore

$$R_{\theta}(W_{\mathbf{k}}) = W_{R_{\theta}(\mathbf{k})}$$

Therefore $\ker L$ is ∞ -dimensional

Double-periodicity: Look for solutions on planar lattice

$$\mathcal{F}_{\mathcal{L}} = \{ f \in \mathcal{F} : f(\mathbf{x} + \boldsymbol{\ell}) = f(\mathbf{x}) \quad \forall \boldsymbol{\ell} \in \mathcal{L} \}$$

Protations act on spaces $W_{\mathbf{k}}$

$$R_{\theta}\left(u(\varphi)e^{i\mathbf{k}\cdot\mathbf{x}}\right) = R_{\theta}(u(\varphi))e^{iR_{\theta}(\mathbf{k})\cdot\mathbf{x}}$$

Therefore

$$R_{\theta}(W_{\mathbf{k}}) = W_{R_{\theta}(\mathbf{k})}$$

Therefore $\ker L$ is ∞ -dimensional

Double-periodicity: Look for solutions on planar lattice

$$\mathcal{F}_{\mathcal{L}} = \{ f \in \mathcal{F} : f(\mathbf{x} + \boldsymbol{\ell}) = f(\mathbf{x}) \quad \forall \boldsymbol{\ell} \in \mathcal{L} \}$$

Finite number of rotations: ker L is finite-dimensional

Protations act on spaces $W_{\mathbf{k}}$

$$R_{\theta}\left(u(\varphi)e^{i\mathbf{k}\cdot\mathbf{x}}\right) = R_{\theta}(u(\varphi))e^{iR_{\theta}(\mathbf{k})\cdot\mathbf{x}}$$

Therefore

$$R_{\theta}(W_{\mathbf{k}}) = W_{R_{\theta}(\mathbf{k})}$$

Therefore $\ker L$ is ∞ -dimensional

Double-periodicity: Look for solutions on planar lattice

$$\mathcal{F}_{\mathcal{L}} = \{ f \in \mathcal{F} : f(\mathbf{x} + \boldsymbol{\ell}) = f(\mathbf{x}) \quad \forall \boldsymbol{\ell} \in \mathcal{L} \}$$

- **Finite number of rotations:** ker L is finite-dimensional
- Choose lattice size so shortest dual vectors are critical

Axials in Ermentrout-Cowan Model

Name	Planform Eigenfunction
stripes	$\cos x$
squares	$\cos x + \cos y$
hexagons	$\cos(\mathbf{k}_0 \cdot \mathbf{x}) + \cos(\mathbf{k}_1 \cdot \mathbf{x}) + \cos(\mathbf{k}_2 \cdot \mathbf{x})$

$$\mathbf{k}_0 = (1,0)$$
 $\mathbf{k}_1 = \frac{1}{2}(-1,\sqrt{3})$ $\mathbf{k}_2 = \frac{1}{2}(-1,-\sqrt{3})$

Axials in Bressloff-Cowan Model

Name	Planform Eigenfunction	u
squares	$u(\varphi)\cos x + u\left(\varphi - \frac{\pi}{2}\right)\cos y$	even
stripes	$u(arphi)\cos x$	even
hexagons	$\sum_{j=0}^{2} u \left(\varphi - j\pi/3\right) \cos(\mathbf{k}_j \cdot \mathbf{x})$	even
square	$u(\varphi)\cos x - u\left(\varphi - \frac{\pi}{2}\right)\cos y$	odd
stripes	$u(arphi)\cos x$	odd
hexagons	$\sum_{j=0}^{2} u \left(\varphi - j\pi/3\right) \cos(\mathbf{k}_j \cdot \mathbf{x})$	odd
triangles	$\sum_{j=0}^{2} u \left(\varphi - j\pi/3 \right) \sin(\mathbf{k}_j \cdot \mathbf{x})$	odd
rectangles	$u\left(\varphi - \frac{\pi}{3}\right)\cos(\mathbf{k}_1 \cdot \mathbf{x}) - u\left(\varphi + \frac{\pi}{3}\right)\cos(\mathbf{k}_2 \cdot \mathbf{x})$	odd

How to Find Amplitude Function $u(\varphi)$

- **Isotropic connections** imply EXTRA O(2) symmetry
- O(2) decomposes W_k into sum of irreducible subspaces

$$W_{\mathbf{k},p} = \{ z e^{p\varphi i} e^{i\mathbf{k} \cdot x} + \text{c.c.} : z \in \mathbf{C} \} \cong \mathbf{R}^2$$

Eigenfunctions lie in $W_{\mathbf{k},p}$ for some p

- $W_{\mathbf{k},p}^+ = \{\cos(p\varphi)e^{i\mathbf{k}\cdot x}\}$ even case $W_{\mathbf{k},p}^- = \{\sin(p\varphi)e^{i\mathbf{k}\cdot x}\}$ odd case
- With weak anisotropy

 $u(\varphi) \approx \cos(p\varphi)$ or $u(\varphi) \approx \sin(p\varphi)$

Rotating waves

- Suppose $Fix(\Sigma)$ is two-dimensional Suppose $N_{\Gamma}(\Sigma) = \Sigma \times SO(2)$
- Then generically solutions are rotating waves of a pattern with Σ symmetry
- Leads to rotating spirals and tunnels
- Suppose $N_{\Gamma}(\Sigma) = \Sigma \times \mathbf{D}_4$
- Leads to pulsating solutions