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NONHYPERBOLIC SINGULARITIES IN A
CHEMICAL MODEL

Rodica CURTU!

Abstract: A two-dimensional system with four positive parameters is
investigated from dynamical bifurcation point of view. The manifolds where a
triple and a double equilibrium exists, and the manifold defined by the
presence of an equilibrium with a double-zero eigenvalue are defined by
parametric expressions. Then on the basis on these parametric expressions,
we prove in the system the existence of a saddle-node and cusp bifurcation.

Key words: dynamical system, saddle-node, cusp.

1. Introduction

The Gray-Scott model for a cubic autocatalytic reaction in a continuous flow stirred
tank reactor (CSTR) was introduced in 1983 and it describes a group of three chemical
reactions for two reactants, 4 and B [7]. In the last years there was an increasing interest
in the Gray-Scott model. Studies concerning it, especially as a pair of coupled reaction-
diffusion equations were done [6], [10], [12]. Various models obtained as a generalization
of the original Gray-Scott model in CSTR were also presented [1].

Here we analyze the case of homogeneous compositions of reactants in the presence of
uncatalyzed conversion. Therefore, we deal with a two-dimensional ODE system

depending on four positive parameters, # = a(l —u) - uv? —bu, v=a(c—v)+uv’ +bu—dv,
or equivalently, by the change of variable w=1-u:

(D

{W=—(a+b)w+vz——wv2 +b,

v=—bw—(a+dW+v: -wv’ +b+ac.

The dimensionless parameters q, b, ¢ and d correspond to the chemical parameters: the
residence time (1/a), the uncatalyzed rate constant in the conversion of 4 to B (b), the
catalyst inflow (c) and the decay rate constant in the reaction B — C (d).

By a singular perturbation technique, static bifurcation diagrams (as isolas, mushrooms
and simple hystereses) were drawn for (1) [9], [3]. Nevetheless all others previous
theoretical studies we are aware of were done in the hypothesis of b = 0, that is only with
three parameters [8], [11].

The goal of our paper is to analyze the system (1) in the presence of uncatalyzed
conversion (b positive), from dynamical bifurcation point of view. Thus in the parameter
space we determine some manifolds that play an important role in the dynamical
bifurcation diagram and then we prove the existence of the saddie-node and cusp

! Dept. of Mathematical Analysis and Probabilities, Transilvania University of Bragov.



48 Nonhyperbolic Singularities in a Chemical Model

bifurcation points. The manifolds found here allow us to investigate the Takens-
Bogdanov bifurcation of (1), but this study will be published elsewhere.

The equilibria of the system (1) are the points situated at the intersections of nullclines,
i.e. the points (w,, v.) satisfying w=0 and v =0. Their eigenvalues play a key role in
determining the stability properties of the system. They are the roots of the characteristic
equation A> —fA +det =0 where ¢ is the trace, and “det” is the determinant of the Jacoby:

det =3(a+d)W? -2a(c+)v, +(a+d)(a+b),
matrix J:

__[Ba+ 2d)v? = 2a(c+1)v, +a(2a+b+d)]
a

2. Preliminary Results

Previous studies on the mathematical model (1) investigated various manifolds in the
parameter space, and characterized them by parametric expressions [2], [5]. Those are
either associated with the existence of a triple and a double equilibrium, or defined by the
presence of an equilibrium point with a double-zero eigenvalue. On the basis of these
parametric expressions we are now able to prove further results: we will prove the
existence of both saddle-node and cusp bifurcations in the dynamical system (1). In order
to do this let us first summarize the main results we need for later proofs.

Proposition 1.
i) The Gray-Scott system (1) has a triple equilibrium point iff in the parameter
space p = (a, b, ¢, d) belongs to the surface:

7. g 83ex’P (-89 'p 8+’ pU-p)

27 27 CEE 27 ’

@

where ce [Oéj and pe(0,1). Then the triple equilibrium point has the coordinates
1-2c¢ (c+Dp
Wy =——, vy =—",
T3 T3
i) If p € T, then the eigenvalues of the triple point equilibrium (w,, v, ) satisfy: A, =0,

Ay >0 if 0<b<b ;A =A,=0atb=b"and A, =0, A, <0 if b’ <b < b, where b and
by are defined by:

.;(l—2c)2(l—8c)(c+1)2 5 _(1-8)(c+)’

b
243 4 27

©)

Remark 1. For reasons to be seen later, let us denote by p,. the point p, in the

parameter space that corresponds to b = " and denote its projection on the plane (a, d) by
T". Therefore p,. belongs to the curve:
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defined for ce(O,%]. The current point p, describes the surface associated with the

bands 0 < b < b" and b* < b < b, that form T\ T

In view of Proposition 1 (ii), p, € T \ 1" is presumably a saddle-node or a cusp and
.. is a candidate for a Takens-Bogdanov bifurcation point. Subsequent proofs show that
i is actually a cusp (Sec. 3) and u,. is a degenerate Takens-Bogdanov bifurcation point

because of a zero coefficient (for x%) in the normal form.
Let us consider now the following equations:

a=2p*w+c)(1-w)?, b=p (w+c)(2w’+w-c), c=c,

2 &)
d=2p(l-p)(w+c)(1-w)".
Proposition 2.
i) The Gray-Scott system (1) has exactly two equilibrium points iff in the parameter
space, the point p = (a, b, c, d) belongs to the three dimensional manifold §=[S$; U $;]\ T
where 7 is defined by Eq. (2), and:

Syt (5) with ce[O,—l—J, we 1= '1—80,1_20 , pe(0]),
8 4 3
S, (5) with ce[O%], we[l";c,” “i"gc}, pe(0)).

The coordinates of the double point equilibrium are wgy = w, vey = p(w + ¢); the
coordinates of the simple point equilibrium are wgs =1 — 2¢ — 2w, vss = p(1 — ¢ — 2w).

iiy If p € S, then the eigenvalues of the double point equilibrium (wgy, vsy) are &; = 0
and A, = 2p(1 — w) (w + ¢) (w — p). Therefore we have A, = 0, A, > 0 for p € (0, w);
AM=M=0atp=wand A, =0,A, <0 forp e (w, 1).

Remark 2. Obviously, if in Proposition 2 we take w= 1-2

we get (2).

Thatis: SN S; =T, MoreO\-/er, the system (1) has an equilibrium with a double-zero
eigenvalue iff the parameter [ belongs to some surface, say DZ, on the manifold S, U S5,
obtained by choosing p = w as in Proposition 2. Thus, Eqs. (5) become:

mu2 1 2 ) 52 _
(Dz:{a-Zw (1-w)y'(w+c), b=w'(w+c)(2w" +w-c), ©

c=c, d=2wl-w)(w+c),
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with ce(O%] and we[l— i—Sc‘1+ 1-8&

4

into three disjoint sets such as DZ = BT, U T~ U BT,, with branches B7; and BT, laying
on S and S; respectively,

BT, ={(a,b,c,d)eIR4 | Eqs. (6) with ¢ € [o,%], we [1‘ vi-8 ,1‘20]},

] . Then the set DZ can be decomposed

4 3

qsrr2={(a,b,c,d)em“ |Eqs.(6)withce[0,%}, we[l_zc I+ “l‘sc]}

3

3 4

Proposition 3. An equilibrium point with a double-zero eigenvalue exists in the Gray-
Scott system (1) iff i = (a, b, ¢, d) € DZ, where DZ = BT, U T" U BT,, is defined by
Egs. (6).

i)If w € T, then the system (1) has a triple equilibrium point (w,., v,.) with a double-

zero eigenvalue. It has the coordinates w_. = 1—‘320 V= a- 20;(6 D .
ii) If p € BT, U BT, then the system (1) has two equilibrium points: (wgy, vsy) With a
double-zero eigenvalue and (wgs, vss) with no zero eigenvalue. They have the coordinates
wey =w, vsy = w(w + ¢) and wgs = | — 2¢ — 2w, vgs = w(1 — ¢ — 2w). Moreover Re(kfs )>0,
Re(AS)> 0 if p e BT;, i.e. (wss, vss) is unstable (repulsive), and Re(A°) <0, Re(2A5) <0
if p € BT, i.e. (wss, Vss) is asymptotically stable (attractive).

3. Cups and Saddle-Node Bifurcations

In this section we investigate (1) from dynamical bifurcation point of view and
characterize its saddle-node and cusp bifurcation points. We base our proofs on a more
general criterion, obtaining in the end that u € S\ DZ =[ §; U S ] \ DZ corresponds to
saddle-node bifurcation points and p € T \ T to cusp bifurcation points for (1). This

criterion was part of our previous work [4] on the dynamical system (1), and states as
follows. Let:

X = 4 X + o (AX + V) + 0o, (4,X +V,)+ B(X, X))+ C(X, X, X), )

be a n-dimensional ODE system (n > 2) depending on two parameters o, and c,. Here
Ao, 4, and 4, are n by n constant matrices, V; and ¥; are constant column matrices, and B
and C are column matrices that contain the second and third order terms with constant
coefficients in X respectively. In addition we assume that the matrix 4, has exactly one
zero eigenvalue, A = 0, all others satisfying the relation Re(})) # 0.

In these hypotheses the system (7) has at o, = a;; = 0 a nonhyperbolic equilibrium X'=0
with a one-dimensional central manifold. The dimension of the (generalized) eigenspaces
E°and E™ (R" = E° @ E™) associated with the eigenvalues A = 0 and A, with Re(};) # 0
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are dim E° = 1 and dim E™ = n — 1. Therefore it makes sense to consider in R" two
eigenvectors g and p of the matrices 4y and 4] such that 4,g=0and 4, p=0,p -g=1.

Proposition 4. In the above hypotheses, consider the n-dimensional ODE system (7)
depending on two real parameters o, 0, and choose two vectors g and p in IR” such that
Ag=0and 4] p=0,p-q=1.

i) (Saddle-node bifurcation) If a; # 0 and a’) +aj, # 0 where a,, a;,,a,, are defined by:

ar=p-B(q.9), aw=p-V, an=p -V, (8)

then the dynamical system associated with o; = o, = 0 is a saddle-node bifurcation in the
family of dynamical systems generated by (7). The miniversal unfolding of the dynamical

system corresponding to (o, o) = (0,0) is 4 =B+n? ifazr>0and 1 =p-n? ifa.<0.

ii) (Cusp bifurcation) If a;-= 0, b;: # 0 and a1obo1 — ag1b1o # 0 Where ag, ajo and agy are
defined by Eq. (8), and b;; b, byo by:

by = p[2B(q,) +C(4,9,9)], bwo=p - [419 + 2B(g,k100)], bo1 = p - [42g + 2B(q.k010)], (9)

where hy, ko, koio € IR” are the unique solutions of equations Aok, = arg — B(q,9), h- p=0;
Aokioo = aieg — V1, koo - p = 0 and Aokoyo = ang — Va, koo - p = 0, then the dynamical
system corresponding to (o, @) = (0,0) is a cusp bifurcation in the family of dynamical
systems generated by (7). The miniversal unfolding of the dynamical system corresponding

to (ou, ) = (0,0) is N =P, +B,n+n’ if br> 0and =P, +B,n-n’ if b < 0.

In the following we prove that the points of the manifold S\ DZ = [S; U S;]\ [T U DZ]
correspond to a saddle-node bifurcation for the dynamical scheme associated with (1).
For some g = (as, bs, cs, ds) € [S) W $]\ [T U DZ] the system (1) has a nonhyperbolic
equilibrium (wgy, vsy) With a zero eigenvalue. Let us now consider a system topologically
equivalent with (1) and obtained by the translation w = W+ wgy and v = V' + vgy, that is:

W =—(a+b+ Vi W+ 2vg,(1— wgy WV + (1= wey W2 = 2 WV ~WV?
+b—(a+b)wg, + v;N(l ~Wey),s
V=—(b+va W +[~(a+d)+ 2vg (1= wg IV + (1= wey W2 = 2v WV

—WV? +b+ac+vay(1-wgy)—bwgy, —(a+d)vgy .

(10)

For the bifurcation study we fix b = bgand ¢ = cs and take o, = a —agand a, =d —dy as
the bifurcation parameters. Therefore the system (10) takes the matrix form (7) with:

X=W, V), Vi=(-wsy, c—va), V2= (0, ~vs)|,
BX, %) =[(1 —wslN)V,Vz —vn (Wi V2 + WaV))] (1,1,
C(X, X5, X)) = “g[WleVs + WOV, + WV, ] an’,

and
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-1 0 0 0 —(ag+b+vy) 2y (1 - wey)
A1= , A2= ,A0= ( S ) SN SN( SN (11)

Theorem 1. (Saddle-node bifurcation points) Assume that c € [0—;—] and b € (0, by

with by defined by (3), and ps = (as, b, ¢, ds) cu (as, ds) € [S1 VU H]\ [T U DZ]. At u= pg
the dynamical system associated with (1) has a nonhyperbolic equilibrium point (wsy, vsy)

with a zero eigenvalue. The point (wsy, Vsv; Hs) is a saddle-node bifurcation in the family
of Gray-Scott dynamical scheme (1).

. . . . 1
Proof. On the basis of Proposition 2, there exist unique parameter values c e [O’EJ ,

€ 1= \/;_86 , ! +«/£11—8c }, w# 1_320 , and p e (0,1), that characterize ps € [S; U S;]\T .
Moreover, since g does not belong to DZ, we also have p # w.

The nonhyperbolic equilibrium has the coordinates wgy = w and vy = p(w + ¢) and the
corresponding eigenvalues &; = 0, A, = tgy = 2p(1 — w)(w + ¢)(w — p) # 0. Thus, these are
also the eigenvalues of the matrix 4, for which we choose g = (2 vey (1 —wg), as + b + va?)’
and p = (wsy / tsw— 1 / tey)" as eigenvectors that satisfy Agg=0, 4 p=0,p -q=1.

1

—_—  al
2(0-w)(w-p)
ar=p -B(g,q)= —ti(l ~wey ) (ag +b +viy) (ag +b-3vE,) thatis by Egs. (5),

SN
3 279
o SPE (1o2),

Then we apply Proposition 4 (i) with ap =p - Va=ven/tsyn= nd

Corollary 1. In the hypotheses of Theorem 1, about the nonhyperbolic equilibrium
(wsw, vsw) the system (1) is topologically equivalent to 1| = azn?, & = tnE.

Proof. The conclusion follows immediately from the reduction principle with tsy as the
nonzero eigenvalue and 1 = azn’> + O(n*),n — 0, as bifurcation equation on the central
manifold for a,; = o, = 0 that occurs at pg e [S; U ]\ [T v DZ]. u

The points of the manifold T \ T" correspond to a cusp bifurcation of the dynamical
scheme (1). For some p,, = (a,, by, ¢z, dy) € T\ T the system (1) has a nonhyperbolic
equilibrium (w,, v;) with a zero eigenvalue. We will consider a system topologically
equivalent with (1) and obtained by the translation w = W + w, and v =V + v, that is
(10) with the index changed from SNto 7.

Similar to the above theorem, we fix now b = b, and ¢ = ¢,, and take o; = a — a, and
o, = d — d, as bifurcation parameters. The matrices 4o, 41, 42, V1, V3, B and C in (7) are
re-computed accordingly.
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Theorem 2. (Cusp bifurcation points) Assume that ¢ e[O,%J and b € (0, b), b # b,

. = bsand b’ defined by Eq. (3), and consider .. = (a,, b, c, dy,) with (a,, d;)=T. At
- = ., the dynamical system associated with (1) has a nonhyperbolic equilibrium point

- . vz ) with a zero eigenvalue. The point (w,, v;; p,) is a cusp bifurcation in the family
-+ Gray-Scott dynamical systems (1).

i . . 1
Proof. On the basis of Proposition 1, there exist unique parameter values ¢ € [Ogj and

- = (0, 1) that characterize u, € 7. Moreover, since p, does not belong to 7", we have
1-2¢

7
~“he nonhyperbolic equilibrium has the coordinates w, = 1_32c and v, _{etDp and

2 -_—
-2 corresponding eingenvalues A; = 0, A, =t,r=4p (c9+1) [l 320—

“roposition 1. Thus, these are also the eingenvalues of the matrix A4,, for which we
czoose ¢ = (2 vy (1 —wy), ap +b + vfr)T and p = (w,/t,, —l/t,,)T as eingenvalues that

p],-:o as in

2
satisfy Ao g =0 and Al p =0, p - g = 1. By Eq. (2) they are g = M(l,p)T and

, 9
_i[1—2c _IT
? e\ 37 '

We apply Proposition 4 (ii) with B(g, g) = 0 that implies ar = p - B(q, q) = 0. Since in
“2is case the vector 4, € R? is a solution of Aoh, = 0 with A, - p =0, we have h;, =0, and

- 4 1 5
-zerefore br=p - C(q, q, 9), i.e. bp= 32p (el 20

81(1-2c-3p)
Similarly, by direct computation we obtain a,, = (c+ 1)[3p ~(4c+ 1)] and ay, = plc+l) .
9, 3t,
r 32
— +1)(1-2 1-2 8c(c +1
~=en diokoto — dorkio = ~ Be )(2 2 (1’ cj and ajobo) — anbio = Seleth p 2 P,
9t 3 271ty
-2 p - B(g, aiokoro — ao1kio0).
9(1-8¢)

Therefore ajobo; — ao1b10 =
T T e+ 1y (1= 2¢ -3 p)?

Corollary 2.

S ¢ GYO,%J and 0 < b < b’ then about the cusp bifurcation point (w,, v;; u,), the

“=zy-Scott system (1) has the miniversal unfolding =B, +B,n +n°, £ =E&.

Nfce [0%] and b’ < b < b, then about the cusp bifurcation point (w,, v,; K,), the

“-ay-Scott system (1) has the miniversal unfolding =B, +B,-7°, {=-&.
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1-2¢

Proof. The result follows from b<b' iff p< , Proposition 1 and Proposition

4 (i). n

In conclusion, in this paper we analyzed the Gray-Scott model in the particular case of
homogenous compositions of reactants and in the presence of uncatalyzed conversion.
The resulting system is two-dimensional and possesses four positive parameters. We used
the parametric representation of the manifolds 7, S and DZ to study the system from
dynamical bifurcation point of view. Those sets correspond respectively to a triple, a
double equilibrium, and a double-zero eigenvalue equilibrium. A criterion that connects
the coefficients of the system (1) to the coefficients of the bifurcation equation on the
associated center manifold proved to be very useful to our investigation. Thus we were
able to prove the saddle-node and cusp bifurcations in the system (1), the bifurcation
points belonging to S\ DZ (for the saddle-node) and T \ T * (for the cusp).
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