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In bistable perception, observers experience alternations between two interpretations of an unchanging stimulus. Neurophysiological
studies of bistable perception typically partition neural measurements into stimulus-based epochs and assess neuronal differences
between epochs based on subjects’ perceptual reports. Computational studies replicate statistical properties of percept durations with
modeling principles like competitive attractors or Bayesian inference. However, bridging neuro-behavioral findings with modeling theory
requires the analysis of single-trial dynamic data. Here, we propose an algorithm for extracting nonstationary timeseries features from
single-trial electrocorticography (ECoG) data. We applied the proposed algorithm to 5-min ECoG recordings from human primary audi-
tory cortex obtained during perceptual alternations in an auditory triplet streaming task (six subjects: four male, two female). We report
two ensembles of emergent neuronal features in all trial blocks. One ensemble consists of periodic functions that encode a stereotypical
response to the stimulus. The other comprises more transient features and encodes dynamics associated with bistable perception at mul-
tiple time scales: minutes (within-trial alternations), seconds (duration of individual percepts), and milliseconds (switches between per-
cepts). Within the second ensemble, we identified a slowly drifting rhythm that correlates with the perceptual states and several
oscillators with phase shifts near perceptual switches. Projections of single-trial ECoG data onto these features establish low-dimensional
attractor-like geometric structures invariant across subjects and stimulus types. These findings provide supporting neural evidence for
computational models with oscillatory-driven attractor-based principles. The feature extraction techniques described here generalize
across recording modality and are appropriate when hypothesized low-dimensional dynamics characterize an underlying neural system.
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Significance Statement

Irrespective of the sensory modality, neurophysiological studies of multistable perception have typically investigated events time-
locked to the perceptual switching rather than the time course of the perceptual states per se. Here, we propose an algorithm that
extracts neuronal features of bistable auditory perception from largescale single-trial data while remaining agnostic to the subject’s
perceptual reports. The algorithm captures the dynamics of perception at multiple timescales, minutes (within-trial alternations),
seconds (durations of individual percepts), and milliseconds (timing of switches), and distinguishes attributes of neural encoding of
the stimulus from those encoding the perceptual states. Finally, our analysis identifies a set of latent variables that exhibit alternat-
ing dynamics along a low-dimensional manifold, similar to trajectories in attractor-based models for perceptual bistability.

Received Aug. 10, 2022; revised Mar. 3, 2023; accepted Mar. 15, 2023.
Author contributions: R.C. designed research; P.M. and R.C. performed research; P.M. contributed

unpublished reagents/analytic tools; P.M. and R.C. analyzed data; P.M. wrote the first draft of the paper; R.C.
edited the paper; P.M. and R.C. wrote the paper.
This work was supported by the National Science Foundation (NSF) Grant CRCNS-1515678 (to R.C.)

and partly by the NSF-RTF Award DMS-1840260 (to P.M.) and by the National Institutes of Health Grant
NIDCD R01 DC004290. We thank Haiming Chen, Phillip Gander, Matthew Howard, Hiroto Kawasaki,
Christopher Kovach, Kirill Nourski, Ariane Rhone, Beau Snoad, and Xiayi Wang for help with data
acquisition and preprocessing.

*P.M. and R.C. contributed equally to this work.

The authors declare no competing financial interests.

Correspondence should be addressed to Rodica Curtu at rodica-curtu@uiowa.edu.
https://doi.org/10.1523/JNEUROSCI.1531-22.2023

Copyright © 2023 Melland and Curtu
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0

International license, which permits unrestricted use, distribution and reproduction in any medium provided
that the original work is properly attributed.

3294 • The Journal of Neuroscience, May 3, 2023 • 43(18):3294–3311

https://orcid.org/0000-0003-2163-4689
mailto:rodica-curtu@uiowa.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Introduction
Multistable perception, a phenomenon in which an ambigu-
ous, unchanging stimulus gives rise to more than one per-
ceptual interpretation, has been found in various sensory
modalities: visual (Blake, 1989; Hupé and Rubin, 2003), au-
ditory (van Noorden, 1975; Pressnitzer and Hupé, 2006),
tactile (Carter et al., 2008), and olfactory (Zhou and Chen,
2009). Visual and auditory research has also reported neural
correlates to mutually exclusive percepts (Blake and Logothetis,
2002; Micheyl et al., 2007), proposing several theories of bistable
perceptual organization. Nonetheless, computational principles
of bistable perception are yet to be reconciled with experimen-
tally identified percept-specific changes in neural activity. This is
because modeling simulates long-time neuronal dynamics dur-
ing single trials with functional principles such as competitive
attractors (Moreno-Bote et al., 2007; Curtu et al., 2008; Rankin et
al., 2015), evidence accumulation (Barniv and Nelken, 2015;
Nguyen et al., 2020), algorithmic signal detection (Micheyl et al.,
2005; Pressnitzer et al., 2008; Krishnan et al., 2014), predictive
coding (Denham and Winkler, 2006), or probabilistic processes
(Barniv and Nelken, 2015). In contrast, conventional data analy-
ses primarily rely on statistical measures within perceptual group-
ings, like mean and variance, and are thus limited when applied to
nonstationary data. Accordingly, brain studies of bistable percep-
tion have focused on differentiating short-time neural responses
near perceptual switches (Basirat et al., 2008; Higgins et al., 2020)
or at fixed latencies in stimulus-locked epochs, like milliseconds
from the onset of individual stimuli occurrences (Gutschalk et al.,
2005; Snyder et al., 2006; Dykstra et al., 2011; Hill et al., 2012;
Billig et al., 2018; Curtu et al., 2019; Higgins et al., 2020).

To unravel dynamical properties of neural activity in bistable
perception and link them to functional principles proposed by
theory and modeling, one must exploit the time dependency of
the recorded data. Key components of a comprehensive analysis
should include extraction of neural features with data-driven
algorithms agnostic to the behavioral data (as opposed to pre-
scribed measures such as averaged evoked potential) and identi-
fication of feature attributes that correlate with perception over
prolonged percept durations as well as near reported switches or
in other short-time windows. Here, we propose an algorithm
that successfully addresses both problems. It inputs single-trial,
minutes-long recordings of neuronal activity and outputs a
manifold built on features that distinguish the two perceptual
states. The algorithm predicts within-trial ongoing perceptual
alternations (admittedly, without uncovering their neural under-
pinnings) by extracting time-varying latent states from neural ac-
tivity compatible with trajectories in competition models for
bistable perception.

Our study examined the dynamics of bistable perception in
auditory streaming of triplets. Six neurosurgical patients listened
to a sequence of tones, A and B, organized in repeating ABA– tri-
plet patterns (Fig. 1). Subjects reported alternations between two
percepts, a galloping-like rhythm (the “one-stream” percept) and
a Morse-code-like rhythm of two simultaneous distinct streams
(the “two-stream” percept). Electrocorticography (ECoG) record-
ings were collected from the subjects’ core auditory cortex as they
performed the behavioral task. Nonstationary percept-related fea-
tures of the ECoG data were extracted with an algorithm built on
recent advances in dynamical systems (Schmid, 2010; Williams et
al., 2015; Giannakis, 2019), manifold learning (Takens, 1981;
Berry et al., 2013), and dimensionality reduction of large-scale
datasets (Coifman and Lafon, 2006; Nadler et al., 2006; Berry et al.,
2013). The dynamics of neural activity were analyzed at multiple

time scales: minutes, for the within-trial alternating process; sec-
onds, for durations of individual percepts; and milliseconds, for
the timing of switches. A collection of data-driven Fourier-like
neuronal components robustly constructed the triplet-based aver-
aged auditory evoked potential for the one-stream and two-stream
percepts. An additional slowly-evolving extracted rhythm corre-
lated with the perceptual states. Changes in the phase (rather than
amplitude) of an oscillatory feature time-locked to the slow
rhythm predicted the perceptual switches identified by subject-
reported button presses. Low-dimensional projections of single-
trial ECoG auditory cortical data revealed geometric structures
common across subjects and stimulus types. These projections
exhibited dynamic properties similar to trajectories generated by
attractor-based computational models.

Results
Six epileptic neurosurgical patients (identified here as B335,
L357, R369, L372, R376, and L409), listened to 5-min-long
sequences of tones A and B grouped in 500 triplets ABA–, each
of 600ms duration (Fig. 1A). Participants indicated changes in
perception by pressing a button on a response box. They
reported either a single coherent auditory stream (the one-
stream percept, ABA� ABA� :::), or two simultaneous distinct
streams (the two-stream percept, A–A–A–A–::: and –B–B–:::;
Fig. 1B). Intracranial ECoG recordings from core auditory cortex
were obtained concurrently with the behavioral data. The record-
ings were obtained from electrodes placed in posteromedial
Heschl’s gyrus (HGPM), with a total number of six (B335), five
(L357), eight (R369), six (L372), seven (R376), and one (L409)
contacts (Fig. 1C for B335).

Two stimulus protocols were employed. In the control block,
df 2-12, the stimulus consisted of several triplets alternating
between low (df=2) and high (df= 12) semitone difference
between tones A and B, that biased listeners toward stable one-
stream and two-stream percepts, respectively. Changes in per-
ception were primarily aligned with the changes in df (Curtu et
al., 2019). In the bistable blocks df6, df8, the stimulus consisted
of triplets with fixed semitone difference between A and B
throughout the entire task (either df=6, or df= 8). Although the
stimulus did not change, the subjects reported spontaneous alter-
nations between one-stream and two-stream percepts.

The datasets analyzed in this paper were previously published
by Curtu et al. (2019).

An algorithm for extracting nonstationary features from
ECoG data
Studies of perceptual bistability aim to identify changes in neural
activity that correlate with changes in (simultaneously recorded)
behavioral responses. In auditory streaming of triplets, several
studies have reported differences in the averaged auditory evoked
potential calculated for the one-stream and two-stream percepts,
in certain auditory-related brain areas. But these analyses used a
common methodology: (1) obtained high-resolution temporal
recordings with either electroencephalography (EEG; Hill et al.,
2012), magnetoencephalography (MEG; Gutschalk et al., 2005;
Billig et al., 2018), or ECoG (Curtu et al., 2019); (2) partitioned
the data in triplet-locked epochs; then (3) performed univariate
or multivariate statistics over triplets belonging to each percept.
More recently, nonlinear measures derived from entropy princi-
ples were also used to identify neuronal differences between the
percepts (Canales-Johnson et al., 2020), but they were based on
short-time windows near switches and were reliant on the
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subjects’ behavioral reports. We present here an
algorithm that successfully processes minutes-
long nonstationary neural data (as seen in the
streaming task), and extracts key features across
three different timescales. The algorithm identi-
fies perceptual-related events at times measured
in: milliseconds (the occurrence of switches
between percepts), seconds (the sequence of
triplets linked into a stable percept, either
one-stream or two-stream), and minutes
(the perceptual dynamics over the entire 5-
min auditory block). Moreover, this algo-
rithm, was applied exclusively to the neural
data without using any prior knowledge
about the perception.

The fundamental assumption guiding this
feature-extraction algorithm is that a potentially
nonlinear system of differential equations,

dx
dt

¼ f ðxÞ; x 2 Rn (1)

governs the internal brain response, x, to
auditory input (here we consider that the
brain activity could be described by the dy-
namics of n variables). We further assume
that a time-dependent trajectory xðtÞ which
satisfies Equation 1 evolves along a lower
dimensional manifold (say, of dimension d)
M � Rn. Several core mechanisms in the
peripheral and central auditory system influ-
ence the dynamics in Equation 1. Therefore,
realizations of Equation 1 are challenging to
observe directly. Instead, we rely on observa-
tions of the system, y ¼ gðxÞ, where y 2 Rnc

represents a measurable quantity, and gð�Þ is
a vector of smooth, yet still unknown, scalar
functions of the underlying brain state x. In
the streaming context, local field potential
(LFP) recordings from HGPM contacts rep-
resent the output of unknown observation
functions of the unknown underlying neu-
ral activity. Thus, the number of HGPM
contacts, nc, determines the observation
dimension.

We hypothesize that the manifoldM con-
tains regions, or almost-invariant attracting
sets, that correspond with perception (S.L.
Brunton et al., 2017; also, for the terminology,
see Materials and Methods). Under this hy-
pothesis, a trajectory xðtÞ is contained in an
almost-invariant space over the duration of a
percept. Then, near a perceptual switch, it
transitions to another attracting set. However,
the underlying manifold M and the true dy-
namics are likely obfuscated by the obser-
vation functions, so one needs to invoke
methods designed to extract intrinsic dy-
namical patterns from observational (ECoG)
data.

Recently, the Koopman operator (Koopman,
1931; Koopman and Neumann, 1932; Mezi�c
and Banaszuk, 2004; Mezi�c, 2005; Rowley et al.,
2009; S.L. Brunton et al., 2017, 2022) has been

Figure 1. Overview of auditory triplet streaming task and recorded data. A, The auditory stimulus was a sequence of
high (A) and low (B) frequency tones separated by df semitones. The stimulus contained 500 ABA– triplets giving a total
duration of 300 s. B, Throughout the task, subjects reported alternations in perception by pressing buttons in a response
box. Subject B335 button presses in response to control stimuli are shown from a 75-s window. Tall red (short blue) ver-
tical lines indicate the onset of two-stream (one-stream) perception. C, Electrocorticography (ECoG) recordings were
simultaneously recorded during the behavioral task. Here, we examine only electrodes from posteromedial Heschl’s gyrus
(HGPM). Recordings from four HGPM contacts are shown over the same 75 s as in panel B (contacts placed in the right
hemisphere of B335). D, An example of an extracted neural feature derived from ECoG recordings alone. Features are
timeseries equal in length to the duration of the stimulus. The background is shaded according to the subject-reported
perception in panel B, for comparison purposes.

3296 • J. Neurosci., May 3, 2023 • 43(18):3294–3311 Melland and Curtu · Attractor Dynamics of Auditory Bistable Percepts



used to study nonlinear dynamics through system observations, for
example in fluid dynamics (Rowley et al., 2009; Mezi�c, 2013; Peitz
and Klus, 2019), computational chemistry (Narasingam and Kwon,
2019), and neuroscience (B.W. Brunton et al., 2016; Cura and Akan,
2020; Marrouch et al., 2020). For time t fixed, the Koopman operator
Kt is defined by composing observation functions with the flowmap
(i.e., the solution) FtðxÞ : M ! M for Equation 1:

ðKtgÞðxÞ ¼ gðFtðxÞÞ:

In many scientific applications, observations are made at dis-
crete time points tk sampled over a temporal interval Dt. The
sampling procedure yields a sequence of state variables xk, whose
dynamics along M are determined by the discrete map,
xk11 ¼ FDtðxkÞ. Hence, for an observation made at time tk, given
by yk ¼ gðxkÞ, the temporal evolution of the observation over Dt
is given by ðKDtgÞðxkÞ ¼ gðFDtðxkÞÞ ¼ gðxk11Þ. Thus, a proper
characterization of the Koopman operator can describe the dy-
namics in system measurements or observations. An emerging
goal in data science is to approximate K from a time series of
observations.

By the definition of function composition, the Koopman op-
erator is linear; however, since it acts on the functional space of
system observations, it is infinite-dimensional. Rather than iden-
tify the full infinite dimensional operator, common approaches
characterize the operator by approximating a finite collection of
its leading eigenvalues, modes, and eigenfunctions fðv j; vj; w jÞg.
This is typically accomplished by calculating spectral features of
the finite matrix K that minimizes the squared residual error
over all measurements with the prediction:

yk11 ¼ Kyk: (2)

When the observation dimension is large, the dynamic mode
decomposition (DMD; Rowley et al., 2009; Schmid, 2010; Tu et
al., 2014) is an effective algorithm for approximating Koopman
spectral quantities.

For the data presented in this paper, the number of
HGPM contacts was subject dependent and varied between
one and eight, yielding few observations relative to the total
number of sampled time points. For low-dimensional obser-
vations, the extended dynamic mode decomposition (eDMD;
Williams et al., 2015) augments the approximation in
Equation 2 to act on features of the observation data. Since
we were interested in the geometry of the system’s underly-
ing state space, we used manifold learning techniques to
derive a collection of basis-like features (or functions)
adapted to the geometry along M. These data-driven fea-
tures served as a dictionary of functions for Koopman eigen-
function discovery with the eDMD algorithm.

To derive a function dictionary for the eDMD algorithm, we
first employed time-delay coordinates (Takens, 1981; Sauer et al.,
1991) to reconstruct and embed the state-space dynamics in a
high-dimensional ambient space by appending temporal lags to
a time series of ECoG recordings (Fig. 2). As suggested previ-
ously (Berry et al., 2013), we then applied the diffusion map algo-
rithm (Coifman et al., 2005; Coifman and Lafon, 2006; Nadler et
al., 2006) to the augmented high-dimensional data to provide
low-dimensional timeseries representations, c j, that preserve the
state-space dynamics revealed with delay coordinates. From a
theoretical perspective, the diffusion map features c j are eigen-
vectors of a stochastic matrix derived from the high-dimensional
delay coordinates. The eigenvectors represent an approximation
to a Fourier-like basis of square-integrable functions adapted to
dynamics along the underlying manifold M (Coifman and
Lafon, 2006; Berry et al., 2013; Giannakis, 2019). The diffusion
map features were then used as a dictionary for the eDMD algo-
rithm (Williams et al., 2015) to approximate Koopman eigenval-
ues, modes, and eigenfunctions fðv j; vj; w jÞg, which link the
dynamics of the observations y to the dynamics of the unknown
state x. Figure 2 depicts the end-to-end algorithm (for more
details, see Materials and Methods).

The Koopman quantities were derived from ECoG data alone,
independently of perception-reports, and were subsequently

Figure 2. End-to-end computational approach for extracting low-dimensional dynamics from neural data. Single-subject electrocorticography (ECoG) data measuring local field potentials
(LFPs) were input for a feature extraction algorithm that successively applied the methods of time-delayed coordinates (Takens, 1981; Sauer et al., 1991), diffusion maps (Coifman and Lafon,
2006; Berry et al., 2013), and the extended dynamic mode decomposition (Williams et al., 2015). The output is a low-dimensional collection of timeseries features, w j , that were studied for
their connection to subject-reported percepts in auditory streaming of triplets. Shown here are three-dimensional representations of approximated Koopman eigenfunctions w j (trajectories
lying on an hourglass-like manifold) illustrating two key properties of the streaming task: stimulus encoding (repeated ABA– triplets; in gray) and perception encoding (one-stream vs two-
stream percept; in blue vs red color).
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studied for characteristics relevant to the triplet streaming task.
See Figure 1D for an exemplar feature which correlated with
perception.

Eigenvalues organize into two branches
The Koopman eigenvalues v j, derived with the feature extrac-
tion algorithm in Figure 2, were either real (only two) or
occurred in complex conjugate pairs (see Fig. 3A for eigenvalues
from B335). Note that we define v j by “exponential eigenvalues,”
transforming the discrete Koopman eigenvalues into their con-
tinuous-time equivalents; see Materials and Methods. For a com-
plex number v j, its real and imaginary components encode the
decay rate and oscillatory frequency of the corresponding spatial
mode vj. By convention, the eigenvalues were ordered by
decreasing real part. The imaginary components of the eigenval-
ues, when normalized to have units in Hz, aligned at approxi-
mate integer multiples of the triplet presentation rate 1:67Hz
(one triplet per 600ms). We identified two collections of

eigenvalues exhibiting such an organization for each subject and
block df. We refer to these collections as branches and collected the
indices for branch one and branch two into the indexed sets J 1 and
J 2, respectively. In short, eigenvalues associated with the harmonics
of 1:67Hz appeared in either one or two complex conjugated pairs.
For each such harmonic frequency, 1:67Hz, 3:33Hz, 5Hz, 6:67Hz,
and so on, we placed the pair of eigenvalues with negative real part
closest to zero (i.e., those smallest in magnitude) in J 1; then we
assigned the pair of eigenvalues with larger negative real part, if they
existed, in J 2 (Fig. 3A). Thus, from a linear dynamical system per-
spective, the modes associated with eigenvalues in J 1 persist over
longer time scales than the correspondingmodes inJ 2.

The accompanying Koopman eigenfunctions w j represented
timeseries neural features throughout the streaming task. The
temporal trace of the eigenfunctions associated with each branch
differed when compared over the entire 5-min stimulus block.
Figure 3B illustrates prototypical differences observed between
eigenfunctions from J 1 and J 2. The first branch contained a

Figure 3. Koopman eigenvalues and eigenfunctions organize into two branches. A, Koopman eigenvalues for subject B335 and df2-12-control (top), df6-bistable (middle), df8-bistable (bottom).
Eigenvalues are indexed according to decreasing real part (left). Imaginary components (right), normalized to have units in Hz, occur at integer multiples of the triplet presentation rate 1.67 Hz, indi-
cated by light gray horizontal lines (only frequencies up 20 Hz are shown). Note the emergence of two eigenvalue branches, J 1 (dark circles) and J 2 (light circles). Complex eigenvalues occur in
conjugate pairs. Arrows indicate eigenvalues that correspond to eigenfunctions plotted in panel B. B, Real part components of Koopman eigenfunctions for B335 df2-12 control (top), df6-bistable
(middle), df8-bistable (bottom), plotted over select triplets. For each stimulus block, three graphs are shown: one eigenfunction from J 1 and an eigenfunction from J 2, both associated with fre-
quency 1.67 Hz (see arrows in A) and the eigenfunction w

*
of eigenvalue v* (green in A). Background is shaded according to subject-reported perception (one-stream in blue; two-stream in red).

On the right, histograms over all sampled time points for each percept-type have bar heights normalized so that the total area for each percept sums to one. Permutation test applied independently
to w

*
(indexed 16, 38, 42, respectively) indicated significant differences between means for one-stream versus two-stream perception (p , 1.0 � 10�4 all three blocks; N ¼ 10; 000

permutations).
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constant leading eigenfunction corresponding to the zero eigen-
value (data not shown). The remaining eigenfunctions in J 1

were oscillatory functions that resembled true sine and cosine
harmonics with minimal fluctuations. The second branch con-
tained a purely real eigenfunction that exhibited slow modula-
tions or transitions closely aligned with changes in perception.
We denote this eigenfunction and its corresponding eigenvalue
by w

*
and v* . (We studied them, for all subjects, in section A

slowly-evolving feature encodes the perceptual states, below) The
remaining complex eigenfunctions in J 2 were oscillatory in na-
ture, although they bore less resemblance to pure sine and cosine
functions than those from J 1. The eigenfunctions in J 2 showed
fluctuations and modulations, which were closely entrained to the
slow transitions observed in w

*
, and thus were similarly aligned

with changes in perception (Fig. 3B; also discussed below, J 2-fea-
tures show phase changes aligned with switches in perception).

The eigenvalue organization on branches J 1 and J 2, and
their associated timeseries eigenfunctions, revealed two distinct
aspects of the neural activity. Branch J 1 identified a prolonged
stable periodic process that encoded the ABA– triplet repetition
rate and its harmonics. Thus, we called J 1 the “stimulus-encod-
ing” component of the neural signal. Branch J 2 comprised
modes that were frequency-analog to J 1 but with larger decay
rates (Fig. 3A, light vs dark circles). They defined an oscillatory
process with a relatively faster-changing envelope, found to be
entrained to the perceptual states (see next sections). Thus, we
called J 2 the “perception-encoding” component of the neural
activity. The branches J 1 and J 2 indicated a superposition of
two internal brain processes operating on different timescales.
To identify task-specific signatures within branches J 1 and J 2,
we set to examine the properties of timeseries w j.

A slowly-evolving feature encodes the perceptual states
The eigenfunction w

*
from J 2 registered a slow latent variable

that transitioned between two attracting-like states (Fig. 4); it
emerged in all streaming blocks, with different index in the fw jg
sequence. Note that both w

*
and�w

*
were eigenfunctions corre-

sponding to the real eigenvalue v* . By convention, for illustrative
purposes, we chose w

*
in the pair above to be the eigenfunction

with median calculated across the two-stream percept larger
than the median over the one-stream percept (e.g., w

*
as plotted

in Figs. 3B, 4B).
The eigenfunction w

*
differed from the remaining extracted

features in that: (1) it was purely real, and thus not entrained to a
fixed frequency (the only other real eigenfunction was the con-
stant w 1); and (2) its dynamics resembled a variable transitioning
between two slowly drifting attractor states. The alternations
between two relatively steady values of time-series w

*
were

aligned with reported changes in perception (Fig. 4B). We per-
formed a permutation of triplet labels to test for a difference in
the means of w

*
computed across the one-stream and two-

stream percepts (see Materials and Methods). We found the dif-
ference in percept-related means of w

*
significant at the

a ¼ 0:01 level. The Monte Carlo p-value estimates in all control
blocks satisfied p,1:0� 10�4. The p-values in the bistable
blocks were p,1:0� 10�4 for subject B335 (df6 and df8) and
p ¼ 0:0053 for subject R369 df6. To quantify the overlap between
the distributions of values w

*
split by perceptual grouping (Fig.

4B), we calculated the Kullback–Leibler divergence (KLdiv; see
function relativeEntropy in MATLAB). Briefly, the amount of
shared information between two probability distributions is
given by the nonnegative scalar quantity KLdiv. While KLdiv is
zero for two identical distributions, it becomes larger when

separation between distributions increases (Joyce, 2011). For the
histograms shown in Figure 4B, we found KLdiv of 33.86, 15.68,
74.02, 47.41, 14.92, and 3.96, with a mean of 31.64, for the con-
trol blocks of B335, L357, R369, L372, R376, L409, respectively.
We found KLdiv 4.46, 1.75, and 2.58, with a mean of 2.93, for the
bistable blocks B335, df6, df8, and R369, df6. The KLdiv values
indicated a stronger separation between almost-invariant states
identified by w

*
in the control blocks (when perception alterna-

tions were more salient because of overlap with stimulus change)
than in the bistable blocks (the true bistable conditions).

J 2-features show phase changes aligned with switches in
perception
The emergence of w

*
corresponded to an aforementioned sepa-

ration of time-scales. We found that the remaining features w j
on branch J 2 were entrained to the modulations observed in w

*
.

They exhibited phase shifts aligned with the state-transitions of
w

*
. Namely, as in Figures 3A and 4A, each eigenfunction w j on

branch J 2 corresponded to a complex eigenvalue v j whose
imaginary component encoded a frequency, f, multiple of
1:67Hz. We computed the instantaneous phase shift f j;f of
feature w j relative to frequency f (see Materials and Methods,
Eq. 6) and drew its circular histograms over timepoints sepa-
rated according to subject-reported percepts. Exemplar histo-
grams and 5-min duration time plots of two instantaneous
phases, f 1:67, f 3:33 are shown in Figure 5. The phases f f
alternated between two slowly drifting attractor-like states in a
manner similar to, but with less fluctuations than, the dynamics of
eigenfunction w

*
. The phase transitions were also temporally

aligned with the steady-state transitions observed for w
*
and, con-

sequently, aligned with reported changes in perception.

The phase of the leading oscillator in branch J 2 defines a
predictor for perceptual switches
As opposed to w

*
, all frequency-locked instantaneous phases f f

of J 2 eigenfunctions took comparable values across subjects and
blocks (always in the interval�p to p ). They rendered a generic
neural measure that encoded, with reasonable accuracy, the tim-
ing of the button presses. We selected the instantaneous phase
f f of the first eigenfunction on branch J 2 associated with a pos-
itive frequency, and used it to identify changes in perception.
Depending on subject and block, f f was either f 1:67 or f 3:33
(Figs. 3A, 4A). At any time point tk, we compared the difference
between the average phase f f ;0:6sðtkÞ, calculated over a preced-
ing temporal span equal to the length of one triplet, with the av-
erage phase f f ;1:2sðtkÞ, over a span equal to the length of two
triplets. The comparison was implemented through a nonlinear
predictor variable difference pf f

ðtkÞ that mapped small phase
differences toward zero and large phase differences toward one
(see Materials and Methods, Eq. 7; also Fig. 5B). The difference
in average phases was small for the majority of timepoints, which
kept pf f

ðtkÞ near zero. The predictor’s large deviations from
zero prescribed candidate time points for when the button
presses might have occurred. The predictor variable was tracked
forward in time and monitored for threshold-crossings. Each
crossing established a short temporal window containing a pre-
dicted button press (Fig. 5B, gray boxes). Then these windows
were assessed for their alignment with the subject-reported per-
ceptual switches (Fig. 5B, blue and red vertical lines). For details
about the calculation, see Materials and Methods. Behavioral
predictions based on variable pf f

were found to be reliable.
Figure 5B shows predicted button-presses and their alignment
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with the recorded perceptual switching data in df 2-12 and df6
blocks for subject B335. Button press predictions calculated for
the control block of all other subjects are shown in Figure 6.

To test whether a button press (“observed” value) was more
likely to either precede or succeed a predicted switch (“expected”
value), based on changes in f f , we performed a x 2 test with one
degree of freedom and N samples. From N= 126 button presses

associated with phase changes in the control blocks (Figs. 5B, 6),
there were bp= 71 instances of a button press preceding a
marked phase change and pb= 55 instances of a phase change
preceding a reported button press: x 2ð1; 126Þ = 2.03, p= 0.154,
not statistically significant. We also performed the analysis over
the bistable blocks (bp= 37, pb= 31) and all blocks together
(bp= 108, pb= 86) and obtained x 2ð1; 68Þ = 0.53, p= 0.467,

Figure 4. Dynamics of the slowly-evolving feature w
*
on branch J 2, shown for the entire stimulus duration. A, Sign-free imaginary parts of Koopman eigenvalues from

control blocks (top six panels) and bistable blocks (bottom three panels), normalized to have units in Hz. Horizontal lines indicate integer multiples of the triplet presenta-
tion rate, 1.67 Hz. Eigenvalue branches J 1 and J 2 emerge in all experimental blocks. A complete list of J 1-eigenvalues includes the following additional harmonics (data
not shown): 21.67 Hz for B335, df2-12; 21.67–33.33 Hz for B335, df6, df8; and 21.67–26.67, 30, 33.33, 36.67 Hz for L357, df2-12. B, Temporal trace for w

*
, the real eigen-

function corresponding to the real eigenvalue v* (green in panel A). Background is shaded according to subject-reported perception (one-stream blue; two-stream red).
Triplets preceding button presses were labeled “no-percept” (neutral) to account for individual subject reaction times. Histograms over all sampled time points for each per-
cept-type are shown; bar heights are normalized so that the total area for each percept sums to one. Permutation test applied to w

*
for each subject indicated significant

differences between means for one-stream versus two-stream perception (p , 1.0 � 10�4 in control blocks and in B335 bistable blocks; p = 0.0053 in R369 df6;
N = 10,000 permutations).
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respectively x 2ð1; 194Þ = 2.49, p= 0.114, not statistically signifi-
cant. The majority of button presses occurring before the pre-
dicted phase-shifts (78 out of 108) were found in subjects B335
and L357 with reactions times much shorter than the 1:2 s time
window used in the definition of the predictor pf f

(RTs of 0.65,
0.36 s). These cases may be explained by the inherent constraints
of the proposed feature-extraction algorithm and, possibly, by
the subjects’ unreliability in pressing the buttons. We investi-
gated here the alternative hypothesis that the feature-derived
phase-shifts were a button press artifact, reflecting neural modu-
lation by the motor response. We tested whether changes in the
slowly-evolving rhythm w

*
(Fig. 4) associated with predicted per-

ceptual switches occurring before button presses (pb) were indis-
tinguishable from those associated with predictions occurring
after button presses (bp). The 1:2 s intervals immediately preced-
ing phase shifts were extracted from the w

*
feature. Each 1:2 s

sample was standardized to have mean zero and variance one to
bring the extracted data to a similar scale. Then, the samples
were grouped according to transitions from one-stream into
two-stream and two-stream into one-stream and projected
onto their first and second principal components (Fig. 7).
Comparisons over the pb:bp groups, calculated separately for the
control blocks, the bistable blocks, and then for all blocks to-
gether, showed no significant statistical difference (Wilcoxon
rank test, p.0:05; total pb= 85, bp= 108; one early predicted
switch in the control block of R369 had to be excluded because
of lack of sufficient appended signal history). Similar results
were obtained when applying the statistical tests to longer time-
intervals preceding the switches, up to 4 s history, to account

for the delays used in the eDMD part of the algorithm (data not
shown).

Triplet-based mean-LFPs are well approximated by
J 1 [ J 2-features
Recall that the feature extraction algorithm processed timeseries
yðcÞðtÞ recorded from all contacts c in HGPM, and produced a fi-
nite collection of Koopman eigenvalues, modes, and eigenfunc-
tions fðv j; vj; w jÞgNj¼1

as output (Fig. 2). Then, the projection of

yðcÞðtÞ on the finite-dimensional feature space was a linear com-
bination of time-varying Koopman eigenfunctions w j, with
time-independent coefficients vjðcÞ,

yðcÞðtÞ �
XN
j¼1

vjðcÞw jðtÞ: (3)

While the eigenfunctions w j encoded the time dynamics of
ECoG recordings, the modes vj provided a spatial map across the
contacts in HGPM. Thus, at a fixed contact c, the approximation
of signal yðcÞ employed the same coefficients vjðcÞ for all times t.
Each coefficient vjðcÞ in Equation 3 represented the strength of
the relative contribution of w j, a temporal component at a partic-
ular frequency encoded by v j, to the reconstruction of ECoG
data. To assess what intrinsic dynamical properties of the ECoG
signal were expressed along J 1, J 2, we split Equation 3 into two

terms: yðcÞ= YðcÞ
1 1YðcÞ

2 with

Figure 5. Phase analysis for eigenfunctions from branch J 2. A, Circular histograms of relative instantaneous phase for B335 df2-12-control (top) and df6-bistable (bottom)
stimuli, colored according to the subject-reported perception. The instantaneous phase f f was calculated with respect to frequency f of 1.67 Hz (left) and 3.33 Hz (right;
see Eq. 6 in Materials and Methods). It is the phase of eigenfunctions w j indexed with j = 14 and 17, respectively, at df2-12, and j = 39, 41 at df6 in Figure 3A. Histogram
bins are normalized so that the bin radii for each percept type (one-stream blue; two-stream red) sum to one. Scatter points correspond to phase calculated at individual
time points. Marker transparency is scaled according to the density of the phase distribution along �p to p . B, Predicted button presses. Instantaneous phase f f , in black,
is calculated either with respect to frequency 1.67 Hz (top) or to 3.33 Hz (middle). Eigenfunction w

*
is shown in gray. Background is shaded according to subject-reported

perception. Button press predictions (bottom) were derived from f 1:67 according to Equation 7, in Materials and Methods. Temporal windows containing a predicted button
press (gray boxes) are drawn when the predictor variable crosses a threshold (horizontal line). The width of the box was determined by subject reaction-time in response to
control stimuli. Short blue (tall red) lines indicate subject-reported switches into one-stream (two-stream) percept.
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YðcÞ
1 ¼

X
j2J 1

vjðcÞw j; YðcÞ
2 ¼

X
j2J 2

vjðcÞw j (4)

calculated separately for each branch. Then we computed triplet-

based reconstruction profiles by averaging components YðcÞ
1 , YðcÞ

2
and their sum in Equation 3, over each percept-type (Fig. 8,
upper 1–3 rows; mean taken over all triplet-based epochs labeled
as either one-stream or two-stream). We compared these quanti-
ties with the triplet-based mean-LFPs of the true signal (Fig. 8,
4th row).

We found the average differences between perceptual
streams to be limited along branch J 1 (in fact, differences
existed only in the df 2-12-control block). On the contrary,
J 2-based reconstructions differed in average between percep-
tual states. This result was consistent with the properties observed
for features on the two branches: eigenfunctions w j in J 1 exhib-
ited limited deviations from true sine and cosine functions during
the 5-min block duration (Fig. 3B, upper panel), while eigenfunc-
tions in J 2 modulated with perception, although on a scale
smaller in magnitude (Fig. 3B, lower panel; also, Fig. 5). The
J 1-features collectively encoded the stable neural response to the
driving stimulus, the sequence of ABA– triplets. The J 2-features
collectively encoded the transient dynamics correlated with per-

ception. Thus, YðcÞ
1 defined the stimulus-encoding component of

the LFP recording, while YðcÞ
2 represented the perception-encoding

component.
Similarities between triplet-averaged reconstructions with

J 1-features, computed separately over one-stream and two-
stream percepts (Fig. 8, row 1), were estimated with Pearson’s
correlation coefficient r (see Materials and Methods). We found
them to be highly correlated, with a median r= 0.9996 for recon-
structions in bistable blocks (confidence interval 95%CI =
[0.9988, 0.9999]) and median r = 0.9411 for reconstructions
in control blocks (95%CI = [0.9277, 0.9647]). In contrast, the
triplet-averaged reconstructions with J 2-features (Fig. 8,
row 2) were highly anticorrelated (in the median, r =
�0:9846, 95%CI = ½�0:9978;�0:9767� in bistable blocks,
and r = �0:9530, 95%CI = ½�0:9650;�0:5179� in control
blocks). The mean-LFP J 1-based profiles over one-stream
and two-streams were more strongly correlated for the
reconstructions in bistable blocks when the stimuli were
unchanging, than in df 2-12-control blocks when percept-
related differences were confounded with stimulus differen-
ces themselves (r significantly larger in bistable blocks; one-
sided Wilcoxon rank-sum test, p,1:0� 10�14). Likewise,
the mean-LFP J 2-based profiles over one-stream and two-
streams were more strongly anti-correlated in bistable rather
than control blocks (one-sided Wilcoxon rank-sum test,
p,1:0� 10�6).

Figure 6. Predicting subject button presses with extracted neural features. Button press predictions are shown for the control blocks of five subjects. In each example, fea-
ture w j was chosen from branch J 2 to correspond to eigenvalue v j with frequency f (1.67 or 3.33 Hz) as indicated by the vertical axis label, e.g., Figure 4A, light circles,
for reference. Changes in the instantaneous phase f f (black line) of w j determined candidate time windows (gray boxes) for predicted button presses. Phase angles of p
and �p are congruent, so transitions through p to �p (or vice versa) appear as jump discontinuities along the vertical axis. The width of the gray box varies between
subjects to account for individual differences in button-press reaction time. Subject-reported button press times are marked by colored lines for the onset of one-stream (in
blue) and two-stream (in red) percepts. For the prediction criteria, see text.
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Next, we assessed the accuracy of the triplet-averaged
overall approximation from Equation 3. We calculated the
coefficient of determination R2 for the feature-based recon-
struction mean (Fig. 8, row 3) against the standardized
mean LFP (Fig. 8, row 4) separately for each contact, stimu-
lus block, and percept type (N ¼ 53 total contact record-
ings). We found a median R2 value of 0.93 for one-stream
(first/third quantile: 0.88/0.98) and median R2 of 0.95 for

two-stream (first/third quantile: 0.89/0.98), in support of a
good fit.

Low-dimensional manifolds extracted from HGPM
recordings have a similar geometric structure across group
data
For each subject and experimental block, ECoG recordings from
all HGPM contacts were introduced as input to the feature-

Figure 7. Predicted perceptual switches are not modulated by the subject’s motor response. A statistical test was employed to examine whether the algorithm-derived features that correlate
with perception reflect neural activity associated with the pressing of buttons. All 1.2-s segments immediately preceding the predicted times for perceptual change were extracted from feature
w

*
(Figs. 4, 5; also the definition of predictor pf f

), then z-scored and projected onto their first and second principle components. The values were split in two groups, per ratio pb:bp, with
pb, the number of events in which the phase-shift-based prediction occurred before the subject’s button press (boxplots in light-gray), and bp, the number of events in which the button press
appeared before the phase-shift (in dark-gray). Boxplot whiskers extend from 0.25 and 0.75 quantiles to61:5 times the interquartile range, respectively. The ratios pb:bp (e.g., 31:34) were
shown for each respective case. The analyses were performed separately for transitions from one-stream to two-stream (left panel) and transitions from two-stream to one-stream (right panel),
and for the control blocks, the bistable blocks, as well as all blocks together. No statistical significant difference was found (Wilcoxon rank test, p-values. 0.05).

Figure 8. Reconstruction of triplet-based mean-LFPs with extracted features. Eigenfunctions from branches J 1, J 2 and the union J 1 [ J 2 were used to construct approximations of
LFP recordings, according to Equations 3 and 4. Triplet-based epoch averages of these reconstructions (rows 1–3) are shown for HGPM contact #138 in subject B335, for different stimulus
blocks: df2-12 (left column), df6 (middle), df8 (right). For comparison purpose, the standardized mean-LFPs over triplet-based epochs are also included (row 4). In all panels, the averages
were taken over triplet-epochs labeled as one-stream (in blue) and two-stream (in red), according to subject’s reported perception (same vertical axis scale in all panels but those for J 2).
95% CI (SEM) ribbons are drawn (barely visible in most plots, because of very narrow CIs ranges). Branch J 1-reconstructions preserved the profile of the response to ABA– triplets. The appa-
rent triplet structure was no longer preserved in branch J 2-reconstructions. Reconstructions with J 1 [ J 2 produced profiles similar to the mean-LFPs per percept type.
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extraction algorithm (Fig. 2). The output was the Koopman col-
lection fðv j; vj; w jÞg that we analyzed in previous sections. The
extracted neural features w j provided a basis for a low-dimen-
sional space on which the 5-min-long timeseries recorded at con-
tact c were projected (see Eq. 3). To compare the geometric
structures of the Koopman-based spaces across all nine experi-
mental blocks, we plotted the trajectories defined by the first
three eigenfunctions in branch J 2: w*

, w 1:67, and its complex
conjugate �w 1:67. In real function representation, these trajectories
were drawn as curves with coordinates

w
*
ðtkÞ; Re w 1:67ðtkÞ½ �; Im w 1:67ðtkÞ½ �� �

;

parameterized by the sampling time tk. They formed “dou-
ble-cone”-like manifolds that were qualitatively similar
across subjects and stimulus blocks (Fig. 9, columns 1, 2).
Each trajectory showed an oscillation with circular cross-
sections parallel to the Re½w 1:67� � Im½w 1:67� plane, and with

the cross-sections’ location determined by the values of the
slowly-evolving feature w

*
.

The double-cone represented an intrinsic invariant struc-
ture of the large scale ECoG data, and it was found to be ster-
eotypical across subjects and stimulus type. The oscillations
resembled the standard cosine-sine parametrization of the
circle with an approximate rotation frequency of 1:67Hz, which is
the repetition rate of triplet ABA– in the auditory sequence. We
found that the timing of each triplet component (the pure tones A,
B and A, as well as the 200-ms interval of silence) were encoded at
distinct locations on the circle, aligned along the three-dimensional
embedding. Trajectories shifted in phase when they drifted to the
opposite side of the cone along the w

*
-axis (Fig. 9A,B, left column).

Moreover, the double-cone formed a “perceptual manifold,” con-
sisting of two almost-invariant sets corresponding to each percept
type (Fig. 9A,B, middle column: one-stream in blue, two-stream in
red). The two-sets intrinsic structure of the underlying manifold
was common across subjects.

Figure 9. Visualization of low-dimensional neural dynamics extracted from HGPM recordings. A, Three-dimensional projection of the dynamics in df2-12-control blocks of six subjects. Left
column, w

*
plotted against the real and imaginary components of the J 2-eigenfunctions associated with frequency 1.67 Hz. Trajectory is shaded according to triplet ABA– composition: A

tone (dark gray); B tone (black); silence (light gray). Arrows and circles indicate direction of rotation for the trajectory and delineate the repetitive ABA– stimulus structure. Middle column,
Same trajectories from the left column but colored according to subject-reported perception (one-stream, blue; two-stream, red). Time points corresponding to the neutral percept (near button
presses) are colored in gray. Right column, Reconstruction of select ECoG contacts in HGPM using only w

*
and eigenfunctions in J 2 with frequency components 1.67 and 3.33 Hz (see Eq. 4).

Points are colored according to reported perception and follow the same convention as the middle column. Subject L409 had a single HGPM contact, so two coordinates delayed by t = 50 ms
were appended for visualizing dynamics in three-dimensions. B, Projection of the dynamics in bistable blocks. Plots follow same convention as in panel A.
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Low-dimensional dynamics of select HGPM contacts were
visualized with projections onto eigenfunctions from branch J 2.

At each contact c we considered YðcÞ
2 from Equation 4 but re-

stricted the summation to the first five terms (the space gener-
ated by w

*
, w 1:67, �w 1:67, w 3:33, �w 3:33; see Fig. 4A). The dynamics

derived at three different HGPM contacts for each subject but
L409 are shown in Figure 9A,B, right column. L409 had only one
HGPM contact so we used temporal lags to visualize its three-
dimensional neural dynamics. Although the shape of the under-
lying manifold varied among experimental blocks, its two-attrac-
tor-like structure linked to perception was preserved.

Discussion
We investigated dynamic attributes and underlying geometric
structures of neural correlates of auditory streaming of triplets,
in minutes-long nonstationary ECoG recordings from human
core auditory cortex. These datasets were previously studied by
Curtu et al. (2019) with univariate and multivariate statistics, and
have revealed significant differences in averaged evoked poten-
tials associated with one-stream and two-stream percepts.
Analyses by Curtu et al. (2019) and other studies of auditory
streaming (Gutschalk et al., 2005; Cusack, 2005; Kondo and
Kashino, 2007, 2009; Hill et al., 2011; Higgins et al., 2020), exam-
ined triplet-locked epochs and their percept-related means. Our
paper presents a novel analysis of triplet streaming data that
exploits their temporal dependencies under prolonged stimulus
presentations. The algorithm combines emerging methods for
dimensionality reduction, manifold learning, and dynamic dis-
covery. We report a collection of neuronal features that encode
changes in auditory bistable perception in their frequency com-
ponents and instantaneous phases. The extracted features organ-
ized in two subsets, J 1, J 2, corresponding to stimulus encoding
and perception encoding respectively. The dynamics of a slowly
fluctuating rhythm w

*
characterized prolonged steady-state per-

cepts. The phase of the leading oscillator in J 2 was found to be a
reliable predictor for the perceptual switches. Low-dimensional
projections of the dynamics of neural data revealed a two-attrac-
tor-like geometric structure invariant among subjects and stimu-
lus blocks.

In auditory streaming of triplets, alternations between per-
cepts were induced by either stimulus modifications (Sussman et
al., 1999; Fishman et al., 2001; Micheyl et al., 2005; Snyder et al.,
2006; Pressnitzer et al., 2008; also control blocks df 2-12 in our
study) or by stimulus bistability (Gutschalk et al., 2005; Hill et al.,
2012; Cusack, 2005; Curtu et al., 2019; also bistable blocks df6,
df8). Differences in neural correlates to one-stream and two-
stream were identified in MEG (Gutschalk et al., 2005; Billig et
al., 2018; Sanders et al., 2018), EEG (Hill et al., 2012; Higgins et
al., 2020), fMRI (Cusack, 2005; Kondo and Kashino, 2009; Hill et
al., 2011), and ECoG (Curtu et al., 2019) recordings. When
changes in low-level acoustic stimulus properties altered percep-
tion, it has proven difficult to distinguish stimulus-driven neural
signatures from perception-only driven activity. Very few attempts
were successful in dissociating such effects (Hill et al., 2012). Our
proposed feature-extraction algorithm (Fig. 2) provided a robust
solution to the stimulus versus perception separation challenge.
The eigenfunctions from the decomposition J 1 [ J 2 (Figs. 3A,
4A) exhibited distinct properties: those in J 1 showed percept-in-
dependent dynamics and produced a standard profile for the
encoding of the ABA– triplet repetition; those in J 2 underwent
steady-state phase transitions aligned with changes in perception
and produced LFP reconstruction profiles with marked differences

between perceptual states (Fig. 8). The reconstructions with
J 1-features of mean triplet-based LFPs supported the hypothesis
that J 1 is associated with the stimulus encoding, as profiles were
aligned across percept types for the bistable stimuli but deviated
for the control stimuli that included triplets with different A-tones.
The features on J 2 indicated a representation of an internal per-
cept, although stimulus-related effects could not be entirely
excluded. Statistically significant differences between percept-split
distributions of w

*
values were identified in both control and

bistable blocks, but they were larger in the control conditions
(Figs. 3B, 4B). The stronger separation of distributions observed in
df 2-12 blocks possibly reflected the saliency of the perceptual
switches, which were more prominent because of overlap with the
stimulus change. Another explanation, that the distinctive low-
level acoustic components of df2, df12 sequences significantly
modulated the quasi-states of w

*
seemed improbable, given that

stimulus attributes evolved on a much faster timescale than w
*
,

and that each contact in HGPM sampled large populations of
neurons with wide tone-frequency selectivity.

Phase modulation of cortical oscillations as a potential mecha-
nism for neural encoding of auditory streaming has been studied
in rodents (Noda et al., 2013). Under stimulus modifications used
as proxies for the perceptual states, differences in “percept”-related
phase coherences were reported in the g frequency-band. In con-
trast, our results showed that perceptual phase modulations (for
features in J 2) were tightly linked to the harmonics of the triplet
presentation rate rather than existing in a specific frequency-band.

Features in J 1, J 2 and their qualitative dynamics, were
invariant across subjects and stimulus types. Branch J 2 con-
tained a real eigenfunction w

*
whose slowly-evolving dynamics

correlated with perception. The other eigenfunctions were or-
dered by the decay rates of their associated eigenvalues and had
frequencies near 1:67Hz harmonics. The phase of J 2 leading os-
cillator was used to predict individual timings of the button
presses. Some individual differences existed, however. For certain
subjects the algorithm identified 1:67Hz as the frequency of the
persistent oscillation in J 2. This was true for B335 and R369,
regardless of stimulus type, and L372. For other subjects (L357,
R376, L409) this frequency was 3:33Hz (Figs. 3A, 4A). We
hypothesize that the leading frequency in J 2 gives an indication
of the strategy each subject used when identifying the two-stream
percept. While some experiments with auditory triplet streaming
asked the participants to attend certain aspects of the stimulus
(e.g., to exclusively follow either the A tone, or the B tone, in the
two-stream percept; Gutschalk et al., 2005; Snyder et al., 2006;
Thompson et al., 2011; Billig et al., 2018), we provided no such
instruction. The subjects may have unconsciously directed their
attention to the A tone (presented every 0:3 s in the triplet
sequence, at 3:33Hz rate) or to the B tone (presented every 0:6 s,
at 1:67Hz rate). This is a testable hypothesis that could be
addressed in future studies of triplet streaming by appropri-
ately adjusting the set of instructions.

Like classic signal processing methods, our feature-extraction
algorithm identified fundamental frequencies in recordings and
derived linear decompositions in frequency-selected components.
There are, however, key differences between these approaches. First,
Figure 2-algorithm processed data from all HGPM contacts
together and produced a common collection of features for
the decomposition of individual LFPs. The frequencies (har-
monics of 1:67Hz) and associated time-varying elements
arose naturally from the data and were computed simultane-
ously as Koopman eigenvalues and eigenfunctions. This con-
trasts canonical methods that treat recordings independently,
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extract fundamental frequencies with power spectrum calcula-
tions, and then partition recordings into frequency-specific
modulated timeseries with techniques like the fast-Fourier
transform (FFT). Identifying a common space for HGPM neu-
ral activity proved essential for the discovery of geometric and
dynamic structures shared across group data. Second, as
opposed to basic sine and cosine FFT-functions, the Koopman
eigenfunctions were nonstationary throughout the 5-min
stimulus. They were oscillatory, “Fourier-like,” yet adaptive to
the intrinsic LFP dynamics during the perceptual task. Third,
discovery of the slow rhythm w

*
by conventional Fourier

methods would have been impossible. The ECoG data were
high pass filtered at 1:5Hz (see Materials and Methods; pre-
processing), having all additive low-frequency components
removed. However, low-frequency multiplicative signals remained
as they modulated signals at higher frequencies (e.g., the phase
and amplitude of J 2-eigenfunctions were modulated by w

*
).

These features were identified and extracted through Koopman
projections.

Computational models proposed several neural mechanisms
for perceptual bistability. These included oscillatory and noise-
driven attractor dynamics (Laing and Chow, 2002; Moreno-Bote
et al., 2007; Curtu et al., 2008; Rankin et al., 2015), evidence accu-
mulation (Nguyen et al., 2020), predictive coding (Denham and
Winkler, 2006), and probabilistic rule-based classification proc-
esses (Barniv and Nelken, 2015; Steele et al., 2015). To our
knowledge, our study is the first to: (1) report neural evidence
for within-trial ongoing competing percepts and (2) report neu-
ral activity compatible with the dynamics of models for bistable
perception. We extracted a feature of the neural activity in core
auditory cortex, w

*
, that correlated with single-trial behavioral

responses. The instantaneous phase of an entire ensemble of
oscillators (in branch J 2) did the same. These latent variables
exhibited alternating dynamics similar to those simulated by
attractor-based models.

Oscillatory attractor dynamics rely on three key computational
principles: bistability between two stimuli-induced attractors (typi-
cally, two stable steady states), processes for accumulation then re-
covery for drifting activity between attractors, and noise to ensure
trial-by-trial variability. The first two principles underlie a deter-
ministic periodic trajectory that alternates between attractors. The
noise introduces stochasticity in the switching times and creates
more realistic, irregular percept durations. The model can be aug-
mented by coupling it to a chaotic system to account for external
factors that influence perception (e.g., attention, medication).
Figure 2-algorithm approximated the quasi-periodic solution of
such attractor-like flow through features in J 1 [ J 2. Diffusion
maps parametrize paths between competing states in stochastic
systems governed by a double-well potential (Nadler et al., 2006).
In those examples, the first nonconstant diffusion map eigenvector
described the alternation between attracting regions. Our results
identified feature w

*
deeper in the Koopman spectrum, near the

start of branch J 2. A possible explanation is that the two hypothe-
sized attractors underlying the ECoG data were not equilibria but
periodic cycles themselves, generated by the repetitive ABA– tri-
plet sequence. The algorithm likely captured the time-dependent
structure of the stimulus before extracting the intrinsic system
dynamics.

Bridging modeling with large-scale neural recordings has
recently received scientific interest because of new methodolo-
gies like manifold learning and Koopman decomposition.
Theoretical results found that DMD alone (Tu et al., 2014) was not
well-suited for identifying slow or transient dynamics as seen in

perceptual switching. This shortcoming was addressed by
eDMD (Williams et al., 2015) together with time-delay coordi-
nates (Takens, 1981) and diffusion maps (Berry et al., 2013). The
Koopman operator was then shown to accurately describe quasi-
periodic solutions of oscillatory systems with “weak” chaotic com-
ponents (Giannakis, 2019), although it seemed unable to track
chaotic dynamics per se (Mezi�c, 2005, 2013; Giannakis,
2019). We combined these methods into a single algorithm
to extract neuronal features that captured single-trial behav-
ioral responses in auditory streaming of triplets. Our results
do not suggest that bistable perception might be resolved in
primary auditory area HGPM. Rather they show that, under certain
circumstances, one could make predictions of ongoing perceptual
alternations by simply recording fromHGPM.

Materials and Methods
Participants
Six neurosurgical patients treated for pharmaco-resistant epilepsy par-
ticipated in the streaming task: four males and two females, identified
here as B335, L357, R369, L372, R376, and L409 (age range 29–47; me-
dian age 33 years). The subjects listened to sequences of repeated triplets
of tones and reported their perception, either one-stream or two-stream,
by pressing a button. Electrocorticographic (ECoG) data from multicon-
tact depth electrodes and subdural electrode arrays and subject behavioral
responses were recorded simultaneously. Research procedures were
approved by The University of Iowa Institutional Review Board and the
National Institutes of Health. Participation in the task was voluntary, and
each patient had the option to cease participation at any time without dis-
ruption in their clinical treatment. These datasets were previously pub-
lished by Curtu et al. (2019).

Auditory stimuli and bistable perception
The ABA– stimulus structure followed the description by Curtu et al.
(2019). Tones A and B lasted 100ms, with 10ms raised cosine onset
and offset ramps. Brief 50ms intervals of silence followed the first A
and B tone, and 200ms of silence followed the second A tone, with a
total duration of 600ms per triplet. Participants listened to a
sequence of 500 triplets (5 min in duration), called a stimulus block.

For all participants, except R369, and all stimulus blocks, the B tone
frequency was fixed at fB=1000Hz (1250Hz for R369). The frequency of
the A tone varied between fA= 1122, 1414, 1587, and 2000 Hz (for R369:
1403, 1768, 1984, and 2500 Hz), corresponding to semitone differences
of df=2, 6, 8, and 12, respectively. Three stimulus blocks were consid-
ered: df2-12, df6, and df8. The df2-12 block was defined by a repetition
of triplets that alternated between df=2 and df= 12 semitone differences
(12 durations for each of df2 and df12 ranging between 5–28 and 9–45
triplets, respectively). The timing of the onset and offset of df2 and df12
epochs was identical across subjects. We called df2-12 the control block
since it elicited stable percepts, with listeners generally reporting the df2
semitone difference as one-stream (integrated ABA� ABA� :::) and
the df12 semitone difference as two-stream percept (segregated A–A–A–
A–::: and –B–B–:::). The stimulus in the df6 and df8 blocks did not
change throughout the behavioral task. The frequency of the A and B
tones remained fixed, separated by df=6 semitones (df=8, respectively)
in all 500 triplets, but subjects reported spontaneous switches between
one-stream and two-stream percepts. We named df6 and df8 the (per-
ceptually) bistable blocks.

All subjects were instructed to report changes in perception from
one-stream into two-stream or two-stream into one-stream by pressing
an appropriate button on a response box. Reaction times (RTs) were
computed from the latency of their behavioral responses to stimulus
changes during the control block (0.65, 0.36, 3.22, 1.24, 1.29, and 1.48 s
for B335, L357, R369, L372, R376, and L409). To account for individual
reaction times, we assigned in our analysis a percept-neutral label (nei-
ther one-stream nor two-stream) to a number of triplets immediately
preceding each button press: in bistable blocks, two triplets for B335 and
six triplets for R369; in control blocks, all triplets following a stimulus
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change and until the button press was recorded (see below; also Curtu et
al., 2019).

ECoG recordings and data preprocessing
The ECoG data that we analyzed in this paper were a subset of the data-
sets published by Curtu et al. (2019), and were preprocessed following
the same procedure. Briefly, ECoG recordings were obtained simulta-
neously from multicontact depth electrodes and subdural electrode
arrays placed over the temporal, parietal, and frontal lobes. Data
were acquired using an RZ2 real-time processer from Tucker-Davis
Technologies for subjects B335 and L357 and the Neuralynx ATLAS sys-
tem for R369, L372, R376, and L409. Depth electrode arrays (8–12 macro
contacts, spaced 5mm apart) were stereotactically implanted along
the anterolateral-to-posteromedial axis of Heschl’s gyrus and pro-
vided coverage of core (posteromedial Heschl’s gyrus) and noncore
(anterolateral Heschl’s gyrus) auditory cortex (Fig. 1C). Neural sig-
nals were also obtained from contacts targeting other noncore audi-
tory areas within the superior temporal plane (planum temporale,
planum polare), insula and superior temporal sulcus (using depth electro-
des), and from surrounding auditory-related temporoparietal cortex and
frontal areas (subdural grid arrays). The ECoG recordings were amplified,
filtered (0.7- to 800-Hz bandpass, 12 dB octave rolloff), digitized at a sam-
pling rate of 2034:5Hz (Tucker-Davis Technologies) or 2000Hz
(Neuralynx), and saved along with the time series of behavioral
reports (button presses) for future analyses. The data from each re-
cording site were then downsampled to 1000Hz, denoised using the
method proposed by Kovach and Gander (2016), and screened for
possible contamination from electrical interference, epileptiform spikes,
high-amplitude and slow-wave activity. Finally, the data were bandpass
filtered between 1.5 and 70 Hz, with the frequency components in the
narrow band 2.2 to 2.7 Hz discarded by temporal and spatial filters. For
detailed description of the procedure, see Curtu et al. (2019). Note that
we optimized the selection of the parameter N in the spatial filter that
determines how many components of the singular value decomposition
(SVD) of the normalized spatial correlation matrix, taken over all contacts
in the narrowly defined frequency band, were to be discarded. Here, the
value ofN was derived independently for each individual subject by apply-
ing a previously described criterion (Gavish and Donoho, 2014) to their
ECoG data (as opposed to choosing N ¼ 30 across all subjects as in Curtu
et al., 2019).

Experimental design and statistical analysis
Input to the feature extraction algorithm
Our analyses were performed on a subset of the complete ECoG data set.
We retained as input into the proposed algorithm only the ECoG record-
ings obtained from contacts in posteromedial Heschl’s gyrus (HGPM). The
number of HGPM contacts, nc, per individual subject was six (B335), five
(L357), eight (R369), six (L372), seven (R376), and one (L409); (e.g., Fig. 1C
for B335). Nine perceptual blocks were analyzed independently: the control
block df2-12 for all subjects; the bistable block df6 of B335 and R369; and
bistable block df8 of B335 (Figs. 4, 9). At each contact c, the local field
potential LFPcðtÞ was normalized along a 3-s sliding window and, for com-
putational efficiency, further downsampled at 200 Hz. Briefly, at each time
point tk we standard-normalized LFPcðtkÞ into

LFP½ �ðcÞ
k ¼ ðLFPcðtkÞ �mðcÞ

k Þ=s ðcÞ
k ;

where m
ðcÞ
k and s

ðcÞ
k were the mean and standard deviation of contact

LFPcðtÞ computed over the 3-s window centered at time tk. (For time-
points within 1:5 s of stimulus onset and offset, the time window used for
standard-normalization partially included brief intervals of time preceding
or succeeding the streaming task.). Timeseries ½LFP�ðcÞk were smoothed by
averaging over a 10ms window centered at each tk. Then, the signal was
downsampled by taking one time point at every 5ms. The sampling rate
of 200Hz is consistent with other dynamic mode decomposition applica-
tions [e.g., 200Hz for 20min recordings in B.W. Brunton et al. (2016),
500Hz for 45 s in Marrouch et al. (2018), and 100Hz for 1:4 s in Cura
and Akan (2020)]. These transformed local field potentials (LFPs),

denoted by yðcÞk , have a reduced number of time samples tk, 60,000
(instead of 300,000 or more) and are ready for implementation into the
algorithm outlined in Figure 2.

Time-delayed coordinates and diffusion maps
The first step in the analysis was to perform the state-space recon-
struction and nonlinear dimensionality reduction of HGPM data
per experimental block. This was done using the diffusion-mapped
delay coordinate (DMDC) method outlined by Berry et al. (2013), with
the following variables and hyperparameter selection. We considered
yðcÞk as above and constructed the ensemble of ECoG measurements
made at time tk for all nc HGPM contacts: yk ¼ ½yð1Þk ; :::; yðncÞk � 2 Rnc .
This vector was then augmented to the a-weighted delay coordinates:

eyk¢ yk; e
�ayk�1; :::; e

�sayk�s½ � 2 Rncðs11Þ: (5)

by appending s-number of previous measurements. As proposed by
Berry et al. (2013), the exponential factor in the delay coordinates was
introduced to improve regularity in the embedded coordinates. Berry et
al. (2013) advised to choose a small nonzero constant for the decay a to
balance information loss (at large a the tail of delay coordinates
decays rapidly to zero) with reduced regularization (at a= 0). We set
a= 0.001 for all datasets and appended each observation with s = 799
past measurements. Thus, a single delay coordinate eyk contained
neural information from a temporal window spanning 4 s before
time tk (since ð79911Þ timepoints� 5ms=timepoint=4000ms=4 s).
This delay length of 4 s prevented alignment with the triplet presen-
tation rate, to avoid stimulus-based periodicities in the neural data,
and balanced computational performance with empirical perform-
ance across subjects and stimulus blocks.

Note that the first 799 tk-samples (representing the measurements
made in the 4 s immediately following stimulus onset) were not included
in the analyses of the extracted features because there was insufficient his-
tory to append to them. Hence, only 59,201 data points yk were embedded
as eyk in Rncðs11Þ=Rnc�800 (equivalent to time spanning 296 s instead of
300 s, total stimulus duration in each block).

The delay coordinates are hypothesized to encapsulate key dy-
namical properties of the original data. To generate low-dimensional
representations of these dynamics, we introduced them as input into
a diffusion map algorithm (Coifman et al., 2005; Coifman and Lafon,
2006). This algorithm performs nonlinear dimensionality reduction
by calculating eigenvalues and eigenvectors of a stochastic matrix P
derived from a nonlinear kernel. The kernel is rotationally invariant
and chosen to emphasize local neighborhoods and geometry intrinsic
to the data. Such an emphasis is an alternative to linear directions of
maximal variance, as identified in principal component analysis
(PCA). Here, we used the Gaussian kernel as a similarity measure
between all delay coordinates eyi and eyj,

kGðeyi;eyjÞ ¼ exp � jjeyi � eyjjj2
« 2

" #
;

with « a data-dependent parameter, and jj � jj representing the standard
Euclidean norm. Parameter « provides a notion of locality as the kernel
function kG decays to zero fast when evaluated at points away fromeyi, at
distance larger than « . Setting « too small or too large could lead to ill-
posed eigenvalue problems or distort approximations predicted by diffu-
sion map theory (e.g., if « is too small, the points become isolated; if it is
too big, the neighborhoods become too large to be relevant). It is thus
beneficial to make « data dependent. We chose « to be the average of
the kmin = 12 nearest neighbor distances computed for each data point,
as described by Berry et al. (2013). Then, the kernel was sparsified by set-
ting points outside of knn = 192 neighborhood to be zero; for any fixed
point eyi, if eyj is not among the knn near neighbors of eyi, then the kernel
takes negligible values, and we set kGðeyi;eyjÞ � 0. In close analogy to
PCA, we computed leading eigenvalues and eigenvectors fðl j; c jÞg of
the matrix P, Pc j ¼ l jc j. The eigenvectors from diffusion maps
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approximate heat diffusion along the underlying manifold M and pro-
vide timeseries of Fourier-like functions adapted to dynamics along
M, ordered according to decreasing eigenvalues (Coifman and
Lafon, 2006; Berry et al., 2013; Giannakis, 2019). In this way, the
eigenvectors from diffusion maps are a natural fit to preserve low-
dimensional dynamic and geometric structures revealed with delay
coordinates. We view each c j as a timeseries by identifying the kth

component of c j with c jðkÞ ¼ c jðxðtkÞÞ, the k-time sample of some
hidden state of the brain dynamics that generated the HGPM data.
The leading N-eigenvectors identified as output of the DMDC algo-
rithm would form a dictionary of functions in the extended dynamic
mode decomposition (eDMD) algorithm proposed by Williams et al.
(2015).

Extended dynamic mode decomposition
The eDMD algorithm requires the specification of a dictionary of basis-
like functions to approximate the eigenfunctions of the Koopman opera-
tor associated with the system’s dynamics as linear combinations of dic-
tionary elements. We developed a procedure to select the input
dictionary for the eDMD algorithm. By computing the fast-Fourier
transform (FFT) of previously identified DMDC eigenvectors c j, we
observed a frequency-based structure: DMDC leading eigenvectors
contained frequency components centered near harmonics of the triplet
presentation rate (every 600ms), with components of 1:67Hz, 3:33Hz,
5Hz, and so on. The leading vectors were followed by (and in some cases
interleaved with) another set of vectors, which also contained spectral com-
ponents near the aforementioned frequencies. However, these vectors
included more frequency components as well as modulations not observed
in the leading eigenvectors. They also exhibited a reduction in spectral
power compared with the first collection. A third set of vectors were
characterized by further reduction in spectral power and had no clear
organization according to frequency.

We took the starting index of the third subset of vectors as a hard
threshold for function selection: the eDMD dictionary was defined by all
DMDC eigenvectors before this index. Note that while the exact cutoff
index varied, the qualitative organization of the eDMD dictionary was
similar across subjects.

With the selected DMDC functions, we performed the eDMD algo-
rithm as described by Williams et al. (2015) to obtain approximations to
Koopman eigenvalues, modes, and eigenfunctions: fðv j; vj; w jÞgNj¼1

.
The real and imaginary parts of eigenvalues v j encode a decay rate and
an intrinsic frequency associated with eigenfunction w j. The frequency
is expressed in cycles per second (or Hz) by dividing the imaginary part
of v j by 2p . We used the decay rate and intrinsic frequency of v j to
organize w j into two distinct branches, named here J 1 and J 2 (see Fig.
3A). Eigenfunctions w j encode key temporal features of recordings in
HGPM over the 5-min stimulus block (less the first 4 s because of delay-
coordinate constraints), with the value w jðkÞ representing the sampling at
time tk. These eigenfunctions are neural features extracted by sampling
along the manifold M underlying the dynamics of the data. Finally, each
eigenmode vj 2 Rnc encodes the weights vjðcÞ of the contribution of neural
feature w j to the spatial pattern of activity at all c recording sites.

In this paper, we identified changes in the temporal dynamics of neural
features w j that correlated with perceptual changes in the auditory stream-
ing task (Fig. 4). We then used the weights from vj to reconstruct triplet-
averaged approximations of the ECoG recordings fromHGPM (Fig. 8).

Almost-invariant dynamical regions
Our analysis showed that trajectories along the manifold M evolved in
two distinct separated regions for long periods of time, with fast transi-
tions between them. We adopted the terminology from Froyland and
Padberg (2009) and called these regions “almost-invariant” (Fig. 9, blue
vs red regions). While such subsets ofM were not dynamically invariant
(trajectories eventually left them, often in a chaotic or probabilistic way),
they were consistent with the almost-invariant sets. In accord with the
definition by Froyland and Padberg (2009), a trajectory originating in ei-
ther almost-invariant attracting set ofM was unlikely to leave the region
for some nontrivial amount of time; then the wandering time in the
complementary set, before the return, was also nontrivial.

The eigenvalues of the Koopman operator
The values v j from the extended dynamic mode decomposition are the
“exponential” Koopman eigenvalues. We obtained them by transform-
ing the eigenvalues l j of the discrete-time Koopman operator into their
continuous-time counterparts according to formula v j ¼ lnðl jÞ=Dt.
Here, Dt ¼ tk11 � tk represented the time discretization of the ECoG
measurements yk and was equal to 5ms (see above, Input to the feature
extraction algorithm). Mathematically, l k

j ¼ ev jðDtÞk ¼ ev j tk , which can
be written as: ev j tk ¼ eReðv jÞtk eiImðv jÞtk . For the discrete-time Koopman
operator, the decaying modes are associated with values l j inside the uni-
tary circle: jl jj,1. In the continuous-time exponential eigenvalues inter-
pretation, the condition for the decaying modes translates into v j

belonging to the negative half-plane: Reðv jÞ,0. Thus, Reðv jÞ defines the
decay rate of the corresponding spatial mode vj, while the imaginary part
Imðv jÞ encodes the mode’s oscillatory frequency.

Permutation test
To study the statistical significance of the correspondence between
eigenfunction w

*
and perception we compared the mean of w

*
over tri-

plet-locked epochs from the subject-reported one-stream and two-
stream percepts (w

*
is described in Results; see also Figs. 3, 4).

The null hypothesis of the permutation test (to be rejected) states
that there is no difference in the mean of w

*
over the two percepts. Here,

we implemented a permutation test in which the triplet labels (one-
stream vs two-stream) were shuffled, while maintaining the number of
reported switches per stimulus block. Therefore, each permutation test
randomly assigned the same number of perception switches within the
500-triplet stimulus as reported by the subject. The placement of
switches was constrained by the subject’s reaction time, RT: new “per-
cepts” were created by gluing together a number of same-label-triplets to
cover a time window larger than RT. The first switch was always placed
at the beginning of the stimulus after accounting for RT. Once all
switches were in place, the first percept was randomly assigned to either
one-stream or two-stream category. All triplets from the beginning to
the second randomly placed switch took the label of that percept. Then
the perception was changed from one-stream into two-stream or two-
stream into one-stream, and all triplets up to the third switch were
associated with the new percept type. The alternating process contin-
ued until all triplets were assigned a one-stream or two-stream label.
As with the subject-reported behavioral data, triplets preceding each
switch received a neutral label to account for RT. This labeling process
produced random perception assignments to triplets consistent with
perception reports for each subject. It prevented unlikely outcomes like
markedly short or long perceptual states (which could be produced if
triplet labels were purely randomly assigned), with respect to individ-
ual differences in switching rates.

For each permutation of labels, we calculated the difference in
means of w

*
over the numerically generated one-stream and two-

stream percepts, mperm ¼ m2s;perm �m1s;perm. This difference was com-
pared with the difference in means for the observed perception,
mobs ¼ m2s;obs �m1s;obs. We counted how many times, m, the absolute
value jmpermj was larger or equal to jmobsj among the n = 10,000 per-
mutations, and derived the Monte Carlo p-value estimate p ¼
ðm11Þ=ðn11Þ. Percept-related differences in mean were considered
significant at the a= 0.01 level.

Instantaneous phase
Any complex number z ¼ a1ib can be written in trigonometric form
z ¼ reiu with u between�p andp defined by the four-quadrant arctan-
gent, u = atan2 Im½z�;Re½z�ð Þ = atan2ðb=aÞ. Accordingly, for any
complex eigenfunction w j obtained by eDMD algorithm, we com-
puted the instantaneous angle

u jðtkÞ ¼ angle w jðtkÞ
� � ¼ atan2 Im½w jðkÞ�;Re½w jðkÞ�

� �
;

then defined the trigonometric instantaneous phase shift of w j relative
to a frequency f in Hz by
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f j;f ðtkÞ ¼ angle ei 2p ftk�u jðtkÞð Þ� �
: (6)

Recall that the imaginary components of eDMD-derived eigenvalues v j

have close correspondence with integer multiples m of the triplet presenta-
tion rate 1:67Hz. Thus, for each eigenfunction w j, we set the frequency f to
the harmonic f ¼ m� 1:67Hz which is the closest to Im½v j�=ð2pÞ. In
particular, if such an eigenfunction were a perfect sine or cosine generated
at frequency f then the instantaneous phase shift computed according to

Equation 6 would be constant throughout the entire 5 min experimental
block. In this paper we refer to the instantaneous phase shift f j;f ðtkÞ rela-
tive to a particular frequency f in Equation 6 as simply the instantaneous
phase. In some examples, when we wanted to emphasize the dependence of
the phase on the frequency component f, as opposed to the eDMD index j,
we used the short notation f f instead of f j;f (see Figs. 5, 6).

As a timeseries, the instantaneous phase shift f j;f ðtkÞ of certain
eigenfunctions w j (for indices j 2 J 2) exhibited switching dynamics
between two steady-states. Typically, these steady-state angles were
nearly antipodal and lied approximately on opposite sides of the unit
circle. Then the transient time points alternated from one state to
another along the unit circle, passing back and forth either through the 0
angle (as in blocks df 2-12, df6, df8 for B335 and df6 for R369; see Fig. 5),
or through the opposite angle 6p (blocks df 2-12 for subjects L357,
R369, L372, R376, L409). For the latter, to account for the periodic
boundary conditions on the circle and avoid discontinuities in trajecto-
ries crossing6p , we rotated all instantaneous phases f j;f ðtkÞ by p radi-
ans. As such, we forced the majority of transient points to fluctuate
between the two steady-states through angle 0 before calculating the
four-quadrant arctangent (an action equivalent to mapping w jðtkÞ into
�w jðtkÞ), and established comparable timeseries plots across all experi-
mental blocks. These shifts were performed solely for illustrative pur-
poses and had no impact on the analysis.

Button press prediction
We used the instantaneous phase f j;f of a certain eigenfunction ŵ j
from the eDMD algorithm to construct a predictor for behavior. For
each experimental block, we selected ŵ j from branch J 2 as follows: ŵ j
was the eigenfunction associated with the Koopman eigenvalue v̂ j of the
slowest decay rate, Re½v̂ j�, and of positive frequency, Im½v̂ j�=ð2pÞ.
Since eDMD assigns indices j in decreasing order of real part for
eigenvalues, and since all complex eigenvalues come in conjugate
pairs, ŵ j is simply the first eigenfunction on branch J 2 associated
with a positive frequency (e.g., w 14 for B335 df 2-12 in Fig. 3).
Frequency f was selected to be the closest harmonic of 1:67Hz to fre-
quency Im½v̂ j�=ð2pÞ. Depending on the experimental block, this
was either f = 1:67Hz or f = 3:33Hz. Next, for simplicity, the selected
eigenfunction ŵ j and its instantaneous phase f j;f relative to this fre-
quency f were renamed w f and f f (e.g., f 1:67, f 3:33 for different
blocks in Fig. 6).

We computed f f ðtkÞ according to Equation 6 then averaged it over
two temporal windows immediately preceding time point tk, with the
time interval spanning one triplet (0:6 s in length) and two triplets
(1:2 s), respectively:

f f ;0:6sðtkÞ ¼ mean
t2½tk�0:6;tk �

f f ðtÞ; f f ;1:2sðtkÞ ¼ mean
t2½tk�1:2;tk �

f f ðtÞ:

These were calculated with “CircStat” toolbox for MATLAB (Berens,
2009). The average phases, as opposed to the instantaneous phase, had
the advantage of reducing the effects of rapid but unsustained fluctua-
tions in f f , and allowed for a comparison of phase transition from tri-
plet to triplet along the streaming sequence. To predict the occurrence of
the button presses, we constructed a nonlinear function

pf f
ðtkÞ ¼ sin

f f ;0:6sðtkÞ � f f ;1:2sðtkÞ
2

� �� �2

(7)

that tracked the two average phases above and mapped their differences
into values between 0 and 1. The nonlinear predictor pf f

ðtkÞ was chosen
to emphasize antipodal phase differences (i.e., angle differences close
to �p or p ) by mapping them into one, and to suppress similar
phase differences (i.e., for angle differences near �2p , 0, or 2p ) by
mapping them close to zero. In other words, persistent differences
that lie on nearly opposite sides of the unit circle will map close to
one under Equation 7. We referred to the output of Equation 7 as
the predictor variable.

Figure 10. Mitigation of noise effects in low-dimensional embeddings built by the feature
selection algorithm. To assess the robustness of the algorithm and it sensitivities to preprocessing,
we varied the number of appended delays: (A) 2 s, (B, C) 4 s, and (D) 6 s, respectively, and either
included (A, C, D) or excluded (B) the 3 s sliding window standard-normalization of ECoG data
and the 10 ms local averaging (see Materials and Methods for details on hyperparameter selec-
tion). Algorithmic results for subject R376, block df2-12, are shown. We plotted along the three
axes the eigenfunction w

*
and the real and imaginary parts of the leading oscillator w f from

branch J 2, respectively. A, In the case of 2 s delay, the algorithm identified the lowest frequency
of eigenvalues on branch J 2 at 3.33 Hz (not 1.67 Hz), so w f=w 3:33. Nevertheless, the embed-
dings plotted along the corresponding eigenfunctions together with w

*
still recovered the one-

stream versus two-stream perceptual regions. B, The perceptual region and triplet-tone alignment
manifested in the embedding, but the low-amplitude oscillations along the trajectories indicated a
contaminating frequency. C, The standardization and averaging attenuated the contaminating fre-
quency found in panel B, acting successfully toward noise reduction. This is the embedding from
Figure 9. D, Further increasing the delay improved the control of the noise in the construction of
the low-dimensional embedding. In panels B–D, the leading oscillator was w 1:67.
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The instantaneous phase f f ðtkÞ was found to be largely stable during
the block duration, apart from rapid transitions between steady-states.
Thus, the predictor variable maintained a value close to zero at most
time points. The predictor variable’s rare but large deviations from zero
were used to identify candidate timings for predicted button presses. We
calculated the mean mp and standard deviation s p of the predictor vari-
able over all time points tk, and took one standard deviation above the
mean as threshold for predictive perception change. Starting with the
time at stimulus onset, each time point tpk for which the predictor vari-
able exceeded the threshold, pf f

ðtpkÞ.mp1s p, marked a predicted
switch in perception. We hypothesized that a button press should have
occurred inside a time window near tpk . We defined this temporal inter-
val IðtpkÞ by tpk � 1:2 	 t 	 tpk1RT (in s), taking into account the triplet
repetition rate as well as the subject’s RT. To avoid overlap of prediction
intervals, we also imposed a refractory period of RT11:2 s following tpk
for any new possible “switches.” In the end, all time intervals for pre-
dicted button presses, IðtpkÞ, detected with the neural predictor pf f

as
above, were verified for their alignment with the behavioral reports (sub-
ject-reported perception changes).

Signal reconstruction
System observations (LFPs) were approximated as linear combinations
of the 5 min long Koopman eigenfunctions using the elements in the
Koopman modes vj 2 Rnc as coefficients for individual contacts (see Eq.
3 in Results). The feature extraction algorithm highlighted two distinct
branches J 1, J 2 of eigenfunction membership. To assess the contribu-
tions of each branch, the summation was taken exclusively with eigen-
functions from either J 1 or J 2 as in Equation 4.

Triplet-based reconstruction profiles �Y ðcÞ
1 , �Y ðcÞ

2 , �Y ðcÞ were computed
by averaging components YðcÞ

1 , YðcÞ
2 and entire sum YðcÞ

1 1YðcÞ
2 over each

percept-type (mean taken over all triplet-based epochs labeled as either
one-stream or two-stream). These quantities were compared with the
triplet-based averages �yðcÞ of the original signal.

Similarities between triplet-averaged reconstructions �Y ðcÞ
1 computed

separately over one-stream and two-stream percepts were estimated with
Pearson’s correlation coefficient, r. These measures were calculated per
individual subject, block, and contact, for a total of 53 comparisons. The
median r values were calculated for the group data in control blocks (me-
dian of 33 r values obtained from 33 contacts) and for the group data in
bistable blocks (median of 20 r values from 20 contacts). Then 95% confi-
dence intervals to the median were derived with bias-corrected and
accelerated percentile bootstrap sampling (Efron and Tibshirani,
1994; DiCiccio and Efron, 1996), with 10,000 bootstrap samples each.
Differences in the median correlation r of bistable group data versus control
group data were tested for significance with one-sided Wilcoxon rank-sum
exact tests at the a ¼ 0:01 level of significance. The same procedure quanti-
fied similarities/dissimilarities between triplet-averaged reconstructions �Y ðcÞ

2
over one-stream and two-stream percepts.

Assessing the effects of noise on time-delay embeddings
Time-delay embeddings, particularly those constructed from real data,
have been shown to be sensitive to noise. Establishing a methodology for
the attenuation of the effects of noise on embeddings is still an open area
of research (Ignacio et al., 2019; in topological data analysis) and (Pan
and Duraisamy, 2020; in nonlinear dynamical systems). We relied on
these references, and on others (see below), to build several components
of the feature extraction algorithm that mitigate the impacts of noise on
the results. First, we scaled the delayed-coordinates by an exponentially
decaying coefficient e�sa to control the temporal history of the signal
(see Eq. 5). As shown by Berry et al. (2013), increasing parameter s leads
to a reduction of the level of noise. This scaling controls the impact of
datapoints further away in time from yk. Second, we used diffusion
maps in conjunction with the delayed coordinates. Reduction techniques
like the singular value decomposition (SVD) have been shown to be ro-
bust to noise (Gavish and Donoho, 2014). The diffusion map reduction
is analog to SVD or the principal component analysis, except that its ker-
nel is nonlinear and is designed to preserve the intrinsic geometry

revealed by the time-delayed coordinates. Finally, we aimed to further
attenuate noise in the recordings by implementing two additional pre-
processing steps: standard-normalizing the local field potentials (LFPs)
with a sliding 3 s window and time-averaging over a short 10ms window
(see above, Input to the feature extraction algorithm). Since many state-
space reconstruction results hold in the limit of a large number of delays
(Giannakis, 2019), we took a pragmatic approach to assessing the
impacts of noise. We studied the effect on the results when we changed
the number of delays s, and when we did or did not apply the aforemen-
tioned preprocessing steps. In our hyperparameter exploration, we
focused on three measures: (1) the emergence of the two eigenvalue
branches J 1, J 2; (2) the identification of eigenfunction w

*
on J 2 that

correlates with behavior; and (3) the properties of the low-dimensional
dynamics associated with the auditory streaming task. We found that
the feature extraction algorithm preserved the qualitative structure and
interpretability of the results in all our parameter combinations. Figure
10 shows the effect on low-dimensional embeddings for subject R376,
block df 2-12, when we implemented the following four parameter com-
binations: 2 s time-delays plus temporal-standard normalization of LFPs
plus averaging over the 10ms window (Fig. 10A), increase delays to 4 s
but remove the 3 s time standardization as well as remove the 10ms win-
dow averaging (Fig. 10B), 4 s delays with standardization and with aver-
aging (Fig. 10C; this is the parameter set we used in the manuscript for
all subjects), and increase delays to 6 s while keeping the standardization
and averaging procedures (Fig. 10D). To summarize, increasing the
number of delays led to reduced noise artifacts in the uncovered features,
but also smeared the jumps between near-steady states in w

*
, and

between the phase transitions, over wider time intervals. In order to bal-
ance the reduction of noise in output features with steep transitions in
w

*
, and to keep a uniform set of hyperparameters across all subjects and

stimulus blocks, in Results, we implemented the strategy described in
Figure 10C.

Code accessibility
All code, data, and analysis files for this report are available at https://osf.
io/7w9qh/.
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