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Abstract. Several authors have reported diel oscillations in
streamflow records and have hypothesized that these oscil-
lations are linked to evapotranspiration cycles in the wa-
tershed. The timing of oscillations in rivers, however, lags
behind those of temperature and evapotranspiration in hill-
slopes. Two hypotheses have been put forth to explain the
magnitude and timing of diel streamflow oscillations during
low-flow conditions. The first suggests that delays between
the peaks and troughs of streamflow and daily evapotran-
spiration are due to processes occurring in the soil as wa-
ter moves toward the channels in the river network. The sec-
ond posits that they are due to the propagation of the signal
through the channels as water makes its way to the outlet of
the basin. In this paper, we design and implement a theoret-
ical model to test these hypotheses. We impose a baseflow
signal entering the river network and use a linear transport
equation to represent flow along the network. We develop an-
alytic streamflow solutions for the case of uniform velocities
in space over all river links. We then use our analytic solution
to simulate streamflows along a self-similar river network for
different flow velocities. Our results show that the amplitude
and time delay of the streamflow solution are heavily influ-
enced by transport in the river network. Moreover, our equa-
tions show that the geomorphology and topology of the river
network play important roles in determining how amplitude
and signal delay are reflected in streamflow signals. Finally,
we have tested our theoretical formulation in the Dry Creek
Experimental Watershed, where oscillations are clearly ob-
served in streamflow records. We find that our solution pro-
duces streamflow values and fluctuations that are similar to
those observed in the summer of 2011.

1 Introduction

Several authors have observed daily fluctuations in stream-
flow during periods of little or no rain (e.g., Bond et al.,
2002; Graham et al., 2013; Gribovszki et al., 2008; Wondzell
et al., 2007; Burt, 1979; Wondzell et al., 2010). These fluc-
tuations have been attributed to various causes, especially
to those driven by temperature, which undergo a daily cy-
cle. Temperature affects several hydrological processes, in-
cluding freeze/thaw rates, evaporation rates, viscosity of wa-
ter, and transpiration rates. Although many factors may con-
tribute to the daily cycle of streamflow, evapotranspiration
seems to be dominant (Gribovszki et al., 2010). Hydrologic
processes during periods of low flow are often overlooked in
favor of investigating high flow and subsequent flood condi-
tions. In spite of this, the consequences of hydrological pro-
cesses during low flow remain critical in dictating land use
and agricultural types (Mul et al., 2011); indicating the ex-
tent of global climate change (Arnell, 1998); and influencing
the chemical makeup of water downstream (Stott and Burt,
1997) or the availability of water, which impacts fish popu-
lations and water treatment requirements (Burn et al., 2008).
Therefore, establishing a clear theoretical link between daily
oscillations in streamflow and daily temperature cycles is a
fundamental research endeavor.

(Graham et al., 2013) have compiled a collection of sug-
gested explanations for the behavior of oscillatory stream-
flow under dry conditions, including several hypotheses that
suggest that water moves differently through the subsurface
as the hillslope drains. On the other hand, the authors of
(Wondzell et al., 2007) suggest that streamflow properties are
the result of attenuation as flow propagates along the river
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link with decreasing velocity, which causes the flow to be in-
creasingly “out of phase”. During dry periods of low flow,
the time between the maximum evapotranspiration and the
minimum streamflow values has been of particular interest
because this time delay grows as the dry season progresses,
indicating that the response of the streamflow to the evapo-
transpiration forcing on water on the hillslope slows as more
water is removed from the system. Sorting out which of these
hypotheses is correct, or which processes are more dominant
in determining daily streamflow oscillations, is a crucial step
towards sorting out the connection between hydrological pro-
cesses occurring in the basin.

While observing streamflow at the outlet of the Dry Creek
Experimental Watershed in Idaho during July of 2011 (de-
scribed in Sect. 2), we recognized the oscillatory pattern de-
scribed by (Graham et al., 2013), (Wondzell et al., 2007),
and others. We used information from the nearby weather
station to plot outlet flow with temperature and discovered
that the two are phase-locked. They are not in phase, which
would imply synchronization of the two signals, but are in-
stead offset from each other by an almost constant value dur-
ing the month. The phase offset depicts the delays that occur
through various means as described in (Graham et al., 2013).
Additionally we have examined the streamflows at several
other locations in the Dry Creek Experimental Watershed
(see Sect. 2) and see that they, too, are phase-locked with
each other, but again they are not perfectly in phase. This
has led us to investigate more closely how streamflows in
the river network combine and create the oscillatory patterns
which have different phases at different locations, although
they are undergoing the same forcing.

In this paper, we aim to design and implement a theoreti-
cal model to test the hypotheses that attribute time delays to
flows in the river network. We start by assuming a particular
baseflow pattern in each river link of a given river network.
Then, we work with simplified routing equations that assume
constant velocity and give rise to a linear transport equation
that allows us to develop an analytic solution for the flow at
any given point along the river network. By fixing the base-
flow pattern, we remove the dependence of streamflow prop-
erties (e.g., amplitude and time delay) on soil processes. If
the resulting streamflows along the river network exhibit os-
cillations with different time delays and amplitudes, then we
conclude that the effects described in Wondzell et al. (2007)
can be induced by different velocities in a river network, even
in the absence of changes induced by groundwater processes.
Importantly, our theoretical results include algorithmic cal-
culations of the phase shifts caused by the river network and
their relationship to stream velocity. The latter can be used to
make predictions about streamflow at any point in the river
network, in particular with respect to the time delay between
maximum evapotranspiration and minimum streamflow.

The paper is structured in the following way: in Sect. 2
we describe the data that motivate this work. In Sect. 3, we
describe the baseflow pattern and linear mass transport equa-

tion to represent flow along the river network. In Sect. 3.1,
we compute the analytic solution for partial streamflow at
the outlet of a river network due to baseflow applied to one
upstream hillslope. Then, in Sect. 3.2, we assemble the com-
plete solution at the outlet when all hillslopes in the net-
work experience the same baseflow and all links in the net-
work have uniform properties. Section 4.2 through Sect. 4.3
describe multiple scenarios to test the effects of river net-
work velocity on streamflow attributes and support the claim
that decreasing amplitude and increasing time delay in the
streamflow at the network outlet can be attributed to delays
in the river network. Finally, Sect. 5 contains a short conclud-
ing discussion and ideas for future work.

2 Motivation

The Dry Creek Experimental Watershed in Idaho is a 28 km2

watershed where streamflow, soil moisture, and weather
conditions are monitored at multiple locations ((McNa-
mara, 2012)). At the outlet of the watershed (labeled Lower
Gauge), diel signals can be seen in the streamflow dur-
ing several of the years of observation during which dry
conditions occurred. We have focused our observations on
the summer of 2011. The watershed includes seven stream
gauging stations. One such station (Treeline) reported no
streamflow for the duration of our observations. The report-
ing gauges are named Bogus South (BS), Con1West (C1W),
Con1East (C1E), Con2East (C2E), Con2Main (C2M), and
Lower Gauge (LG). They drain upstream areas of 0.63, 3.85,
8.70, 7.54, 24.15, and 27.12, km2, respectively.

The left panel of Fig. 1 shows the Dry Creek watershed
and the location of the streamflow gauges that were used in
this study. The right panel shows temperature (top) – which is
assumed to drive the diel signal in the streamflow via evapo-
transpiration – along with the streamflows at the gauges C2E
(second) and C2M (third), which are near the center of the
watershed, and streamflow at LG (bottom), at the outlet of
the watershed. Although all streamflow signals oscillate with
the same period, they are each offset from temperature by a
particular constant phase so that they are phase-locked with
temperature and, subsequently, with each other. For example,
temperature has a peak at hour 42. The next streamflow peak
at C2E is at hour 54, while C2M has a peak at hour 56, and
LG has a peak at hour 55. These different peak times imply
that the flow along the river network causes sufficient delay
in the streamflow signal to be noteworthy, supporting the hy-
pothesis of (Wondzell et al., 2007). To create more decisive
support for the hypothesis, and to investigate the nature of the
delays, we have developed a theoretical experiment, which is
described and implemented in the next several sections.
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Figure 1. The left panel shows the Dry Creek watershed in Idaho. The right panel shows temperature (top), streamflow at gauge C2E near the
center of the watershed (second), streamflow at gauge C2M (third), and streamflow at the outlet of the watershed (bottom). To demonstrate
the delay in phases, a vertical line at the beginning of each day is included in each graph.

3 Developing an analytic solution for streamflow based
on river network geometry

Let us now assume that the total subsurface runoff from each
hillslope into a river link in a given river basin is oscillatory
and its amplitude undergoes exponential decay (as seen for
baseflow under dry conditions). Then, we define the runoff
by the formula

R(t)= Be−A t +Ce−A t sin(2πν(t −φ)), (1)

with A, B, C, and ν being positive parameters and C < B
to ensure that the baseflow takes only positive values. The
phase shift φ represents an initial delay in observations due
to water moving through the hillslope. In this paper, we apply
the same baseflow pattern to all hillslopes on the river net-
work beginning everywhere at an initial time t = 0 (see the
left panel of Fig. 2). Note that in this setup the runoff oscilla-
tions are supposed to be driven by evapotranspiration, which
is synchronized over all hillslopes at the catchment scale. For
this reason, synchronized timing of the forcing seems an ac-
ceptable hypothesis.

A sample baseflow pattern with parameter values A=
0.003 [h−1], B = 0.08 [Ls−1], C = 0.008 [Ls−1], and ν =
1
24 [h−1] is illustrated in the right panel of Fig. 2. We chose
the value of ν so that the frequency of the oscillations cor-
responds to a period of 24 h, representing a diurnal signal. If
we assume that the baseflow is linearly related to the amount
of water in the soil, then A corresponds to the linear rate of
water movement through the soil.

In this paper, the streamflow at the outlet of a river link is
defined as the solution to the system of ordinary differential
equations, which has been derived from the mass conserva-
tion equation in the river links of the network, given by

dqi(t)

dt
=K(qi)(R(t)+ qi1(t)+ qi2(t)− qi(t)). (2)

The inputs to the link come from runoff on adjacent hill-
slopes and from the streamflow of upstream tributary links.
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Figure 2. The left panel shows how runoff enters the river network
as lateral flow from each hillslope to its adjacent link. The right
panel shows a sample baseflow pattern given by Eq. (1) using A=
0.003 [h−1], B = 0.08 [Ls−1], C = 0.008 [Ls−1], ν = 1

24 [h−1],
and φ = 0[h].

Therefore, the only method for water to exit the watershed is
as streamflow at the outlet link. In the equation, qi1 and qi2
are the flows from the upstream tributary links. If a link i has
more than two tributaries at its upstream node, more terms
can be added in Eq. (2), accordingly. For our calculation,
we assume the function K(qi) to be constant, K(qi)= vi/l,
where vi is the velocity of link i and l is the length of the link,
which is assumed to be uniform over all links in the network
(Mantilla et al., 2011). For simplicity, K(qi) will be called
ki .

To determine the streamflow at the river network outlet,
we first consider the influence of runoff from a single hills-
lope and how that runoff signal propagates downstream; see
Sect. 3.1 and Fig. 3. Then, in Sect. 3.2, we will assemble the
information derived for all links of the river network into one
comprehensive solution by applying the superposition prin-
ciple.
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Figure 3. To determine the solution at any point, we consider runoff
on only one hillslope (adjacent to link 1 in this case), and we trace
the effects of that runoff downstream with no additional runoff from
any subsequent hillslopes.

3.1 Propagation of hillslope runoff signal on river
networks with uniform velocity

As mentioned above, we first apply runoff R(t) to a given
hillslope, denoted as “hillslope a”, with adjacent river link
1. Because the transport equation for each link is linear, we
can independently trace the runoff entering link 1 as it flows
through the river network and then use superposition to com-
bine the flows entering each river link. This would not be
possible if the transport equation contained a nonlinear com-
ponent. In the case of uniform velocities over the river net-
work, the transport constant, ki , is subsequently the same for
all links in the network. In this subsection, it will be called k.

When the runoff entering link 1 has gone through one river
link only (“step 1”; see Fig. 3), the flow q1 at the outlet of link
1 is the solution to the differential equation

dq1(t)

dt
= k(Be−A t +Ce−At sin(2πν(t −φ))− q1(t)). (3)

That is,

q1 = (q1(0)−J1+K1 sin(2πν(φ+ θ))e−kt + (J1

+K1 sin(2πν(t −φ− θ)))e−A t , (4)

with q1(0) being the initial condition (at t = 0) of the flow in
link 1 and K1, J1, and θ defined by

K1 =
Ck√

(k−A)2+ 4π2ν2
,

J1 =
Bk

k−A
(5)

and

sin(2πνθ)=
2πν√

(k−A)2+ 4π2ν2
,

cos(2πνθ)=
k−A√

(k−A)2+ 4π2ν2
. (6)

Note that θ ∈ (0, 1
4ν ) is the resulting time delay for the fluc-

tuating pattern q1(t) of frequency ν compared to the input
signal R(t).

At step 2, when the runoff has traversed two river links,
we need to compute q2(t) by taking into account the solution
q1(t) from step 1 (see Fig. 3, second panel). Since we as-
sumed for the moment that q1(t) has been transmitted down-
stream via the next link (link 2), with no additional runoff,
the streamflow at the end of link 2 is given by

q2 =
[
(q2(0)−J2+K2 sin(2πνθ2))

+ kt (q1(0)−J1+K1 sin(2πνθ1))
]
e−kt

+ (J2+K2 sin(2πν(t − θ2)))e
−A t ,

with θ1 = φ+ θ , θ2 = φ+ 2θ , and

K2 =
Ck2

(k−A)2+ 4π2ν2

J2 =
Bk2

(k−A)2
.

By mathematical induction, we then compute the solution
qn(t),n≥ 1 of flow measured downstream at the exit from
link n. This takes the form

qn(t)= e
−At
[Jn+Kn sin(2πν(t − θn))] + e−kt

n−1∑
j=0

Ln−j
(kt)j

j !
(7)

with coefficients

Kn = C
n∏
j=1

k√
(k−A)2+ 4π2ν2

= C

(
k√

(k−A)2+ 4π2ν2

)n
, n≥ 1

Jn = B
n∏
j=1

k

k−A
= B

(
k

k−A

)n
, n≥ 1

θn = φ+

n∑
i=1

θ = nθ, n≥ 1 (8)

and

Lj = qj (0)−Jj +Kj sin(2πνθj ) ,j = 1,2, . . .n. (9)

Here, qj (0) represents the initial condition for the flow in
link j . For clarity, we included the details of this algorithmic
proof in Appendix A.

3.2 Assembling the complete solution for streamflow at
the outlet

The goal of this section is to determine the equation for the
streamflow at a given point of calculation along the river net-
work, in particular at the network outlet. We take the param-
eters representing properties of each river link to be uniform
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Figure 4. A small sample network to describe how total streamflow
is computed.

over all links in the network (i.e., same parameter k) so that
the influence of two links that are equidistant (topologically
speaking) from the outlet will be the same. The solution de-
termined in Sect. 3.1, however, shows only the partial con-
tribution of link i to the streamflow, as it propagates down-
stream without considering any additional runoff. Therefore,
in order to determine the complete streamflow solution, one
must sum the overall contributions from runoff on each up-
stream link. This can be done if the topological representa-
tion of the river network is known or if the topological width
function upstream of the outlet is used. The width function
for a given link i and distance n (denoted W (i)

n ) is an integer
representing the number of river links of topological distance
n upstream of link i, whereW (i)

1 = 1 and corresponds to link
i itself. For a fixed location in the river network, the width
function can be written as a vector whose length is the diam-
eter (i.e., the longest path) upstream of link i. The network
depicted in Fig. 4 further illustrates this process.

First, we will focus on the outlet of link a (before the
streamflow from a combines with that of link b); see Fig. 4.
We recognize one link upstream of this point: link a. Then,
the only contribution to the streamflow at this point is from
the runoff to link a that has traversed one link. The width
function at this point has only one element, and there is
only one link of distance 1, so the width function, a one-
dimensional vector, is given by W (a)

= [1], and the stream-
flow is simply

qa = 1× q1 = q1 = L1e
−kt
+ e−At [J1+K1 sin(2πν(t − θ1))]. (10)

On the other hand, if we compute streamflow at the outlet of
link e (prior to joining link f ; see Fig. 4), we have one link
of topological distance 1 (link e) and two links of topological
distance 2 (links a and b). Then, the width function is given
by the vectorW (e)

= [1 2]. This means that the runoff from
link e has only traversed one link to get to the outlet, but the
runoff from either of the links a or b has traversed two links.
The total flow at the outlet of link e is

qe = 1× q1+ 2× q2 = q1+ 2q2. (11)

After applying the formulas for q1 and q2, similar terms can
be collected in the following way:

qe = L1e
−kt
+ e−A t [J1+K1 sin(2πν(t − θ1))]

+ 2
[
L2+ ktL1

]
e−kt + 2

[
J2+K2 sin(2πν(t − θ2))

]
e−At

= e−A t (J1+ 2J2+K1 sin(2πν(t − θ1))

+ 2K2 sin(2πν(t − θ2)))+ e
−kt (L1+ 2[L2+ ktL1]). (12)

To complete this example, let us now consider the width
function at the outlet of the network in Fig. 4, which is
W (i)
= [1 2 2 4]. The first element ofW (i) corresponds

to link i; the second element (W (i)
2 = 2) corresponds to links

g and h; the third element (W (i)
3 = 2) corresponds to links

e and f ; and the last component (W (i)
4 = 4) corresponds to

links a, b, c, and d. The diameter of this network is Di =
length(W (i))= 4. Note that the total number of links in the
network is also the sum of the elements of the width function,
since each link has a corresponding distance from the outlet.
For this, we can use the notation

∣∣W (i)
∣∣=∑Di

n=1W
(i)
n = 9.

For more details about the width function, see Mantilla et al.
(2011) and Rodriguez-Iturbe and Rinaldo (2001). The flow
at the outlet of link i is

qi =1× q1+ 2× q2+ 2× q3+ 4× q4 =

Di∑
n=1

W (i)
n qn. (13)

= e−At (J1+ 2J2+ 2J3+ 4J4)+ e
−At (K1 sin(2πν(t − θ1))

+ 2K2 sin(2πν(t − θ2))+ 2K3 sin(2πν(t − θ3)

+ 4K4 sin(2πν(t − θ4)))+ e
−kt (L1+ 2[L2+ ktL1]

+ 2
[
L3+ ktL2+

(kt)2L1

2!

]
+ 4

[
L4+ ktL3+

(kt)2L2

2!
+
(kt)3L1

3!

])
. (14)

For a general network whose width function is given by
W (i), the solution can be rearranged as in Eqs. (12) and (14)
to get the complete solution for streamflow at the outlet i.
Assuming thatDi is the diameter of the network upstream of
link i, the solution at the outlet i is

qi = e−A t
Di∑
n=1

W (i)
n [Jn+Kn sin(2πν(t − θn))]

+ e−kt
Di∑
n=1

W (i)
n

n−1∑
j=0

Ln−j
(kt)j

j !
. (15)

The first term in Eq. (15) represents the propagation of the
runoff signal from each hillslope, while the second term is a
result of the initial conditions coming from runoff and flow in
the network. This distinction is evidenced by the rate of de-
cay of either exponential function. The first term has a rate of
decay depending upon A and represents the decay of runoff
entering the channel. The second term, conversely, has a de-
cay rate dependent only upon k, which describes the rate of
water movement through each river link.

To thoroughly interpret the components of Eq. (15), we
again contemplate the physical processes being represented
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and use the expected parameter values to discuss the mathe-
matical solution. First, k andA are both positive because they
represent rates of water movement along the river link and
through the soil, respectively. Since water will move much
more quickly along the river link, which offers less resis-
tance than soil, A is significantly less than k, so that k

k−A
has a value slightly greater than 1. Then, Jj > B for any
value of j . Furthermore, the value of 2πν is fixed and is typ-
ically greater than k, which means that k√

(k−A)2+4π2ν2
< 1,

so that Kj < C for all j . This means that each component
[Jn+Kn sin(2πν(t−θn))] of the solution at the outlet shows
a decrease in the amplitude of the fluctuations (Kn < C)
while increasing its average value when compared with the
runoff function (Jn > B).

In the limiting case of A= 0, the runoff at each hillslope
would be a sinusoidal wave of amplitudeC and average value
B taking the form R = B +C sin(2πνt). Then, the solution
at the outlet becomes

qi =

Di∑
n=1

W (i)
n [Jn+Kn sin(2πν(t − θn))]

+ e−kt
Di∑
n=1

W (i)
n

n−1∑
j=0

Ln−j
(kt)j

j !
, (16)

whereKn,Jn, and θ are defined byKn = C
∏n
i=1

k√
k2+4π2ν2

,

Jn = B, and sin(2πνθ)= 2πν√
k2+2π2ν2

and cos(2πνθ)=
k√

k2+2π2ν2
.

It is apparent that the second sum of Eq. (16) that includes
exponential decay at the rate of water movement through the
river link is the transient term. The first sum of Eq. (16) is the
asymptotic solution and includes the sum of constant terms
from each hillslope and the sum of amplitudes of the sine
waves from each hillslope. Following a similar approach in
the case of A> 0 and using the fact that A � k, we again
find that the second term in Eq. (15) decays much faster;
consequently, e−A t

∑Di
n=1W

(i)
n [Jn+Kn sin(2πν(t−θn))] can

be interpreted as being the asymptotic solution of qi . Due
to interference from sinusoidal waves that can be in or out
of phase, the amplitude of the asymptotic solution in qi can
change depending on the phase shift. We investigate this de-
pendence in Sect. 4.

4 Results

4.1 Testing design: examining the effects of velocity on
streamflow amplitude and time delay downstream

In order to test the competing hypotheses by Wondzell et al.
(2007) and those presented in Graham et al. (2013), we will
demonstrate the amplification and damping of the oscillatory
streamflow signal that are caused by superposition. We con-
sider a sample network and compute the streamflow solution

at different locations in the river network when the velocity
and its corresponding time delay are varied. We will consider
both the uniform (with vi = v for all links i) and the variable
velocity cases.

We compute the streamflow solution for the Mandelbrot–
Vicsek tree of magnitude 14, as shown in Fig. 5. The
Mandelbrot–Vicsek tree is self-similar (Mandelbrot and Vic-
sek, 1989) and has been used to demonstrate hydrologic
properties at different scales (e.g., Mantilla et al., 2006; Peck-
ham, 1995). In this figure, the label next to each link repre-
sents the magnitude of the link, which describes the scale
of the link and is determined by the sum of the magnitudes
of the two immediate upstream “parent” links where exter-
nal links have magnitude 1. The constant parameter values
used in this example are A= 1.2× 10−4 [h−1], B = 0.08
[Ls−1], C = 0.008 [Lsec−1], q0 = 0.08 [Lsec−1], and ν =
1

24 [h−1] and are uniform over each link in the network. To
test the effects of superposition on streamflow, we will sim-
ulate streamflow for different transport constants k. Figure 6
shows the simulation runoff pattern (top) along with the sam-
ple streamflow solution at the outlet of the network in the
uniform case (bottom). To distinguish among the different
simulations, we will narrow our view to a few oscillations,
which are highlighted by a box in the panels in Fig. 6.

4.2 Uniform velocity over the river network

In the case of uniform velocities, the streamflow at the out-
let is given by the solution to Eq. (15). The time delay de-
pends upon parameters that have physically based values (see
Eq. 6), so a realistic range for the time delay and phase shift
can be found. These parameters, k and A, are incorporated
in other parts of the solution (see Eq. 8). Therefore, chang-
ing their values impacts the solution in more ways than just
the superposition of sinusoidal functions. The physical value
represented by A is expected to remain constant for a given
region. On the other hand, k represents the inverse of the res-
idence time in each river link and is not necessarily uniform
or fixed.

Recall that k is given by v
l
, where v is the stream velocity

and l is the stream length. The length of each river link in a
real river network would be different, as would the velocity.
In addition, the velocity may change over time, since velocity
increases with flow. Consequently, the realistic value of k is
expected to be different for each link in the network, and the
uncertainty of k is a possible source for different time delays
and phase shifts.

While the effect of varying k is not limited to the time de-
lay, the value of k also affects Kn and Jn (see Eq. 8). Note
that the coefficient Jn determines the average value of the
streamflow solutions, while the coefficientKn determines the
amplitude of the oscillation in each step of the streamflow so-
lution (see Eq. 15, first term). Changing k, then, impacts the
amplitude downstream more significantly than simply alter-
ing the time delay and subsequent phase shift.
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Figure 5. The Mandelbrot–Vicsek tree of magnitude 14. The mag-
nitude of each link is written next to the link. One link of each mag-
nitude is distinguished by the dots along the network.
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Figure 6. Sample runoff pattern (top) and resulting streamflow so-
lution at the outlet in the uniform case (bottom) for k = v

l
To ex-

amine the oscillations more closely for different velocities, we will
focus on a small section of the solution (highlighted by a box in
each panel).

The results of simulating streamflow in the Mandelbrot–
Viscek tree using different values of k can be found in Fig. 7.
The values of k used in simulations are 0.38, 0.7, 1.02, 1.34,
1.66, 1.98, and 2.30 with resultant time delays of 2.30, 1.36,
0.95, 0.73, 0.59, 0.5, and 0.43 h. The corresponding graph so-
lutions from Fig. 7 are drawn in the following colors: black,
blue, green, cyan, orange, red, and purple, respectively. Each
panel in Fig. 7 represents the solution at a different loca-
tion along the network (refer to Fig. 5 for sample locations).
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Figure 7. Flows at the outlet of each magnitude link using different
k in each river simulation. The k values (with units of h−1) are
0.38, 0.7, 1.02, 1.34, 1.66, 1.98, and 2.30 and are colored black,
blue, green, cyan, orange, red, and purple, respectively. The flows
are normalized about the average flow.

We chose the timing of the plots so that a cyclic pseudo-
equilibrium has been reached and the effects of time delay
can be distinguished. For comparison among the different lo-
cations, we have normalized the flows about the average flow.
The average flows at a link of each magnitude are plotted in
Fig. 8; as expected, the values depend upon the number of
links upstream, which is related to the magnitude of the link.

From Fig. 7, we see that the magnitude of the oscillations
can be significantly decreased as velocity and k decrease,
because this represents a volume of water spending more
time in any one link. This causes a greater time delay, which
means that two links will combine their flows out of phase,
and superposition dictates that the amplitude of the resulting
oscillations is decreased. Furthermore, a lower velocity leads
to significant attenuation of the streamflow along each link in
the network. The greatest amplitudes occur when the veloc-
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Figure 8. Average flows at different locations along the
Mandelbrot–Vicsek tree.

ity is highest, which moves a volume of water very quickly
through each link and leads to very little loss of streamflow
intensity. Notice also that the timing of the peak stream-
flow is increasingly delayed as velocity slows (see Fig. 7 for
k = 0.38, 1.02, and 1.66, for example). This can explain the
increasing time delay that has been observed between maxi-
mum evapotranspiration and minimum streamflow as the dry
season progresses. These results also indicate that the time
delay increases continuously as the velocity decreases con-
tinuously over time so that the time delay can be predictable
depending upon stream velocity.

At the link of magnitude 1, the phase shift has little influ-
ence on the amplitude and only has an influence on the timing
of the wave. At the outlet of a magnitude-2 link, the two up-
stream links are “in phase”, meaning they have the same time
delay as each other since they are the same topological dis-
tance from the point at which we compute streamflow. There-
fore, these two will exhibit constructive interference. When
they are combined with the downstream link, however, the
different values of phase shift can result in constructive or
destructive interference, although they never completely de-
stroy the oscillations. The phase shift that produces the max-
imum streamflow is zero because this represents the face that
all three streamflows that feed into this outlet are completely
in phase.

As we examine the streamflows in links with greater mag-
nitude, the shape of the network (described by the width
function) becomes important because the flows from all links
of a given distance will reach the outlet at the same time. Be-
ing out of phase with links of other distances can cause some
reduction in the amplitude of the streamflow oscillations, but
the oscillations will not be completely destroyed.

4.3 Propagation of oscillations on a real network

In this section, we apply the analytic streamflow solution for
uniform conditions to the river network of the Dry Creek

river basin to study the effects of scale on streamflow ampli-
tude and timing. In the previous section, we also examined
the flow at different scales (see Fig. 7) but with an emphasis
on different k values. The time range in Fig. 7 has been de-
creased, and the flows have been normalized about their av-
erage value to exaggerate the effects of changing the k value.
Consider the blue line in all panels of Fig. 7 corresponding
to a k value of 0.7 h−1. Streamflow at a larger scale (mag-
nitude) is influenced by a greater number of upstream links.
Hence, superposition effects among those upstream links are
stronger, and we see two resulting attributes in the stream-
flow properties: reduction in the streamflow amplitude and
greater time delay to the peak. We now consider a larger,
more realistic river network and expect to see similar results.

In our theoretical examples, we assumed the length of each
link to be uniform over the river network, so that changes in
velocity directly correspond to changes in the transport con-
stant k. Realistic network parameters include variable link
length, so we vary the velocity of each link accordingly in
order to maintain a uniform k value and apply the solution
developed in Sect. 3.

For a comparison with available data, we revisit informa-
tion from the Dry Creek Experimental Watershed in Idaho.
Using streamflow data from LG, the gauge nearest the wa-
tershed outlet along with topological data retrieved using
the program CUENCAS proposed in (Mantilla and Gupta,
2005), we can compare the diel flows observed in 2011 with
the solution method used in Sect. 3. Specifically, the solution
to describe streamflow at the outlet, given in Eq. (16), can
be fitted to the observed streamflow to find parameter val-
ues A, B, and C that uniquely describe baseflow exiting each
hillslope. The assumption inherent in this solution is that the
river links are all uniform, which is an unrealistic but neces-
sary simplification to develop this explicit solution. The top
left panel of Fig. 9 depicts the observed streamflow from July
of 2011 along with our approximated solution that was found
by fitting the data to Eq. (16) using MATLAB. The resulting
parameter values are

A= 1.85 × 10−3
[h−1
]

B = 0.239 [L s−1
]

C = 3.27 × 10−2
[L s−1

]

φ = 3.97 [h]
k = 5.61 [h−1

].

For perspective, this k value corresponds to an average
stream velocity of 0.38 m s−1.

Using the observed streamflow time series at several up-
stream gauges in the Dry Creek watershed, we can test our
analytic solution with the parameters determined above. If
we treat these locations as the outlets of smaller embedded
watersheds, we can again apply Eq. (16) using the same pa-
rameter values which will yield our solution at points along
the river network. The center and lower panels of Fig. 9 de-
pict the observed streamflows and the streamflows computed
using Eq. (16) at gauges C2M and C2E, respectively.
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Figure 9. Observed streamflow and streamflow fitted using Eq. (16)
at the outlet of the Dry Creek Experimental Watershed (top) and at
two stream gauges upstream in the watershed: Con2Main (center)
and Con2East (bottom).

Although the predicted streamflow given by our solution
does not fit the data as well for C2E as it does for C2M,
we can see that the magnitude of our predicted streamflow
is very close to observed streamflow at either location. Fur-
thermore, the timing of the oscillations is nearly identical for
both C2M and C2E. In the presence of heterogeneity on the
hillslope and along the river network, we must be flexible
about the amount of data we can reasonably expect to fit well.

For example, we show in Appendix B that the data are more
noisy at other gauges in the Dry Creek watershed where we
compare observed streamflow data to our streamflow solu-
tion.

Because our solution fits the data reasonably well at sev-
eral locations along the river network where runoff is uni-
formly enforced, we can be assured of the internal validity
of using a solution such as that given in Eq. (16). Further-
more, because our solution describes superposition among
all the oscillating runoff signals entering the network, and the
simulation results are close to those observed, we can con-
clude that streamflow relies heavily on superposition from
upstream in the river network as suggested in (Wondzell et
al., 2007).

5 Conclusions and future work

Observations of oscillatory streamflow during low-flow con-
ditions have highlighted the magnitude and time delay
caused by the diel signal that represents evapotranspiration.
Several current hypotheses suggest that the properties of
the oscillatory streamflow signal can be attributed to differ-
ent methods of water movement through the subsurface, al-
though another hypothesis suggests that flow along the river
determines the timing and amplitude of oscillations. In this
paper, we provide evidence to support the latter argument.

First, we select a mathematical function according to
streamflow observations at the catchment scale to represent
baseflow patterns at the hillslope scale. The selected baseflow
pattern is applied as input to a linear transport equation for
all links in a river network that are assumed to have uniform
properties and parameter values. For this uniform situation,
we develop an analytic solution to represent streamflow at
any point in a river network. We compute the solution by sep-
arately determining the partial streamflow at the outlet from
each river link and then taking the sum over all river links
in the river network. In order to include the geomorphology
of the river network, we use the width function to compute
the complete streamflow solution. We have also extended the
streamflow solution to include nonuniform links in the river
network.

The solution for streamflow contains a collection of sine
functions, each of which exhibits a phase shift determined by
the topological distance of the corresponding hillslope from
the outlet. We have shown that these phase shifts alone can
cause constructive or destructive interference along the river
link but that the physical parameters that determine the phase
shift have a greater impact on the streamflow as it propa-
gates downstream. The streamflows computed using differ-
ent physical parameters demonstrate that the decreasing am-
plitude and increasing time delay in observed streamflows
can be attributed to the decreasing velocity in the river net-
work during dry conditions, and they are not necessarily due
to soil–water processes, as was previously thought, which
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supports the hypothesis of Wondzell et al. (2007). Further-
more, the structure of the analytic solution indicates that the
time delay increases continuously as the river network ve-
locity continuously decreases, so that the time delay can be
predictable depending on stream velocity. We apply the re-
sulting solution to several locations in the Dry Creek Exper-
imental Watershed using parameters determined by stream-
flow at the outlet. We then compare the streamflows result-
ing from our solution with observations. Our solution offers
a good approximation for the streamflow at locations with
larger upstream area (e.g., LG, C2M, and C2E), matching
the magnitude of the streamflow and the amplitude and tim-
ing of the oscillations. Our results, however, do not disprove
the hypothesis that delays can come from subsurface flow
processes.

As a next step, we propose to test the analytic solutions
herein in networks with different geomorphological struc-
tures in order to compare the resulting streamflow ampli-
tudes and emphasize the dependence upon network geom-
etry. We suggest subsequently comparing our analytic so-
lutions with the numerical results obtained using nonlinear
transport equations, which will demonstrate the relationship
between link propagation at the hillslope scale and stream-
flow at the catchment scale. Careful field experiments would
be necessary to provide a definitive conclusion about the at-
tribution of time delays.

6 Data availability

Data available at https://earth.boisestate.edu/drycreek/data/.
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Appendix A: Development of streamflow solution for
uniform k value over all links in the river network

In order to simplify our calculations below, we will use the
notation ω = 2πν and ψ = 2πνφ.

We prove Eq. 7 from Sect. 3.1 by using the method of
mathematical induction. The isolated effects of runoff from
link i on links downstream are found by applying the trans-
port equation

dqi(t)

dt
= k(Be−A t +Ce−A t sin(ωt −ψ)− qi(t)). (A1)

We did not include in Eq. (A1) any upstream links because
we are trying to isolate the effects on streamflow due to
runoff from hillslope i. Therefore, we treat it as an exter-
nal link. Equation (A1) is a nonhomogeneous linear ordinary
differential equation of the form

dqi

dt
= kfi(t)− kqi, (A2)

and has the solution

qi(t)= qi(0)e−kt + ke−kt
t∫

0

fi(s)e
ksds. (A3)

As we trace the runoff downstream, the function fi(t) is the
input to the link, which can come from upstream sources or
from runoff from the adjacent hillslope. Since link i is ar-
bitrary, we will consider it to be the first link in a path to
the outlet, so it will be labeled link 1, having flow q1, and
the next link downstream will be labeled link 2, etc. Since
f1(t) consists only of baseflow, the solution q1 according to
Eq. (A3) becomes

q1(t)= q1(0)e−kt + ke−kt
t∫

0

[
Be(k−A)s

+ Ce(k−A)s sin(ωs−ψ)
]

ds

= q1(0)e−kt +Bke−kt
(
e(k−A)t

k−A
−

1
k−A

)

+ Cke−kt

t∫
0

e(k−A)s sin(ωs−ψ)ds. (A4)

The solution to the latter integral is
t∫

0

e(k−A)s sin(ωs−ψ)ds =
e(k−A)t√

(k−A)2+ω2
sin(ωt −ψ −ϕ)

+
sin(ψ +ϕ)√
(k−A)2+ω2

,

and ϕ is defined by its sine and cosine functions:

sin(ϕ)=
ω√

(k−A)2+ω2
,

cos(ϕ)=
k−A√

(k−A)2+ω2
.

Substituting this integral back into Eq. (A4), we obtain

q1(t) =

(
q1(0)−

k

k−A
B +

k√
(k−A)2+ω2

C sin(ψ +ϕ)

)
e−kt

+

(
k

k−A
B +

k√
(k−A)2+ω2

C sin(ωt −ψ −ϕ)

)
e−At . (A5)

To find an algorithmic method to compute the coefficients of
the solution qn(t) for n≥ 1, we define the following:

Kn =C
n∏
j=1

k√
(k−A)2+ω2

n≥ 1, (A6)

Jn =B
n∏
j=1

k

k−A
n≥ 1, (A7)

8n =ψ +

n∑
j=1

ϕ n≥ 1, (A8)

Lj =qj (0)−Jj +Kj sin(8j ) j = 1, . . .,n. (A9)

Using these newly defined quantities from Eqs. (A6),
(A7), (A8), and (A9), the flow at the outlet of link 1 can be
rewritten as

q1 = L1e
−kt
+ e−A t [J1+K1 sin(ωt −81)] . (A10)

To find the solution for the next link downstream (link 2), the
flow from link 1, given by Eq. (A10), is included as qin1 as
the transport Eq. (2) is applied to link 2. Integration by parts
will again be used to find the solution to

dq2

dt
= k(q1− q2).

Using Eq. (A3),

q2(t)= q2(0)e−kt + ke−kt
t∫

0

q1(s)e
ksds

= q2(0)e
−kt
+ ke−ktL1t + ke

−ktJ1

(
e(k−A)t

k−A
−

1
k−A

)

+ ke−ktK1

t∫
0

e(k−A)s sin(ωs−81)ds. (A11)

The integral in Eq. (A11) is very similar to that in Eq. (A4),
with the only differences being the argument of the sine func-
tion in the initial integral. After integration by parts, the equa-
tion for streamflow q2(t) becomes

q2 = q2(0)e−kt + ke−ktL1t + ke
−ktJ1

(
e(k−A)t

k−A
−

1
k−A

)
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+ ke−ktK1

(
1√

(k−A)2+ω2

(
e(k−A)t sin(ωt −82)+ sin(82)

))

or, equivalently,

q2 =
[
L2+ ktL1

]
e−kt +

[
J2+K2 sin(ωt −82)

]
e−A t . (A12)

By mathematical induction, using the same strategy for cal-
culations along the path to the river network outlet, we can
compute the contribution of runoff from any river link to flow
at the outlet. For a given link that is at topological distance n
from the outlet (or an alternative location from which flow is
observed), its contribution to the flow at the outlet is

qn(t)= e
−A t [Jn+Kn sin(ωt −8n)]+e−kt

n−1∑
j=0

Ln−j
(kt)j

j !
.

(A13)

Given that ω = 2πν and using the notation ϕ = 2πνθ ,
Eqs. (6), (7), (8), and (9) immediately will result.
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Figure B1. Observed streamflow and streamflow fitted using
Eq. (16) at three upstream gauges in the Dry Creek Experimental
Watershed: Con1East (top), Con1West (center), and Bogus South
(bottom).

Appendix B: Locations excluded from the analysis

Because the Dry Creek Experimental Watershed includes
stream gauges at seven different locations, we sought to com-
pare our solution at all of these locations. One such gauge
(called Treeline) did not experience streamflow during the
duration of our observations. Three other gauges – Con1East,
Con1West, and Bogus South (labeled C1E, C1W, and Bogus,
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respectively) – recorded streamflows which can be found in
Fig. B1 along with our solution given by Eq. (16) at those
locations.

As can be seen in Fig. B1, our solution does not offer
a good fit to observed data at these three locations. Both
C1E and Bogus supply noisy signals, which do not have the
obvious daily oscillations characteristic of the streamflows
further downstream. The magnitude of the observed stream-
flow at Bogus is particularly interesting, because the area up-
stream of the gauge is 0.634 km2, and the average streamflow
is around 18 L s−1. The streamflow at C1W is similar, with a
magnitude of the average streamflow of about 13 L s−1, but
the area upstream of C1W is 3.85 km2, so we should expect
a significant difference between the streamflows at these two
locations, and C1W should certainly experience larger values
than Bogus. Because of this, we believe the observed stream-
flow at the Bogus site is unreliable.

The observed and predicted streamflow at the location
C1E can be found in the left panel of Fig. B1. Again, the
observations are especially noisy and have no apparent daily
oscillations. However, our solution for streamflow has mag-
nitude very close to observed values. We cannot conclude
from this that our solution is incorrect, but it relied upon the
assumption of smooth oscillatory runoff even at the hillslope
scale. These noisy signals imply that the assumption is incor-
rect at some locations.

The center panel of Fig. B1 shows the observed and pre-
dicted streamflows at C1W. Our solution does not offer a
good fit to the data here in either the amplitude of the oscil-
lations or the exact values of the streamflow. The values are
of the same order of magnitude, however, and are reasonable
for both C1E and C1W.
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