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Klüver: We wish to stress . . . one point, namely, that under

diverse conditions the visual system responds in terms of a

limited number of form constants.
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Planar Symmetry-Breaking

Euclidean symmetry: translations, rotations, reflections

Symmetry-breaking from translation invariant state in
planar systems with Euclidean symmetry leads to

Stripes:
States invariant under translation in one direction

Spots:

States centered at lattice points
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Sand Dunes in Namibian Desert
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Mud Plains
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Outline

1. Geometric Visual Hallucinations

2. Structure of Visual Cortex

Hubel and Wiesel hypercolumns; local and lateral
connections; isotropy versus anisotropy

3. Pattern Formation in V1

Symmetry; Three models

4. Interpretation of Patterns in Retinal Coordinates
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Visual Hallucinations

Drug uniformly forces activation of cortical cells

Leads to spontaneous pattern formation on cortex

Map from V1 to retina;
translates pattern on cortex to visual image
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Visual Hallucinations

Drug uniformly forces activation of cortical cells

Leads to spontaneous pattern formation on cortex

Map from V1 to retina;
translates pattern on cortex to visual image

Patterns fall into four form constants (Klüver, 1928)

• tunnels and funnels
• spirals
• lattices includes honeycombs and phosphenes
• cobwebs
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Funnels and Spirals
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Lattices: Honeycombs & Phosphenes
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Cobwebs
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Orientation Sensitivity of Cells in V1

Most V1 cells sensitive to orientation of contrast edge

Distribution of orientation preferences in Macaque V1 (Blasdel)

Hubel and Wiesel, 1974
Each millimeter there is a hypercolumn consisting of
orientation sensitive cells in every direction preference
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Structure of Primary Visual Cortex (V1)

Optical imaging exhibits pattern of connection

V1 lateral connections: Macaque (left, Blasdel) and Tree Shrew (right, Fitzpatrick)

Two kinds of coupling: local and lateral

(a) local: cells < 1mm connect with most neighbors
(b) lateral: cells make contact each mm along axons;

connections in direction of cell’s preference
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Anisotropy in Lateral Coupling

Macaque: most anisotropy
due to stretching in
direction orthogonal to
ocular dominance
columns. Anisotropy is
weak.
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Anisotropy in Lateral Coupling

Macaque: most anisotropy
due to stretching in
direction orthogonal to
ocular dominance
columns. Anisotropy is
weak.

Tree shrew: anisotropy
pronounced
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Action of Euclidean Group: Anisotropy

hypercolumn

lateral connections

local connections
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Action of Euclidean Group: Anisotropy

hypercolumn

lateral connections

local connections

Abstract physical space of
V1 is R2 × S

1 — not R2

Hypercolumn becomes
circle of orientations

Euclidean group on R2:
translations, rotations,
reflections

Euclidean groups acts
on R2 × S

1 by

Ty(x, ϕ) = (Tyx, ϕ)

Rθ(x, ϕ) = (Rθx, ϕ + θ)

κ(x, ϕ) = (κx,−ϕ)
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Isotropic Lateral Connections

hypercolumn

lateral connections

local connections
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Isotropic Lateral Connections

hypercolumn

lateral connections

local connections

New O(2) symmetry

φ̂(x, ϕ) = (x, ϕ + φ̂)

Weak anisotropy is
forced symmetry
breaking of

E(2)+̇O(2) → E(2)
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Three Models

E(2) acting on R2 (Ermentrout-Cowan)
neurons located at each point x
Activity variable: a(x) = voltage potential of neuron
Pattern given by threshold a(x) > v0
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Three Models

E(2) acting on R2 (Ermentrout-Cowan)
neurons located at each point x
Activity variable: a(x) = voltage potential of neuron
Pattern given by threshold a(x) > v0

Shift-twist action of E(2) on R2 × S
1 (Bressloff-Cowan)

hypercolumns located at x; neurons tuned to ϕ
strongly anisotropic lateral connections
Activity variable: a(x, ϕ)
Pattern given by winner-take-all
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Three Models

E(2) acting on R2 (Ermentrout-Cowan)
neurons located at each point x
Activity variable: a(x) = voltage potential of neuron
Pattern given by threshold a(x) > v0

Shift-twist action of E(2) on R2 × S
1 (Bressloff-Cowan)

hypercolumns located at x; neurons tuned to ϕ
strongly anisotropic lateral connections
Activity variable: a(x, ϕ)
Pattern given by winner-take-all

Symmetry breaking: E(2)+̇O(2) → E(2)
weakly anisotropic lateral coupling
Activity variable: a(x, ϕ)
Pattern given by winner-take-all
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Planforms For Ermentrout-Cowan
Threshold Patterns
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Winner-Take-All Strategy

Creation of Line Fields

Given: Activity a(x, ϕ) of neuron in hypercolumn at x

sensitive to direction ϕ

Assumption: Most active neuron in hypercolumn
suppresses other neurons in hypercolumn

Consequence: For all x find direction ϕx where activity
is maximum

Planform: Line segment at each x oriented at angle ϕx
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Planforms For Bressloff-Cowan
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Cortex to Retina

Neurons on cortex are uniformly distributed

Neurons in retina fall off by 1/r2 from fovea

Unique angle preserving map takes uniform density
square to 1/r2 density disk: complex exponential

Straight lines on cortex 7→
circles, logarithmic spirals, and rays in retina
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Visual Hallucinations

(I)   (II)

(III) (IV)
(I) funnel and (II) spiral images LSD [Siegel & Jarvik, 1975], (III) honeycomb marihuana
[Clottes & Lewis-Williams (1998)], (IV) cobweb petroglyph [Patterson, 1992]
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Planforms in the Visual Field

(a) (b)

(c) (d)
Visual field planforms
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Weakly Anisotropic Coupling

In addition to equilibria found in Bressloff-Cowan
model there exist periodic solutions that emanate
from steady-state bifurcation

1. Rotating Spirals

2. Tunneling Blobs Tunneling Spiraling Blobs

3. Pulsating Blobs
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Pattern Formation Outline

1. Bifurcation Theory with Symmetry

Equivariant Branching Lemma
Model independent analysis

2. Translations lead to plane waves

3. Planforms: Computation of eigenfunctions
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Primer on Steady-State Bifurcation

Solve ẋ = f(x, λ) = 0 where f : Rn × R → Rn

Local theory: Assume f(0, 0) = 0 & find solns near (0, 0)

If L = (dxf)0,0 nonsingular, IFT implies unique soln x(λ)
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Primer on Steady-State Bifurcation

Solve ẋ = f(x, λ) = 0 where f : Rn × R → Rn

Local theory: Assume f(0, 0) = 0 & find solns near (0, 0)

If L = (dxf)0,0 nonsingular, IFT implies unique soln x(λ)

Bifurcation of steady states ⇐⇒ ker L 6= {0}

Reduction theory implies that steady-states are found
by solving ϕ(y, λ) = 0 where

ϕ : ker L × R → ker L
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Equivariant Steady-State Bifurcation

Let γ : Rn → Rn be linear

γ is a symmetry iff γ(soln)=soln iff f(γx, λ) = γf(x, λ)

Chain rule =⇒ Lγ = γL =⇒ ker L is γ-invariant

Theorem: Fix symmetry group Γ. Generically
ker L is an absolutely irreducible representation of Γ

Reduction implies that there is a unique steady-state
bifurcation theory for each absolutely irreducible rep
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Equivariant Bifurcation Theory

Let Σ ⊂ Γ be a subgroup

Fix(Σ) = {x ∈ ker L : σx = x ∀σ ∈ Σ}

Σ is axial if dim Fix(Σ) = 1

Equivariant Branching Lemma:

Generically, there exists a branch of solutions with Σ symmetry
for every axial subgroup Σ

MODEL INDEPENDENT

Solution types do not depend on the equation — only
on the symmetry group and its representation on ker L
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Translations

Let Wk = {u(ϕ)eik·x + c.c.} k ∈ R2 = wave vector

Translations act on Wk by

Ty(u(ϕ)eik·x) = u(ϕ)eik·(x+y) =
[

eik·yu(ϕ)
]

eik·x

L : Wk → Wk

Eigenfunctions of L have plane wave factors
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Reflections

Choose REFLECTION ρ so that ρk = k

ρ
(

u(ϕ)eik·x
)

= ρ(u(ϕ))eik·x

So ρ : Wk → Wk
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Reflections

Choose REFLECTION ρ so that ρk = k

ρ
(

u(ϕ)eik·x
)

= ρ(u(ϕ))eik·x

So ρ : Wk → Wk

ρ2 = 1 implies
Wk = W+

k
⊕ W−

k

where ρ acts as +1 on W+
k

and −1 on W−

k
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Reflections

Choose REFLECTION ρ so that ρk = k

ρ
(

u(ϕ)eik·x
)

= ρ(u(ϕ))eik·x

So ρ : Wk → Wk

ρ2 = 1 implies
Wk = W+

k
⊕ W−

k

where ρ acts as +1 on W+
k

and −1 on W−

k

Eigenfunctions are even or odd. When k = (1, 0)

u(−ϕ) = u(ϕ) u ∈ W+
k

u(−ϕ) = −u(ϕ) u ∈ W−

k
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Rotations

Rotations act on spaces Wk

Rθ

(

u(ϕ)eik·x
)

= Rθ(u(ϕ))eiRθ(k)·x

Therefore
Rθ(Wk) = WRθ(k)

Therefore ker L is ∞-dimensional
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Rotations

Rotations act on spaces Wk

Rθ

(

u(ϕ)eik·x
)

= Rθ(u(ϕ))eiRθ(k)·x

Therefore
Rθ(Wk) = WRθ(k)

Therefore ker L is ∞-dimensional

Double-periodicity: Look for solutions on planar lattice

FL = {f ∈ F : f(x + ℓ) = f(x) ∀ℓ ∈ L}
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Rotations

Rotations act on spaces Wk

Rθ

(

u(ϕ)eik·x
)

= Rθ(u(ϕ))eiRθ(k)·x

Therefore
Rθ(Wk) = WRθ(k)

Therefore ker L is ∞-dimensional

Double-periodicity: Look for solutions on planar lattice

FL = {f ∈ F : f(x + ℓ) = f(x) ∀ℓ ∈ L}

Finite number of rotations: ker L is finite-dimensional
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Rotations

Rotations act on spaces Wk

Rθ

(

u(ϕ)eik·x
)

= Rθ(u(ϕ))eiRθ(k)·x

Therefore
Rθ(Wk) = WRθ(k)

Therefore ker L is ∞-dimensional

Double-periodicity: Look for solutions on planar lattice

FL = {f ∈ F : f(x + ℓ) = f(x) ∀ℓ ∈ L}

Finite number of rotations: ker L is finite-dimensional

Choose lattice size so shortest dual vectors are critical
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Axials in Ermentrout-Cowan Model

Name Planform Eigenfunction
stripes cos x

squares cos x + cos y

hexagons cos(k0 · x) + cos(k1 · x) + cos(k2 · x)

k0 = (1, 0) k1 = 1
2(−1,

√
3) k2 = 1

2(−1,−
√

3)
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Axials in Bressloff-Cowan Model

Name Planform Eigenfunction u

squares u(ϕ) cos x + u
(

ϕ − π
2

)

cos y even

stripes u(ϕ) cos x even

hexagons
∑

2

j=0
u (ϕ − jπ/3) cos(kj · x) even

square u(ϕ) cos x − u
(

ϕ − π
2

)

cos y odd

stripes u(ϕ) cos x odd

hexagons
∑

2

j=0
u (ϕ − jπ/3) cos(kj · x) odd

triangles
∑

2

j=0
u (ϕ − jπ/3) sin(kj · x) odd

rectangles u
(

ϕ − π
3

)

cos(k1 · x) − u
(

ϕ + π
3

)

cos(k2 · x) odd
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How to Find Amplitude Function u(ϕ)

Isotropic connections imply EXTRA O(2) symmetry

O(2) decomposes Wk into sum of irreducible subspaces

Wk,p = {zepϕieik·x + c.c. : z ∈ C} ∼= R2

Eigenfunctions lie in Wk,p for some p

W+
k,p = {cos(pϕ)eik·x} even case

W−

k,p = {sin(pϕ)eik·x} odd case

With weak anisotropy

u(ϕ) ≈ cos(pϕ) or u(ϕ) ≈ sin(pϕ)
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Rotating waves

Suppose Fix(Σ) is two-dimensional

Suppose NΓ(Σ) = Σ × SO(2)

Then generically solutions are rotating waves of a
pattern with Σ symmetry

Leads to rotating spirals and tunnels

Suppose NΓ(Σ) = Σ × D4

Leads to pulsating solutions
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