
Chapter 3
Linearity vs. Local Linearity

This chapter helps you understand the main approximation of di¤erential calculus: Small changes in
smooth functions are approximately linear. Calculus lets us use this approximation to replace nonlinear
problems by linear ones. We view this �rst graphically by magni�cation, then numerically, and �nally
symbolically.

It is much easier to answer the question: �For which x is f [x] equal to g[x]?�if f [x] and g[x] are of the
form f [x] = 1+ 0:07x and g[x] = 0:3+ 0:27x than if f [x] = ArcTan[x] and g[x] = Log[x]. Graphically, this
is a question of �nding a point of intersection (cf. Figures 3.1 and 3.2).

Figure 3.1: A common point on two linear graphs

Symbolically, the linear problem is simple, and the nonlinear one is not. Calculus lets us approximate
smooth functions linearly on a small scale. (If you look very closely at the linear and nonlinear graphs
near the point of intersection, they look the same.)

Figure 3.2: A common point on two nonlinear graphs

A linear function has the form dy = m � dx in local (dx; dy)-coordinates. The parameter m is the slope
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of the line that graphs the function. This linear function is increasing if m > 0, decreasing if m < 0, and
horizontal (or constant) if m = 0:

Calculus tells when a nonlinear function y = f [x] is increasing by computing an approximating linear
function, the di¤erential, dy = m �dx. The slope m of the di¤erential is the derivative, m = f 0[x]. It is easy
to tell if the linear function is increasing; we simply ask if the slope m is positive. A nonlinear function
also increases where its linear approximation increases and the approximation is valid. The �uniform
derivatives�in this book make the approximation valid at least in a small interval.

The �local approximation�of di¤erential calculus means that a microscopic view of a smooth function
appears to be linear as in Figure 3.3. In other words, calculus can be used to compute what we would see
in a powerful microscope focused on the graph of a nonlinear function. If we �see� an increasing linear
function, then the nonlinear function is increasing in the range of the microscope.

Figure 3.3: A highly magni�ed smooth graph

�Approximation� can mean many things. We take up a perfectly natural kind of approximation in
the CO2 Project in the accompanying separate book on Scienti�c Projects. Long-range approximation
turns out not to be the kind that is so useful in calculus, but it is worth thinking about a little just for
comparison. The next section gives you a clever case for comparison. �Local�microscopic approximation
is probably not the �rst kind of approximation you would think to use, but it is the kind of approximation
that makes calculus so successful.

3.1 Linear Approximation of Ox-bows

This section shows you one dramatic example of a nonlocal linear �approximation.�The local linearity of
calculus is only good for small steps; we hope Mark Twain�s wit will help you remember this.

The chapter Cut-o¤s and Stephen of Mark Twain�s Life on the Mississippi contains the following
excerpt about ox-bows on the lower Mississippi. In a �ood, the river can jump its banks and cut o¤ one of
its meandering loops, thereby shortening the river and creating an ox-bow lake.

In the space of one hundred and seventy-six years the Lower Mississippi has shortened itself two hundred
and forty-two miles. That is an average of a tri�e over a mile and a third per year. Therefore, any calm
person, who is not blind or idiotic, can see that in the Old Oolitic Silurian Period, just a million years ago
next November, the Lower Mississippi River was upwards of one million three hundred thousand miles long,
and stuck out over the Gulf of Mexico like a �shing-rod. And by the same token any person can see that
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seven hundred and forty-two years from now the Lower Mississippi will be only a mile and three-quarters
long, Cairo and New Orleans will have joined their streets together, and be plodding comfortably along
under a single mayor and mutual board of aldermen. There is something fascinating about science. One
gets such wholesome returns of conjecture out of such a tri�ing investment of fact.

Exercise Set 3.1

1. Linear Ox-bows
How wholesome are Twain�s returns? Express the length of the river (in miles) as a function of time
in years using the implicit mathematical assumption of Twain�s statement. What is this assumption?
We are not given the length of the Lower Mississippi at the time of Twain�s statement, but we can �nd
it from the information. What is it? What is the moral of this whole exercise in terms of long-range
prediction?

3.1.1 Chapter Plan

Here is the plan for the rest of the chapter. First, in Section 3.2, we use the computer to observe that the
graphs of �typical�functions look �smooth.�Speci�cally, when we �zoom in�at high magni�cation to any
point on the graph y = f [x], we see a straight line. We will identify this line as dy = f 0[x]dx in the local
coordinates described in Chapter 1.

Of course, there are exceptional �non-typical�functions, and we look brie�y at them at the end of the
next section.

Section 3.4 is our �rst real e¤ort to measure the deviation from straightness. A smooth graph becomes
indistinguishable from the straight di¤erential line because the gap between the curve and the tangent
decreases as we increase the magni�cation. This section measures the gap in some speci�c cases and
concludes with a general summary problem.

Section 3.5 uses the general formula �rst to verify your results from the previous special cases and then
to extend the idea. Chapter 5 takes up the symbolic approach to the gap computations in general, whereas
Chapter 4 shows how the gap formula looks in an approximate solution of a di¤erential equation.

Chapter 6 gives the rules that allow us to �nd the derivative function f 0[x] by a �calculus.�These rules
are actually theorems that guarantee that the gap in the microscope is small at high enough magni�cation.
If you want to take that on faith, you could skip Sections 3.4, 3.5, and Chapter 5, where we compute the
gap graphically, numerically, and symbolically.

3.2 Graphical Increments

This section uses computer �microscopes� to give one of the most important interpretations of di¤eren-
tiability or �local linearity.�

At high enough magni�cation, the graphs y = x2, y = x3, y = x27, y = 1=x, and y =
p
x appear

straight (except at x = 0 on 1=x and x � 0 on
p
x.) The computer programsMicroscope and Zoom will

let you experiment with these and other functions yourself. The sequence of graphs in Figure 3.4 shows a
�zoom�at x = 1 on the graph of y = x2.
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Figure 3.4: Successive magni�cations of y = x2 at x = 1

The computer programs SecantGapZ and Zoom help give you the geometric idea of the Increment
Principle. These programs contain �animations�- a computer generated �movie�of graphs being magni�ed.

Exercise Set 3.2

1. Computer Zooming

(a) Run the computer program Zoom with its built-in example function, y = f [x]. Read the instruc-
tions in the program on making the computer run an animation. You should see a �movie� of
an expanding graph. Each �frame�of the movie is expanded 1.5 times. Once the magni�cation
is high enough, the graph appears to be linear.

(b) Focus the microscope at the point x = 0 instead of the built-in x = 1 and reenter the two
computation cells.

(c) Use the computer program Zoom and rede�ne the function f [x] to make animations of micro-
scopic views of some of the functions:

i) f [x] = x2 ii) f [x] = x3 iii) f [x] = 1
x

iv) f [x] =
p
x v) f [x] = ArcTan [x] vi) f [x] = Log [x]

vii) f [x] = Exp [x] = ex viii) f [x] = Cos [x] ix) f [x] = Sin [x]

Try focusing the microscope over the points x = 1:5, x = 0, and x = �1 when all these are
possible. (Say why they if they cannot be done.)

2. Measuring the Derivative
Views of a function y = f [x] are shown in the three �gures below magni�ed by 50 and focused on
the graph above three di¤erent x�s. Measure the derivative at each point by �nding the slope of the
approximating straight line.
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Figure 3.5: y = f [x] magni�ed at x = 1, f 0 [1] =?

Figure 3.6: y = f [x] magni�ed at x = 3=2, f 0 [3=2] =?

Functions with Kinks and Jumps
Not all functions are smooth or locally linear. This means that when we magnify some functions, their

graphs do not become more and more like straight lines. Which functions do, and which do not? Symbolic
rules of calculus will answer this question easily, and it turns out that �most�functions are smooth so that
microscopic views of their graphs do appear linear. Two exercises below experiment with some exceptional
cases.

3 Jump Functions
Run the computer program Zoom on the functions

j1[x] =

p
x2 + 2x+ 1

x+ 1
and j2[x] =

p
x2 � x4=2
x

Focus the microscope at the points x = +1, x = 0, and x = �1. Where are the functions smooth and
locally linear? Where is the �trouble spot�? What happens to the functions at x = the trouble spot?
Why?

4 Kink Functions
Run the computer program Zoom on the functions

k1[x] =
p
x2 + 2x+ 1 and k2[x] =

p
x2 � x4=2
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Figure 3.7: y = f [x] magni�ed at x = 3=2, f 0 [3=2] =?

Focus the microscope at the points x = +1, x = 0, and x = �1. Where are the functions smooth and
locally linear? Where is the �trouble spot�? What happens to the functions at x = the trouble spot?
Why?

3.3 Continuous, But Not Smooth

The main ideas of di¤erential calculus are based on approximating small changes in the output of a function
when a small change is made in its input. We need some notation to indicate a small change. If x1 and x2
are nearly equal, we will write

x1 � x2
For now, this will just be an intuitive notion; we will not say exactly how close they have to be in order to
write x1 � x2.

De�nition 3.1 Informal De�nition of Continuity
We say that a function f [x] is continuous when small changes in x only produce small changes in the value
of the function,

x1 � x2 ) f [x1] � f [x2]

This is an intuitive formulation of the expression

lim
x1!x2

f [x1] = f [x2]

and it is important for you to have an idea of what this means before we try to formalize it technically (in
Chapter 5.) The de�nition is a kind of approximation: f [x2] is approximately f [x1] when x2 is approxi-
mately x1, but it is NOT an approximation by a linear function. Local linear approximation graphically
says the graph looks like a straight line at a small scale. (Naturally, a linear function is continuous because
the function changes by a multiple of the change in x. We formulate linear approximation symbolically in
the Section 3.5.)
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Problem 3.1 Continuity Without Local Linearity
Explain in terms of the de�nition above why the functions ji[x] in Exercise Set 3.2:3 are not continuous (at
certain points) but the functions ki[x] in Exercise 3.2:4 are continuous (at least where they are de�ned).

The jump functions ji[x] are discontinuous at certain points, and the functions ki[x] are continuous but
not locally linear (or smooth or di¤erentiable) at certain points. The function (shown in Figure 3.8)

W [x] = Cos[x] +
Cos[3x]

2
+
Cos[32 x]

22
+
Cos[33 x]

23
+ � � �+ Cos[3

k x]

2k
+ � � �

is continuous but is not locally linear at any point. It has a kink at every point on the graph! Weierstrass
discovered this function, and its graph looks like lots of di¤erent size �Ws�all hooked together. It is an
old example of a �fractal.�We want you to graph it and look at it on several scales. When we study series
later in the course, we will return to Weierstrass�function. (See Problem 3.2.)

Figure 3.8: Weierstrass�nowhere di¤erentiable function

Problem 3.2 Weierstrass Wild Wiggles
Graph Weierstrass�function using the programWeierstrass. Try several scales, �delta�. The program

keeps the width of the x-axis and the width of the y-axis on your graph the same. This prevents distortion
of slopes.

3.4 Algebra of Microscopes

The goal of this section is to numerically and symbolically calculate the error of deviation from straightness
in microscopic views of graphs.

As a warm up to magnifying graphs, think about this question: If you magnify a segment by one million
and it appears to be 1 cm long, how long is it? We need a general formula to answer this kind of question
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so that we can predict when su¢ cient magni�cation will make a graph appear linear. We begin with some
numerics to help present the idea.

3.4.1 Three Speci�c Magni�cations

We begin by magnifying the graph of y = x3 at the point (x; y) = (3=4; 27=64) � (0:75; 0:421875) and

comparing it with the line dy =
27

16
� dx in local (dx; dy)-coordinates centered at (x; y) = (3=4; 27=64). We

look at changes in x of �x = 1=2; 1=4; 1=8 and magnify each graph to look at the di¤erence between the
curve and the line. We will make measurements in centimeters and adjust scales according to the amount
of magni�cation.

Example 3.1 Magni�cation of �x = 1=2 at x = 3=4

The graph in Figure 3.9 at the left has 1 cm for each unit. The graph at the right is magni�ed by
2 so 1 cm equals 1/2 unit. Points are indicated at (x; y) = (3=4; 27=64) or (dx; dy) = (0; 0), and above
dx = �x = 1=2.

Figure 3.9: y = x3 and dy = 27
16 � dx at (

3
4 ;
27
64), �x =

1
2

Example 3.2 Magni�cation of �x = 1=4 at x = 3=4

The graph in Figure 3.10 at the left has 1 cm for each unit. The graph at the right is magni�ed by
4 so 1 cm equals 1/4 unit. Points are indicated at (x; y) = (3=4; 27=64) or (dx; dy) = (0; 0), and above
dx = �x = 1=4.

Example 3.3 Magni�cation of �x = 1=8 at x = 3=4
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Figure 3.10: y = x3 and dy = 27
16 � dx at (

3
4 ;
27
64), �x =

1
4

Figure 3.11: y = x3 and dy = 27
16 � dx at (

3
4 ;
27
64), �x =

1
8

The graph Figure 3.11 at the left has 1 cm for each unit. The graph at the right is magni�ed by 8
so 1 cm equals 1/8 unit. Points are indicated at (x; y) = (3=4; 27=64) or (dx; dy) = (0; 0), and above
dx = �x = 1=8.

Example 3.4 A Speci�c Gap of y = x3 at a speci�c magni�cation

We are interested in the gap between the curve and the straight line in the last microscopic view
(where the change in x was dx = 1=8.) We will call the amount we measure (in cm) in the microscopic
view �epsilon,�", greek �E�(for error). In this example, we want to know

(1) How big is " (in cm) in the microscopic view?
(2) How big is the gap in original unmagni�ed coordinates?

Remember that if we magnify by one million and see 1 cm on the microscopic image, we actually have an
error of 10�6 cm, one one millionth of the apparent error.
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The actual distance from the dx-axis, where y = f [x] = f [3=4] = 27=64, to the point on the curve
above dx = �x = 1=8 is given by the di¤erence,

f [x+�x]� f [x] =
�
7

8

�3
�
�
3

4

�3
=
127

512
� 0:248047

because the input to f [:] is 3=4 + 1=8 = 7=8 at the new point. The magni�ed segment of the curve is
shown at the left in Figure 3.12. The actual height of the vertical segment from the dx-axis to the curve
is f [x + �x] � f [x]. The measured length after magni�cation is (f [x + �x] � f [x])=�x. The magni�ed
linear approximation is shown at the right.

Figure 3.12: y = x3 and dy = 27
16 � dx at (

3
4 ;
27
64), �x =

1
8

The distance from the dx-axis to the point on the line dy = mdx above the point where dx = 1=8 is

dy = mdx =
27

16
� 1
8
=
27

128
� 0:210937

The magni�ed vertical segment at the right measures 8 � 2716 �
1
8 =

27
16 = m because we magnify by 1=�x.

Finally, we want to compare the di¤erence between these vertical distances. Figure 3.13 shows the
nonlinear and linear graphs at magni�cation 8 and shows a small segment connecting the linear graph to
the nonlinear one above x +�x. The actual length of the vertical segment connecting the (dx; dy)-point
on the tangent with the (x; y)-point on the curve is the di¤erence between these two values

f [x+�x]� f [x]�m ��x = f [3
4
+
1

8
]� f [3

4
]� 27

16
� 1
8

=

�
7

8

�3
� 27
64
� 27

128
=
19

512
� 0:037109

The error magni�ed by 8 (as shown) measures

" =
19

512
� 8 = 19

64
� 0:296875 (cm)

The moral of this whole chapter is that the error " gets smaller and smaller as the x-increment, �x, gets
smaller, even when we view this gap at magni�cation 1=�x. This section only has some numerical examples
to get us started at measuring this gap.
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Figure 3.13: The magni�ed gap between y = f [x] and dy = mdx

Exercise Set 3.3

In the following exercises, draw the sketches accurately on good graph paper. Be careful about the
method you use to calculate your results so you are connecting numerics, symbolics, and graphics. You
can use the computers if you wish, but you will still need to do algebra. If you magnify by 1=�x, so that
a segment of length �x appears to be unit size, and you observe another segment of apparent length ",
the actual length of the unmagni�ed segment is " ��x. The �rst exercise tries to help you understand this
formula.

1. Let " = 0:33 and �x = 0:01. Draw a line with a scale of 1 unit = 1 cm on the left half of your
paper. Put dots at x = 0, �x = 0:01, and " ��x = 0:033. (What is the di¢ culty when you draw in
centimeter units?) On the right half of your paper, draw a line starting at 0 magni�ed by 100. How
far in centimeters on the magni�ed picture is the dot for �x and " ��x?

2. Your First Magni�cation

(a) Sketch the graph of y = x3 for �1:5 � x � 1:5 using equal x and y scales with 1 cm = 1 unit.

(b) We want to focus our microscope over the x-value x = 2=3. What is the corresponding y-value?

(c) Draw the local (dx; dy)-axes with its origin at the (x; y)-point, (x; y) = (2=3; 8=27) on the same
graph. The (dx; dy) origin lies at the center of your microscope. We will think of x as �xed
and vary dx and dy.

(d) The straight line in local coordinates dy = (4=3)dx is tangent to y = x3 at x = 2=3. Sketch this
as a dotted line on the same graph.

(e) Magnify a portion of your graph by 10 and draw the microscopic view with the same scale you
used for your original (x; y)-plot. This way (1=10) will appear unit size, that is, measure 1 cm
on your graph paper.

Your result from Exercise 2 should look something like the Figure 3.14. Compare your work to the computer
animation in the program SecantGapZ.

3. Measuring the Speci�c Gap

Carefully draw the curve y = x3 between the values x = 2
3 and x + �x =

2
3 +

1
10 on a scale where

1=10 of a unit is 1 cm, that is, magni�ed by 10 if 1 cm is the original unit. The curve y = x3 lies
above your tangent line dy = 4

3 dx, where the local dx-dy axes lie at the center of the �microscope�
magnifying the �gure.
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Figure 3.14: y = x3 and dy = 4
3 � dx at (

2
3 ;

8
27), �x =

1
10

(a) What are the (x; y)-coordinates of the point where (dx; dy) = (0; 0)?

(b) The x-coordinate of the point dx = 1=10 = 0:1 is 0:7666 : : :, because dx = 0 corresponds to
x = 2=3 = 0:6666 : : : What is the y-coordinate on y = x3 when x = 0:7666 : : :? What is the
change in y from the dx axis to the point on the curve above x = 2=3 + 1=10?

(c) What is the change in dy from dy = 0 to the point on dy = (4=3)dx above dx = �x = 1=10?

(d) What we see in the microscope as " on our centimeter scale is the magni�ed di¤erence between
the answer to Part 2 and the answer to Part 3, so its actual size is given by applying the formula
from Exercise 1 to this di¤erence. How much is it?

4. A Gap in Function Notation

Let f [x] = x3 in the following computations, and verify that the function procedures produce the
answers to the measurement of " as in the examples and exercises above, especially Exercise 3.4.1.
Basic units are measured in centimeter, whereas magni�ed units appear 10 times larger.

(a) When x = 2=3 and the (dx; dy)-coordinates are centered on y = f [x] above this value of x, then
the (x; y)-value of (dx; dy) = (0; 0) is (x; f [x]) = (2=3; f [2=3]) = (2=3; ??).

(b) On the sketch of the portion of y = f [x] between x = 2
3 and x + �x =

2
3 +

1
10 with a scale

of 1=10 unit = 1 cm, the length of the vertical segment from the dx-axis to the (x; y)-point
(x+�x; f [x+�x]) is 10 times the unit value of

f [x+�x]� f [x] = (2
3
+
1

10
)3 � (2

3
)3 =?

or simply,
f [x+�x]� f [x]

�x

(c) If we sketch the line dy = m dx, with m = 4=3, the length of the vertical segment (in original
units) between the dx-axis and the point above dx = �x = 1=10 is

dy = m �x

If we magnify by 1=�x so that �x appears unit size or speci�cally, 1=10 unit equals 1 cm, then
this distance measures

m = 4=3
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(d) The magni�ed gap " measures

" =
f [x+�x]� f [x]

�x
�m

(e) The actual unmagni�ed size of the gap between the curve and its tangent approximation above
x+�x is

f [x+�x]� f [x] = m �x+ " ��x

3.4.2 The General Gap

Now we help you �nd the formula that expresses the quantities we see in a microscopic view of an unknown
function y = f [x] when magni�ed by an arbitrary (1=�x).

Figure 3.15: Slight magni�cation of y = f [x]

Figure 3.15 is a sketch of a general function y = f [x] with 1 unit = 1 cm. A pair of local coordinate
(dx; dy)-axes is centered on the graph over a �xed point x. A line in local coordinates dy = m dx is shown
in grey.

On the right, an image of these graphs is shown magni�ed by 1=�x, so that the small number �x
appears unit size. Since we magnify by an amount that makes �x appear 1 cm in size, if we measure a
distance " in the microscopic image, the actual size is really " ��x. (Check this formula intuitively when
�x = 1=1; 000; 000. We magnify by one million and see a gap of 0:3, for example, but it is really only a
gap of 0:3=1000000.)

Problem 3.3 Symbolic Magnification for an Unknown y=f[x]

Explain the following statements about Figure 3.15:

1. The vertical distance from the dx-axis up to the curve is

f [x+�x]� f [x]

but the magni�ed view of this vertical segment measures

f [x+�x]� f [x]
�x
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2. The vertical distance from the dx-axis up to the line dy = m dx above the point dx = �x is

m �x

but the magni�ed view of this vertical segment measures

m

3. The magni�ed gap " measures

" =
f [x+�x]� f [x]

�x
�m

but the actual change in the function as x moves to x+�x is

f [x+�x]� f [x] = m �x+ " ��x

3.5 Symbolic Increments

The following formula for the change in a general function

f [x+�x]� f [x] = f 0[x] ��x+ " ��x

gives the gap " one would measure at magni�cation 1=�x between a straight line of slope f 0[x] and the
curve as we move from x to x+�x.

The condition for local linearity of a graph y = f [x] is that the magni�ed error gap between the
curve and line is small, " � 0, when the magni�cation is large. In other words, if the local change in x,
dx = �x � 0, then the MAGNIFIED change along the curve is " � 0-close to the change along the line.
(The lowercase [small] Greek delta ,�, indicates intuitively that the di¤erence in x is a very small amount.)

When the gap is small for �x � 0, the slope of the local linear approximation, f 0[x], is called the
�derivative.�This is what we saw in the examples and exercises of the last section:

Summary of The Graphical Approximations or "f [x] is the Derivative of f [x]"

The condition of (uniform) �tangency�is expressed by the microscopic error formula

f [x+ �x]� f [x] = f 0[x] � �x+ " � �x

provided the magni�ed error is small, " � 0, whenever the change in x is small, �x � 0.

The approximation " � 0 means that a microscopic view of a tiny piece of the graph y = f [x] looks the
same as the linear graph dy = m � dx on the scale of �x. This looks like
When we say f 0[x] is the derivative of f [x], we mean that this local approximation is valid, " � 0 when
�x � 0, or "! 0 as �x! 0.
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Figure 3.16: A Symbolic Microscope

Chapter 5 is devoted to symbolic computations of the gap " and symbolic ways to show that it becomes
small when �x is small. This is easy to verify in the case of y = x3.

We expand

f [x+ �x]� f [x] = (x+ �x)3 � x3

= x3 + 3x2 �x+ 3x �x2 + �x3 � x3

= 3x2 �x+ 3x �x2 + �x3

= 3x2 �x+ (�x � (3x+ �x)) � �x
f [x+ �x]� f [x] = f 0[x] � �x+ " � �x

with f 0[x] = 3x2 and " = �x � (3x+ �x). Because " = �x � (3x+ �x) contains the number �x as a factor, "
is small when �x � 0 is small (as long as x is bounded. See Chapter 5 for details.)

Exercise Set 3.4

1. Check Your General Formula with y = x3

When f [x] = x3, the microscopic gap is " = �x � (3x+ �x).

� 1. Use this formula for " to check the errors you measured in Exercise 3.4.1 and Problem 3.3 .

� 2. We are interested in the size of the gap " at x+1=100. How much is this gap when in a microscope
of power 100 focused at the point x = 2=3? How much is it really? Use your general formula to show
that " = 0:0201 and " � �x = 0:000201 (see Figure 3.17).

� Your General Formula with y = x4
Let f [x] = x4 and show that the microscope equation

f [x+ �x]� f [x] = f 0[x] � �x+ " � �x

becomes
(x+ �x)4 � x4 = 4x3 � �x+ " � �x

with " = �x � (6x2 + 4x�x+ �x2).
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Figure 3.17: y = x3 and dy = 4
3 � dx at (

2
3 ;

8
27), �x =

1
100

� There is only one possible line that can ��t� a graph y = f [x] when magni�ed. To see this, let
y = f [x] = 1

2x near x = 0, but suppose the approximation we try is dy = dx, or m = 1, so the
microscope equation is

f [x+�x]� f [x] = �x+ " ��x

(see Figure 3.18).

Figure 3.18: y = x=2 and dy = dx near (x; y) = (0; 0), magni�ed � 5

Show that no matter what magni�cation, we always have " = �1=2 above the point that appears to
be one unit to away from the intersection. (Do this by writing f [x] and f 0[x] explicitly in the microscope
equation and solving for ".)

Problem 3.4
The graph of the function

y = f [x] = x+
3

2

p
x2 � 2x+ 1

is actually two half lines meeting at the point (1; 1). To the right, the line has slope 5
2 , and to the left

it has slope �1
2 . There is no tangent line at this point because the �gap� does not go to zero. (Rules of

di¤erentiation from Chapter 6 applied to this formula give a formula that is not de�ned at x = 1.) We
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Figure 3.19: y = x+ 3
2

p
x2 � 2x+ 1 near (x; y) = (1; 1)

want to magnify this graph at (1; 1) anyway and compare it with the �best� local linear approximation we
can make. Since the slopes average out to slope 1, compute the gap between this function and the line
dy = dx. Begin with several numerical cases. Let x = 1 and calculate " in the equation

f [x+�x]� f [x] = �x+ " ��x

for �x = �1;�1=10;�1=100;�1=1000. (ANS: " = �3=2) Graph the function and the line dy = dx on
the same axes for the scales in the previous part of the problem and show that the gap remains the same
size at all these scales. Magnifying the graph never makes y = f [x] appear linear and never makes the gap
between y = f [x] and dy = dx get smaller.

Figure 3.20: y = x+ 3
2

p
x2 � 2x+ 1 near (x; y) = (1; 1), magni�ed � 5

3.6 Projects

Projects for this chapter are:

3.6.1 CO2 Data

The Scienti�c Project on CO2 Data �ts a linear function to data and compares it with long range prediction.



CHAPTER 3 LINEARITY VS. LOCAL LINEARITY 55

3.6.2 A Project on Functional Linearity

Linearity in function notation has a peculiar appearance. This is not di¢ cult, just di¤erent. This project
shows you the linear case of the main formula underlying di¤erential calculus.

3.6.3 A Project on Functional Identities

The Project on Functional Identities includes further study of the additive identity

f [x+ y] = f [x] + f [y]

This is related to a famous problem posed by Cauchy and solved by Hamel. If f [0] = 0 and f [x] satis�es
the identity f [x+ y] = f [x] + g[y],

f [x+�x]� f [x] = g[�x]
f [0 + �x]� f [0] = g[�x]
f [�x] = g[�x]

so that

f [x+�x]� f [x] = f [�x]
f [x+�x] = f [x] + f [�x]

Changing variables, we get, f [x + y] = f [x] + f [y]. In particular, if f [x] = mx, then f [x] satis�es
f [x + y] = f [x] + f [y]. Cauchy�s question was: If an unknown function satis�es f [x + y] = f [x] + f [y],
does the unknown function have to be f [x] = mx for some constant m? You answer this question in the
exercises for the important case where f [x] is smooth.

Notice that the identity
f [x+�x]� f [x] = m ��x

is the microscope approximation

f [x+�x]� f [x] = m ��x+ " ��x

with zero error, " = 0.


